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Basic Convexity Concepts Chap. 1

In this chapter and the following three, we develop the theory of convex
sets, which is the mathematical foundation for minimax theory, Lagrange
multiplier theory, and duality. We assume no prior knowledge of the sub-

ject,

and we give a detailed development. As we embark on the study

of convexity, it is worth listing some of the properties of convex sets and
functions that make them so special in optimization.

(a)

A convex function has no local minima that are not global. Thus the
difficulties associated with multiple disconnected local minima, whose
global optimality is hard to verify in practice, are avoided (see Section
2.1).

A convez set has a nonempty relative interior. In other words, relative
to the smallest affine set containing it, a convex set has a nonempty
interior (see Section 1.4). Thus convex sets avoid the analytical and
computational optimization difficulties associated with “thin” and
“curved” constraint surfaces.

A convex set is connected and has feasible directions at any point
(assuming it consists of more than one point). By this we mean
that given any point z in a convex set X, it is possible to move
from r along some directions y and stay within X for at least a
nontrivial interval, ie.,, z + ay € X for all sufficiently small but
positive stepsizes « (see Section 4.6). In fact a stronger property
holds: given any two distinct points 2 and 7 in X, the direction
T — x is a feasible direction at x, and all feasible directions can be
characterized this way. For optimization purposes, this is important
because it allows a calculus-based comparison of the cost of  with
the cost of its close neighbors, and forms the basis for some important
algorithms. Furthermore, much of the difficulty commonly associated
with discrete constraint sets {arising for example in combinatorial
optimization), is not encountered under convexity.

A nonconvez function can be “convexified” while maintaining the opti-
mality of its global minima, by forming the convex hull of the epigraph
of the function (see Exercise 1.20).

The existence of a global minimum of a convez function over a convex
set is conveniently characterized in terms of directions of recession
(see Section 2.3).

A polyhedral convex set (one that is specified by linear equality and in-
equality constraints) is characterized in terms of a finite set of extreme
points and extreme directions. This is the basis for finitely terminat-
ing methods for linear programming, including the celebrated simplex
method (see Sections 3.3 and 3.4).

A convex function is continuous within the interior of its domain,
and has nice differentiability properties. In particular, a real-valued
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convex function is directionally differentiable at any point. Further-
more, while a convex function need not be differentiable, it possesses
subgradients, which are nice and geometrically intuitive substitutes
for a gradient (see Chapter 4). Just like gradients, subgradients figure
prominently in optimality conditions and computational algorithins.

(h) Convez functions are central in duality theory. Indeed, the dual prob-
lem of a given optimization problem (discussed in Chapter 6) consists
of minimization of a convex function over a convex set, even if the
original problem is not convex.

(i) Closed convex cones are self-dual with respect to polarity. In words,
we have C' = (C*)* for any closed and convex cone C', where C* is
the polar cone of C' (the set of vectors that form a nonpositive inner
product with all vectors in C), and (C*)* is the polar cone of C*. This
simple and geometrically intuitive property (discussed in Section 3.1)
underlies important aspects of Lagrange multiplier theory.

(j) Convex lower semicontinuous functions are self-dual with respect to
conjugacy. It will be seen in Chapter 7 that a certain geometrically
motivated conjugacy operation on a convex, lower semicontinuous
function generates another convex, lower semicontinuous function,
and when applied for the second time regenerates the original func-
tion. The conjugacy operation relies on a fundamental dual charac-
terization of a closed convex set: as the union of the closures of all line
segments connecting its points, and as the intersection of the closed
halfspaces within which the set is contained. Conjugacy is central in
duality theory, and has a nice interpretation that can be used to visu-
alize and understand some of the most interesting aspects of convex
optimization.

In this first chapter, after an introductory first section, we focus on
the basic concepts of convex analysis: characterizations of convex sets and
functions, convex and affine hulls, topological concepts such as closure,
continuity, and relative interior, and the important notion of the recession
cone.

LINEAR ALGEBRA AND REAL ANALYSIS

In this section, we list some basic definitions, notational conventions, and
results from linear algebra and real analysis. We assume that the reader is
familiar with this material, so no proofs are given. For related and addi-
tional material, we recommend the books by Hoffman and Kunze [HoK71],
Lancaster and Tismenetsky [LaT85], and Strang [Str76] (linear algebra),
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and the books by Ash [Ash72}, Ortega and Rheinboldt [OrR70}, and Rudin
[Rud76] (real analysis).

Set Notation

If X is a set and z is an element of X, we write x € X. A set can be
specified in the form X = {z | x satisfies P}, as the set of all elements
satisfying property P. The union of two sets X; and X3 is denoted by
X1 U X2 and their intersection by X7 N X2. The symbols 3 and V have
the meanings “there exists” and “for all,” respectively. The empty set is
denoted by @.

