图书简介
本书介绍与人工智能关系紧密的数学知识模块,以使读者更好地掌握数学方法在人工智能领域的应用。本书整合了随机过程、矩阵论和运筹学中相关的数学基础,共12章,分为3部分。第1部分为随机过程,包括第1~3章,主要介绍概率论预备知识、随机过程的概念和基本类型、马尔可夫链。第2部分为矩阵论,包括第4~8章,主要介绍矩阵论预备知识、线性空间与线性变换、范数理论及其应用、矩阵分解和特征值的估计。第3部分为运筹学,包括第9~12章,主要介绍运筹学思想与运筹学建模、数学规划、**化问题和多目标决策。本书面向高校计算机和人工智能等相关专业的学生,可以作为高年级本科生、低年级研究生的专业必修课或选修课的教材,也可以作为人工智能领域从业者的参考书。