
























The Crystal Structure of Solids

T his text deals with the electrical properties and characteristics of semiconductor
materials and devices. The electrical properties of solids are therefore of pri-

mary interest. Since the semiconductor is in general a single-crystal material and
since the electrical properties of a single-crystal material are determined not only by
the chemical composition but also by the arrangement of atoms in the solid, a brief
study of the crystal structure of solids is warranted. This introductory chapter pro-
vides the necessary background in single-crystal materials and crystal growth for a
basic understanding of the electrical properties of semiconductor materials and
devices.

1.0 | PREVIEW
In this chapter, we will

1. List and describe semiconductor materials.

2. Describe three classifications of solids: amorphous, polycrystalline, and single
crystal.

3. Describe basic crystal structures, crystal planes, and the diamond structure.

4. Discuss differences in atomic bonding between various solids.

5. Describe various single-crystal imperfections and impurities in solids.

6. Describe processes that are used to create single-crystal semiconductor
materials.

7. Describe the formation of an oxide on silicon.
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Historical Insight

Materials have always been an integral part of electrical engineering, from finding
good conductors of electricity that can handle hundreds of amperes to finding good
insulators that can handle thousands of volts. Dielectric properties of materials are
fundamental in the design of capacitors and magnetic properties of materials are fun-
damental in the design of electromagnets or permanent magnets. Creating high-
purity single-crystal semiconductor materials has been crucial to the development of
the vast semiconductor industry.

Present-Day Insight

Materials continue to be a fundamental component of electrical engineering.
Creating single-crystal silicon semiconductor wafers that are 12 inches in diameter
and, at the other end of the scale, creating layers of different semiconductor materi-
als that are on the order of tens of angstroms thick are continuing topics of research.
The properties of high-purity single-crystal materials are fundamental to the design
of the vast number of semiconductor devices.

1.1 | SEMICONDUCTOR MATERIALS
Objective: List and describe semiconductor materials.

Semiconductors are a group of materials having conductivities between those of metals
and insulators. One fundamental characteristic of a semiconductor material is that the
conductivity can be varied over several orders of magnitude by adding controlled
amounts of impurity atoms.The ability to control and change the conductivity of a semi-
conductor material allows for the design of the vast number of semiconductor devices.

Two general classifications of semiconductors are the elemental semiconductor
materials, found in group IV of the periodic table, and the compound semiconductor
materials, most of which are formed from special combinations of group III and
group V elements. Table 1.1 shows a portion of the periodic table in which the more
common semiconductors are found, and Table 1.2 lists a few of the semiconductor
materials. (Semiconductors can also be formed from combinations of group II and
group VI elements, but in general these will not be considered in this text.)

The elemental materials, those that are composed of single species of atoms, are
silicon and germanium. Silicon dominates the semiconductor commercial market.
The vast majority of integrated circuits (ICs) are fabricated in silicon, so silicon will
be emphasized to a great extent in this text.

The two-element, or binary, compounds such as gallium arsenide or gallium
phosphide are formed by combining one group III and one group V element. Gallium
arsenide is one of the more common of the compound semiconductors. It is used to
make light-emitting diodes and laser diodes. GaAs is also used in specialized appli-
cations in which, for example, very high speed is required.

We can also form a three-element, or ternary, compound semiconductor. An ex-
ample is Alx Ga1−x As, in which the subscript x indicates the fraction of the lower
atomic number element component. More complex semiconductors can also be
formed that provide flexibility when choosing material properties.
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1.2 Types of Solids 3

1.2 | TYPES OF SOLIDS
Objective: Describe three classifications of solids: amorphous, polycrystalline,
and single crystal.

In Section 1.1, we simply listed various semiconductor materials. Since semiconduc-
tors used in discrete device or IC fabrication are generally single-crystal materials, it is
worth while discussing various types of crystalline structures. We will describe the
spatial arrangement of atoms in crystals and attempt to visualize the three-dimensional
configurations. The arrangement of atoms, as well as the chemical composition, affect
the electrical properties of the material.

Amorphous, polycrystalline, and single crystal are the three general types of
solids. Each type is characterized by the size of an ordered region within the material.