The set of real numbers (also referred to as scalars) is denoted by R.
The set R augmented with 400 and —oo is called the set of extended real
numbers. We write —oo < x < oo for all real numbers x, and —c0o <z <
for all extended real numbers x. We denote by [a,b] the set of (possibly
extended) real numbers z satisfying a < x < b. A rounded, instead of
square, bracket denotes strict inequality in the definition. Thus (a,b], [a, b),
and (a,b) denote the set of all z satisfying a < x < b, a < z < b, and
a < x < b, respectively. Furthermore, we use the natural extensions of the
rules of arithmetic: x -0 = 0 for every extended real number x, x - 0o = 00
ifx >0, z-00=~c0ifx <0,and £+ 00 =00 and  — o0 = —c0 for
every scalar . The expression oo — 0o is meaningless and is never allowed
to occur.

Inf and Sup Notation

The supremum of a nonempty set X of scalars, denoted by sup X, is defined
as the smallest scalar y such that y > z for all z € X. If no such scalar
exists, we say that the supremum of X is oco. Similarly, the infimum of X,
denoted by inf X, is defined as the largest scalar y such that y < x for all
x € X, and is equal to —oo if no such scalar exists. For the empty set, we
use the convention

sup @ = —o0, inf J = oo.

If sup X is equal to a scalar T that belongs to the set X, we say that
T is the maximum point of X and we write Z = max X. Similarly, if inf X is
equal to a scalar  that belongs to the set X, we say that Z is the minimum
point of X and we write T = min X. Thus, when we write max X (or min X)
in place of sup X (or inf X, respectively), we do so just for emphasis: we
indicate that it is either evident, or it is known through earlier analysis, or
it is about to be shown that the maximum (or minimum, respectively) of
the set X is attained at one of its points.
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Function Notation

If f is a function, we use the notation f : X — Y to indicate the fact that
f is defined on a nonempty set X (its domain) and takes values in a set
Y (its range). Thus when using the notation f : X — Y, we implicitly
assume that X is nonempty. If f : X — Y is a function, and U and V
are subsets of X and Y, respectively, the set {f(z) | z € U} is called the
image or forward image of U under f, and the set {x €eX|flx)eV}is
called the inverse image of V under f.

1.1.1 Vectors and Matrices

We denote by R” the set of n-dimensional real vectors. For any x € R,
we use x; to indicate its ith coordinate, also called its ith component.

Vectors in R will be viewed as column vectors, unless the contrary
is explicitly stated. For any € R, 2/ denotes the transpose of z, which
is an n-dimensional row vector. The inner product of two vectors z,y € R
is defined by 2’y = > ., ziyi. Two vectors z,y € R* satisfying @’y = 0
are called orthogonal.

If z is a vector in ", the notations z > 0 and x > 0 indicate that all
components of x are positive and nonnegative, respectively. For any two
vectors = and y, the notation « > y means that z — y > 0. The notations
x>y, x <y, etc., are to be interpreted accordingly.

If X is a set and A is a scalar, we denote by AX the set {A\z |z € X}.
If X7 and X3 are two subsets of R, we denote by X3 + Xo the set

{xl + T2 | 1 € X, 22 € X2}7

which is referred to as the vector sum of X1 and X2. We use a similar
notation for the sum of any finite number of subsets. In the case where
one of the subsets consists of a single vector T, we simplify this notation as
follows:

T+X={T+z|xzeX}

We also denote by X1 — Xo the set
{331 — I3 I Ty € Xl, o € Xg}.

Given sets X; C R™i, i = 1,...,m, the Cartesian product of the X,
denoted by X3 x -+ X X, is the set

{(z1,...,zm) |2i € Xi, i=1,...,m},

which is a subset of ®r1t+nm,
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Subspaces and Linear Independence

A nonempty subset S of R7 is called a subspace if ax + by € S for every
T,y € 8 and every a,b € R. An affine set in R is a translated subspace,
ie., aset X of the form X =T+ S ={Z+ 2| x € S}, where T is a vector
in ®" and S is a subspace of R, called the subspace parallel to X. Note
that there can be only one subspace S associated with an affine set in this
manner. [To see this, let X =2+ S5 and X = 7+ S be two representations
of the affine set X. Then, we must have x = Z + 3 for some 5 € S (since
z € X), sothat X = T+35+4S. Since we also have X = T+, it follows that
S =8 —35=_5.] The span of a finite collection {1, ...,z } of elements of
R is the subspace consisting of all vectors y of the form y = >,", axzy,
where each «p is a scalar.

