首页 > 图书中心 > 强化学习(微课版)

图书简介

本书构建了一个完整的强化学习入门路径,深入浅出地介绍了强化学习算法的基本原理和实现方法。本书 

首先回顾了相关预备知识,包括数学基础和机器学习基础,然后先介绍强化学习的基本概念,给出强化学习的 

数学框架(马尔可夫决策过程),随后介绍强化学习的求解算法,包括表格求解法(动态规划法、蒙特卡洛法 

和时序差分法),以及近似求解法(值函数近似法、策略梯度法和深度强化学习)。本书最后一部分为实践与前 

沿,实践部分基于一个相同的例子实现了强化学习领域的主流基础算法,前沿部分介绍了强化学习领域的** 

研究进展。本书配有相当数量的习题供练习,配套代码基于 Python 实现,源代码均已开源,可开放获取。 

本书可作为理工科本科生、研究生的“强化学习”课程的教材,也可作为相关从业者掌握强化学习的入门 

参考书。

版权所有(C)2023 清华大学出版社有限公司 京ICP备10035462号 京公网安备11010802042911号

联系我们 | 网站地图 | 法律声明 | 友情链接 | 盗版举报 | 人才招聘