Table 1.2 | A partial list of semiconductor materials

Elemental Semiconductors IV Compound Semiconductors

Si Silicon SiC Silicon carbide
Ge Germanium SiGe Silicon germanium

Binary III–V Compounds Binary II–VI Compounds

AlAs Aluminum arsenide CdS Cadmium sulfide
AlP Aluminum phosphide CdTe Cadmium telluride
AlSb Aluminum antimonide HgS Mercury sulfide
GaAs Gallium arsenide ZnS Zinc sulfide
GaP Gallium phosphide ZnTe Zinc telluride
GaSb Gallium antimonide
InAs Indium arsenide
InP Indium phosphide

Ternary Compounds Quaternary Compounds

AlxGa1�xAs Aluminum gallium AlxGa1�xAsySb1�y Aluminum gallium arsenic 
arsenide atimonide

GaAs1�xPx Gallium arsenic GaxIn1�xAs1�yPy Gallium indium arsenic 
phosphide phosphide

Table 1.1 | A portion of the periodic table showing elements used in semiconductor materials

Group
Period II III IV V VI

2 B C N O
Boron Carbon Nitrogen Oxygen

3 Al Si P S
Aluminum Silicon Phosphorus Sulfur

4 Zn Ga Ge As Se
Zinc Gallium Germanium Arsenic Selenium

5 Cd In Sn Sb Te
Cadmium Indium Tin Antimony Tellurium

6 Hg
Mercury
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An ordered region is a spatial volume in which atoms or molecules have a regular geo-
metric arrangement or periodicity. Amorphous materials have order only within a few
atomic or molecular dimensions, while polycrystalline materials have a high degree of
order over many atomic or molecular dimensions. These ordered regions, or single-
crystal regions, vary in size and orientation with respect to one another. The single-
crystal regions are called grains and are separated from one another by grain
boundaries. Single-crystal materials, ideally, have a high degree of order, or regular
geometric periodicity, throughout the entire volume of the material. The advantage of
a single-crystal material is that, in general, its electrical properties are superior to
those of a nonsingle-crystal material, since grain boundaries tend to degrade the
electrical characteristics. Two-dimensional representations of amorphous, polycrys-
talline, and single-crystal materials are shown in Figure 1.1.

1.3 | SPACE LATTICES
Objective: Describe basic crystal structures, crystal planes, and the diamond
structure.

Our primary concern will be the single crystal with its regular geometric periodicity
in the atomic arrangement. A representative unit, or group of atoms, is repeated at
regular intervals in each of the three dimensions to form the single crystal. The peri-
odic arrangement of atoms in the crystal is called the lattice.

1.3.1 Primitive and Unit Cell

We can represent a particular atomic array by a dot that is called a lattice point. Figure 1.2
shows part of an infinite two-dimensional array of lattice points. The simplest means of
repeating an atomic array is by translation. Each lattice point in Figure 1.2 can be trans-
lated a distance a1 in one direction and a distance b1 in a second noncolinear direction to
generate the two-dimensional lattice. A third noncolinear translation will produce the
three-dimensional lattice. The translation directions need not be perpendicular.

Since the three-dimensional lattice is a periodic repetition of a group of atoms,
we do not need to consider the entire lattice, but only a fundamental unit that is being

4 CHAPTER 1 The Crystal Structure of Solids

(a) (b) (c)

Figure 1.1 | Two-dimensional schematics of three general types of solids: (a) amorphous,
(b) polycrystalline, and (c) single crystal.
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repeated. A unit cell is a small volume of the crystal that can be used to reproduce the
entire crystal. A unit cell is not a unique entity. Figure 1.3 shows several possible unit
cells in a two-dimensional lattice.

The unit cell A can be translated in directions a2 and b2, the unit cell B can be
translated in directions a3 and b3, and the entire two-dimensional lattice can be con-
structed by the translations of either of these unit cells. The unit cells C and D in
Figure 1.3 can also be used to construct the entire lattice by using the appropriate
translations. This discussion of two-dimensional unit cells can easily be extended to
three dimensions to describe a real single-crystal material.

A primitive cell is the smallest unit cell that can be repeated to form the lattice.
In many cases, it is more convenient to use a unit cell that is not a primitive cell. Unit
cells may be chosen that have orthogonal sides, for example, whereas the sides of a
primitive cell may be nonorthogonal.

