前言
前言
2022年诺贝尔物理学奖揭晓,法国科学家阿兰·阿斯佩、美国科学家约翰·克劳泽和奥地利科学家安东·蔡林格获奖,以表彰他们在量子信息科学研究方面做出的贡献,使得量子计算这门前沿技术受到了前所未有的关注。事实上,早在20世纪90年代,肖尔提出的量子因数分解算法和格罗弗提出的量子搜索算法就证明了量子计算强大的计算能力。之后越来越多的人关注量子算法,量子机器学习便是最受关注的领域之一。
近年来,经典机器学习算法得到了广泛研究,已经成为人们工作和日常生活的重要工具,极大地改变了人类的生活方式。但是随着数据量的急剧增加,经典计算机的存储性能和机器学习算法的效率已经不能很好地满足人们的需求。量子计算机利用量子计算的叠加、纠缠、并行等特性,能将计算机的存储性能和机器学习算法的运行效率进行指数级的提升。此外,随着人们在量子技术方面投入大量的人力和物力,该技术有了快速发展,进而越来越多的研究者投入到量子计算机的研发中,使得量子机器学习算法能够有效地实现。近年来,量子计算机的硬件实现手段从模拟退火、激光、离子阱等逐渐收敛到超导量子计算机,造价和生产门槛越来越低,有越来越多的公司能够交付商用量子计算机。量子计算也正在新药品和新材料研发、武器设计和模拟、金融模型计算和预测、应对气候变化和可持续发展、航空航天产品开发和人员训练、基础设施部署和保护等领域发挥着实际的作用。
本书作为一本融理论与实践于一体的量子机器学习书籍,旨在总结量子机器学习算法成果,对典型的量子机器学习算法进行详细介绍,使读者能够理解量子机器学习算法并能进行相关的研究和开发。
全书共分为9章: 第1章为绪论; 第2章为量子计算基础; 第3章为量子基本算法,介绍了量子机器学习中常用的一些基础性算法; 第4~9章从原理、算法以及实现等方面详细地介绍了量子机器学习算法,包括降维、分类、回归、聚类、神经网络和强化学习。
本书可作为计算机、数学、物理等专业本科生和研究生的教材,也可供量子计算、机器学习领域从业者以及想要了解量子机器学习算法的人士参考。
在每章的最后列出了该章节所用的参考文献,在此向所有文献的作者表示感谢,同时也向由于疏忽而未被列出的作者表示歉意。
本书是北京工业大学研究生创新教育系列教材,本书在编写过程中得到了北京工业大学和北京交通大学的大力支持,在此对以上单位表示感谢。同时,特别感谢王子臣、王海亮、程晓钰、李宏、关云方、李书奇、翟锦龙、徐冠宇、李川越等同学的积极参与,他们为本书的出版付出了努力。
由于作者的水平有限,加上时间紧张,书中难免会出现不足甚至错误之处,恳请读者不吝指正、多多赐教。
如果使用本书提供的原始代码或其改进版发表论文、出版图书、发表网络文章等,请引用本书。
作者
2024年4月