The vectors z1,...,xm € R" are called linearly independent if there
exists no set of scalars aa,...,am, at least one of which is nonzero, such
that >, apzr = 0. An equivalent definition is that ;1 # 0, and for every
k > 1, the vector z; does not belong to the span of z1,...,z_1.

If S is a subspace of ™ containing at least one nonzero vector, a basis
for S is a collection of vectors that are linearly independent and whose
span is equal to S. Every basis of a given subspace has the same number
of vectors. This number is called the dimension of S. By convention, the
subspace {0} is said to have dimension zero. The dimension of an affine set
T+ 5 is the dimension of the corresponding subspace S. Every subspace of
nonzero dimension has a basis that is orthogonal (i.e., any pair of distinct
vectors from the basis is orthogonal).

Given any set X, the set of vectors that are orthogonal to all clements
of X is a subspace denoted by X+:

Xt={yl|yz=0,VzeX}

If S is a subspace, S- is called the orthogonal complement of S. Any vector
x can be uniquely decomposed as the sum of a vector from S and a vector
from S1. Furthermore, we have (S1)L = S.

Matrices

For any matrix A, we use A;j, [A]ij, or a;; to denote its ijth element. The
transpose of A, denoted by A’, is defined by [A’]ij = aj;. For any two
matrices A and B of compatible dimensions, the transpose of the product
matrix AB satisfies (AB)' = B’A’.

If X is a subset of % and A is an m X n matrix, then the image of
X under A is denoted by AX (or A- X if this enhances notational clarity):

AX ={Az|z € X}
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If Y is a subset of ™, the inverse image of Y under A is denoted by A-1Y
or A-1.Y:
A-Y ={z| Az € Y},

If X and Y are subspaces, then AX and A—1Y are also subspaces.

Let A be a square matrix. We say that A is symmetricif A’ = A. We
say that A is diagonal if [A];; = 0 whenever i # j. We use I to denote the
identity matrix (the diagonal matrix whose diagonal elements are equal to
1). We denote the determinant of A by det(A).

Let A be an m x n matrix. The range space of A, denoted by R(A),
is the set of all vectors y € R™ such that y = Az for some x € R*. The
nullspace of A, denoted by N(A), is the set of all vectors z € R" such
that Az = 0. It is seen that the range space and the null space of A are
subspaces. The rank of A is the dimension of the range space of A. The
rank of A is equal to the maximal number of linearly independent columns
of A, and is also equal to the maximal number of linearly independent rows
of A. The matrix A and its transpose A’ have the same rank. We say that
A has full rank, if its rank is equal to min{m,n}. This is true if and only
if either all the rows of A are linearly independent, or all the columns of A
are linearly independent.

The range space of an m x n matrix A is equal to the orthogonal
complement of the nullspace of its transpose, i.e.,

R(A) = N(A')L.

Another way to state this result is that given vectors ai,...,an € R™ (the
columns of A) and a vector x € R™, we have 2’y = 0 for all y such that
a,y = 0 for all ¢ if and only if z = Aa1 + --- + Ara, for some scalars
Al,...,An. This is a special case of Farkas’ Lemma, an important result
for constrained optimization, which will be discussed in Section 3.2. A
useful application of this result is that if S; and S2 are two subspaces of
R, then
Sf“ -+ SQ = (51 N SQ)‘L.

This follows by introducing matrices By and By such that Sy = {z | Biz =
0} = N(B1) and Sz = {z | Box =0} = N(By), and writing

By

BZ]) = (N(Bl)ﬂN(Bg))l = (SlmSQ)—L

st+st = (s By - (]

A function f: R? — R is said to be affine if it has the form f(z) =
a’x + b for some ¢ € R* and b € K. Similarly, a function f : £ — R™ is
said to be affine if it has the form f(z) = Az + b for some m X n matrix
A and some b € Rm. If b = 0, f is said to be a linear function or linear
transformation. Sometimes, with slight abuse of terminology, an equation
or inequality involving a linear function, such as a’z = b or o’x < b, is
referred to as a linear equation or inequality, respectively.
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1.1.2 Topological Properties

Definition 1.1.1: A norm || - || on R* is a function that assigns a
scalar ||z| to every x € ®™ and that has the following properties:

(a) |lz|| > 0 for all z € .
(b) |laz| = |af - ||z|| for every scalar & and every z € R".
(c) ||z}l = 0 if and only if z = 0.
(d) |z +yll < izl + llyl| for all z,y € R™ (this is referred to as the
triangle inequality).

The Euclidean norm of a vector x = (z1,...,2n) is defined by

n 1/2
] = (a'a)1/2 = (Z twm) .