A generalized three-dimensional unit cell is shown in Figure 1.4. The relation-
ship between this cell and the lattice is characterized by three vectors ā, b̄, and c̄,
which need not be perpendicular and which may or may not be equal in length. Every
equivalent lattice point in the three-dimensional crystal can be found using the vector

r̄ = pā + qb̄ + sc̄ (1.1)

where p, q, and s are integers. Since the location of the origin is arbitrary, we will let
p, q, and s be positive integers for simplicity.

1.3 Space Lattices 5
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Figure 1.2 | Two-dimensional
representation of a single-crystal lattice.
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Figure 1.3 | Two-dimensional representation of a single-crystal
lattice showing various possible unit cells.

c

b

a

Figure 1.4 | A generalized
primitive unit cell.
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1.3.2 Basic Crystal Structures

Before we discuss semiconductor crystals, let us consider the characteristics of three
basic cubic structures. Figure 1.5 shows the simple cubic, body-centered cubic, and face-
centered cubic structures. For these simple structures, we can choose unit cells such that
the general vectors ā, b̄, and c̄ are perpendicular to each other and the lengths are equal.
The simple cubic (sc) structure has an atom located at each corner; the body-centered
cubic (bcc) structure has an additional atom at the center of the cube; and the face-
centered cubic (fcc) structure has an additional atom at the center of each face plane.

By knowing the crystal structure of a material and its lattice dimensions, we can
determine several characteristics of the crystal. For example, we can determine the
volume density of atoms.

6 CHAPTER 1 The Crystal Structure of Solids

(a) (b) (c)

Figure 1.5 | Three lattice types: (a) simple cubic, (b) body-centered cubic, and (c) face-centered cubic.

EXAMPLE 1.1

OBJECTIVE
Determine the volume density of atoms in a crystal.

Consider a single-crystal material that is a face-centered cubic with a lattice constant
a0 = 5Å = 5 × 10−8 cm. Each corner atom is shared by eight unit cells that meet at the corner,
so each corner atom effectively contributes one-eighth of its volume to each unit cell. The eight
corner atoms then contribute an equivalent of one atom to the unit cell. Each face atom is shared
by two unit cells that meet at each side, so each face atom effectively contributes one-half of its
volume to each unit cell. The six face atoms then contribute an equivalent of three atoms to the
unit cell. Each unit cell of a face-centered cubic then effectively contains four atoms.

■ Solution
The volume density of atoms is then found by dividing the number of unit cell atoms by the
unit cell volume, or

Volume density = 4 atoms

a3
0

= 4

(5 × 10−8)3

or

Volume density = 3.2 × 1022 atoms per cm3

Simple cubic
Body-centered cubic
Face-centered cubic
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1.3 Space Lattices 7
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Figure 1.6 | General lattice plane
intercepting the ā, b̄, and c̄ axes at p, q,
and s, respectively.

■ Comment
This value of the volume density of atoms in a crystal represents the order of magnitude of den-
sity for most materials. The actual density is a function of the crystal type and crystal structure
since the packing density—number of atoms per unit cell—depends on crystal structure.

Exercise Problem

EX1.1 The lattice constant of a body-centered cubic structure is a0 = 4.75Å. Determine
the volume density of atoms. 

1.3.3 Crystal Planes and Miller Indices

Since real crystals are not infinitely large, they eventually terminate at a surface.
Semiconductor devices are fabricated at or near a surface, so the surface properties
may influence the device characteristics. We would like to be able to describe
these surfaces in terms of the lattice. Surfaces, or planes through the crystal, can
be described by first considering the intercepts of the plane along the ā , b̄ , and c̄
axes used to describe the lattice.

Figure 1.6 shows a general plane intercepting the ā, b̄, and c̄ axes at points pa,
qb, and sc, where p, q , and s are integers. To describe the plane, we write the recip-
rocals of the intercepts as (

1

p
,

1

q
,

1

s

)
(1.2)

(Ans. 1.87×1022cm
�3

)
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Multiplying by the lowest common denominator, we obtain a set of numbers such as
(hkl). The plane is then referred to as the (hkl) plane. The parameters h, k, and l are
referred to as the Miller indices.

8 CHAPTER 1 The Crystal Structure of Solids

Miller indices

EXAMPLE 1.2

OBJECTIVE
Describe the plane shown in Figure 1.7. 

The lattice points in Figure 1.7 are shown along the ā, b̄, and c̄ axes only.