We will use the Euclidean norm almost exclusively in this book. In partic-
ular, in the absence of a clear indication to the contrary, || - || will denote
the FEuclidean norm. Two important results for the Euclidean norm are:

Proposition 1.1.1: (Pythagorean Theorem) For any two vectors
x and y that are orthogonal, we have

lz +yll? = llz]|* + [lyl|>-

Proposition 1.1.1: (Pythagorean Theorem) For any two vectors
x and y that are orthogonal, we have

lz +yll? = llz]|* + [lyl|>-

Two other important norms are the mazimum norm ||-||« (also called
sup-norm or £-norm), defined by

Zlloc = max |z,
1=1,....,n
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and the £1-norm || - |1, defined by

2zl = Z|l’i|-

Sequences

We use both subscripts and superscripts in sequence notation. Generally,
we prefer subscripts, but we use superscripts whenever we need to reserve
the subscript notation for indexing components of vectors and functions.
The meaning of the subscripts and superscripts should be clear from the
context in which they are used.

A sequence {zp | k = 1,2,...} (or {x} for short) of scalars is said
to converge if there exists a scalar z such that for every ¢ > 0 we have
|zx — x| < € for every k greater than some integer K (that depends on
€). The scalar z is said to be the limit of {x}, and the sequence {z}
is said to converge to x; symbolically, x;, — x or limg_, o xx = x. If for
every scalar b there exists some K (that depends on b) such that xx > b
for all £ > K, we write z; — oo and limy_, o xx = oo. Similarly, if for
every scalar b there exists some integer K such that z; < b for all £ > K,
we write xx — —oo and limy_, . ¢ = ~o00. Note, however, that implicit
in any of the statements “{x;} converges” or “the limit of {x;} exists” or
“{zr} has a limit” is that the limit of {zx} is a scalar.

A scalar sequence {zy} is said to be bounded above (respectively, be-
low) if there exists some scalar b such that x < b (respectively, xy > b) for
all k. It is said to be bounded if it is bounded above and bounded below.
The sequence {xj} is said to be monotonically nonincreasing (respectively,
nondecreasing) if zr+1 < xx (respectively, 41 > zk) for all k. If 2 — x
and {zx} is monotonically nonincreasing (nondecreasing), we also use the
notation zy | x (zx T x, respectively).

Proposition 1.1.3: Every bounded and monotonically nonincreasing
or nondecreasing scalar sequence converges.

Note that a monotonically nondecreasing sequence {xr} is either
bounded, in which case it converges to some scalar x by the above propo-
sition, or else it is unbounded, in which case z — oc. Similarly, a mono-
tonically nonincreasing sequence {zy} is either bounded and converges, or
it is unbounded, in which case x; — —oc.

Given a scalar sequence {zy}, let

ym = sup{zk | k > m}, zm = inf{zy | k > m}.
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The sequences {ym} and {z,,} are nonincreasing and nondecreasing, re-
spectively, and therefore have a limit whenever {z;} is bounded above or
is bounded below, respectively (Prop. 1.1.3). The limit of ¥, is denoted
by limsup,,_, . Zk, and is referred to as the upper limit of {x4}. The limit
of zm, is denoted by liminfy .o xx, and is referred to as the lower limit of
{zx}. If {zx} is unbounded above, we write limsup;_, ., Zr = 00, and if it
is unbounded below, we write liminfy, . 2z = —oc.

Proposition 1.1.4: Let {zx} and {yx} be scalar sequences.
(a) We have

inf{zy | k > 0} < liminfzy < limsupzy < sup{zx | k£ > 0}.

k—o0 k-—o00

(b) {zx} converges if and only if

—00 < liminf zp = limsup z; < co.
k— oo k—o0

Furthermore, if {zx} converges, its limit is equal to the common
scalar value of liminfy_, o zx and limsup, . Zk.

(c¢) If z <y for all k, then

lim inf xx < lim inf yy, lim sup 2 < lim sup yy.
k— o0 k—o0 k— 00 k— oo
(d) We have

lim inf zx + liminf g, < liminf(zk + yk),
k00 k-r00 k->00

lim sup zx + limsup yx > limsup(zx + yx)-

k—o0 k—oo k—o0

A sequence {xj} of vectors in R is said to converge to some xz € R»
if the ith component of x; converges to the ith component of x for every 4.
We use the notations zp — x and limg_.. 2 = x to indicate convergence
for vector sequences as well. The sequence {z}} is called bounded if each
of its corresponding component sequences is bounded. It can be seen that
{z1} is bounded if and only if there exists a scalar ¢ such that ||zz|] < ¢
for all k. An infinite subset of a sequence {x)} is called a subsequence of
{zr}. Thus a subsequence can itself be viewed as a sequence, and can be
represented as a set {xx | kK € K}, where K is an infinite subset of positive