■ Solution
From Equation (1.1), the intercepts of the plane correspond to p = 2, q = 3, and s = 2. Write
the reciprocals of the intercepts, from Equation (1.2), as

(
1

2
,

1

3
,

1

2

)

Now multiply by the lowest common denominator, which in this case is 6, to obtain (3, 2, 3).
The plane in Figure 1.7 is then referred to as the (323) plane. The integers are referred to as the
Miller indices. We will refer to a general plane as the (hkl) plane.

■ Comment
We can show that the same three Miller indices are obtained for any plane that is parallel to the
one shown in Figure 1.7. Any parallel plane is entirely equivalent to any other.

2c

3b

2a

Figure 1.7 | A crystal-lattice plane for Example 1.2.
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Exercise Problem

EX1.2 Aplane in a simple cubic crystal is described as a (132) plane. (a) What are the inter-
cepts on the ā, b̄, and c̄ axes. (b) Sketch the plane.

Three planes that are commonly considered in a cubic crystal are shown shaded
in Figure 1.8. The plane in Figure 1.8a is parallel to the b̄ and c̄ axes so the intercepts
are given as p = 1, q = ∞, and s = ∞. Taking the reciprocal, we obtain the Miller
indices as (1, 0, 0), so the plane shown in Figure 1.8a is referred to as the (100) plane.
Again, any plane parallel to the one shown in Figure 1.8a and separated by an inte-
gral number of lattice constants is equivalent and is referred to as the (100) plane.
One advantage to taking the reciprocal of the intercepts to obtain the Miller indices
is that the use of infinity is avoided when describing a plane that is parallel to an axis.
If we were to describe a plane passing through the origin of our system, we would
obtain infinity as one or more of the Miller indices after taking the reciprocal of the
intercepts. However, the location of the origin of our system is entirely arbitrary and
so, by translating the origin to another equivalent lattice point, we can avoid the use
of infinity in the set of Miller indices.

For the simple cubic structure, the body-centered cubic, and the face-centered
cubic, there is a high degree of symmetry. The axes can be rotated by 90° in each of the
three dimensions and each lattice point can again be described by Equation (1.1) as

r̄ = pā + qb̄ + sc̄ (1.1)

Each face plane of the cubic structure shown in Figure 1.8a is entirely equivalent.
These planes are grouped together and are referred to as the {100} set of planes.

We may also consider the planes shown in Figures 1.8b and 1.8c. The intercepts
of the plane shown in Figure 1.8b are p = 1, q = 1, and s = ∞. The Miller indices

[Ans. (a) p=6,q=2,s=3]
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Figure 1.8 | Three lattice planes in a simple cubic lattice: (a) (100) plane, (b) (110) plane, and (c) (111) plane.
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are found by taking the reciprocal of these intercepts and, as a result, this plane is
referred to as the (110) plane. In a similar way, the plane shown in Figure 1.8c is
referred to as the (111) plane.

One characteristic of a crystal that can be determined is the distance between
nearest equivalent parallel planes. Another characteristic is the surface concentration
of atoms, number per square centimeter (#/cm2), that are cut by a particular plane.
Again, a single-crystal semiconductor is not infinitely large and must terminate at
some surface. The surface density of atoms may be important, for example, in deter-
mining how another material, such as an insulator, will “fit” on the surface of a semi-
conductor material.
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(a) (b)

a0 2

a0

a–

c–

b
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a0

a0

a0

Figure 1.9 | (a) The (110) plane in a face-centered cubic and (b) the atoms cut by the (110)
plane in a face-centered cubic.

EXAMPLE 1.3

OBJECTIVE
Calculate the surface density of atoms on a particular plane in a crystal.

Consider the face-centered cubic structure and the (110) plane shown in Figure 1.9a.
Assume the atoms can be represented as hard spheres with the closest atoms touching each
other and that the lattice constant is a0 = 4.5 Å = 4.5 × 10−8 cm. Figure 1.9b shows how the
atoms are cut by the (110) plane.

The atom at each corner is shared by four similar equivalent lattice planes, so each cor-
ner atom effectively contributes one-fourth of its area to this lattice plane, as indicated in the
figure. The four corner atoms then effectively contribute one atom to this lattice plane. The
atom on each face plane is shared by two similar equivalent lattice planes, so each face atom
effectively contributes one-half of its area to this lattice plane as indicated in the figure. The
two face atoms then effectively contribute one atom to this lattice plane. The lattice plane in
Figure 1.9b, then, contains two atoms.
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