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RESISTIVE NETWORK ANALYSIS

hapter 3 illustrates the fundamental techniques for the analysis of resistive

circuits. The chapter begins with the definition of network variables and of

network analysis problems. Next, the two most widely applied methods—

node analysis and mesh analysis—are introduced. These are the most gener-
ally applicable circuit solution techniques used to derive the equations of all electric
circuits; their application to resistive circuits in this chapter is intended to acquaint
you with these methods, which are used throughout the book. The second solution
method presented is based on the principle of superposition, which is applicable only
to linear circuits. Next, the concept of Thévenin and Norton equivalent circuits is
explored, which leads to a discussion of maximum power transfer in electric circuits
and facilitates the ensuing discussion of nonlinear loads and load-line analysis. At
the conclusion of the chapter, you should have developed confidence in your ability
to compute numerical solutions for a wide range of resistive circuits. The following
box outlines the principal learning objectives of the chapter.
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Chapter 3 Resistive Network Analysis

:) Learning Objectives

. Compute the solution of circuits containing linear resistors and independent and
_ dependent sources by using node analysis. Sections 3.2 and 3.4.
Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 3.3 and 3 4.
Apply the principle of superposition to linear circuits containing independent sources.
 Section3.5.
Compute Thévenin and Norton equivalent circuits for networks containing linear
resistors and independent and dependent sources. Section 3.6. v v
_ Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 3.7.
Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables
is constructed, and these equations are solved by means of suitable techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a
specific circuit.

Figure 3.1

EXAMPLE 3.1

Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of Figure 3.1.

Solution

The following node voltages may be identified:

Node voltages Branch voltages
v, = vs (source voltage) vs =v; —vg =,
Vp = UR, VR, = Vg — Up
Ve = URy VR, =VUp — VU4 = Vp
vg = 0 (ground) VRy = Vp — V¢

VRy = Ve — Vg = Ve

Comments: Currents i,, i), and i, are loop currents, but only i, and i, are mesh currents.
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Part I Circuits

In the example, we have identified a total of 9 variables! It should be clear that
some method is needed to organize the wealth of information that can be generated
simply by applying Ohm’s law at each branch in a circuit. What would be desirable at
this point is a means of reducing the number of equations needed to solve a circuit to the
minimum necessary, that is, a method for obtaining N equations in N unknowns. The
remainder of the chapter is devoted to the development of systematic circuit analysis
methods that will greatly simplify the solution of electrical network problems.

3.2 THE NODE VOLTAGE METHOD

Node voltage analysis is the most general method for the analysis of electric circuits.
In this section, its application to linear resistive circuits is illustrated. The node voltage
method is based on defining the voltage at each node as an independent variable. One
of the nodes is selected as a reference node (usually—but not necessarily—ground),
and each of the other node voltages is referenced to this node. Once each node voltage
is defined, Ohm’s law may be applied between any two adjacent nodes to determine
the current flowing in each branch. In the node voltage method, each branch current
is expressed in terms of one or more node voltages; thus, currents do not explicitly
enter into the equations. Figure 3.2 illustrates how to define branch currents in this
method. You may recall a similar description given in Chapter 2.

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

Y i=0

Figure 3.3 illustrates this procedure.

@3.1)

In the node voltage method, we By KCL: i; — i — i3 = 0. In the node

assign the node voltages v, and vp; voltage method, we express KCL by
the branch current flowing from a Va=Vb _Vb=Ve _Vb=Vd _
to b is then expressed in terms of R Ry R3

these node voltages.

Va— Vb
R
R
Va O——AMWW——O
—
1

Figure 3.2 Branch current
formulation in node analysis

Figure 3.3 Use of KCL in
node analysis

The systematic application of this method to a circuit with » nodes leads to
writing n linear equations. However, one of the node voltages is the reference voltage
and is therefore already known, since it is usually assumed to be zero (recall that
the choice of reference voltage is dictated mostly by convenience, as explained in
Chapter 2). Thus, we can write n — 1 independent linear equations in the n — 1 inde-
pendent variables (the node voltages). Node analysis provides the minimum number
of equations required to solve the circuit, since any branch voltage or current may be
determined from knowledge of node voltages.
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Thermal Systems

A useful analogy can be
found between electric cir-
cuits and thermal systems.
The table below illustrates
the correspondence be-
tween electric circuit var-
iables and thermal system
variables, showing that the
difference in electrical po-
tential is analogous to the
temperature difference be-
tween two bodies. When-
ever there is a temperature
difference between two bod-
ies, Newton’s law of cooling
requires that heat flow from
the warmer body to the
cooler one. The flow of heat
is therefore analogous to the
flow of current. Heat flow
can take place based on
one of three mechanisms:
(1) conduction, (2) convec-
tion, and (3) radiation. In this
sidebar we only consider
the first two, for simplicity.

Electrical Thermal
variable variable
Voltage Temperature
difference difference
v, [V] AT, [°C]
Current Heat flux
i, A q, [W]
Resistance Thermal
R, [©2/m] resistance
R, [°C/W]
Resistivity ~ Conduction
p, [2/m] heat-transfer
coefficient
w
k| ——
I
(No exact Convection
electrical heat-transfer
analogy) coefficient, or

film coefficient
of heat-transfer

p w
" mr=cc
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Thermal
Resistance

To explain thermal resis-
tance, consider a heat treat-
ed engine crankshaft that
has just completed some
thermal treatment. Assume
that the shaft is to be
quenched in a water bath at
ambient temperature (see
the figure below). Heat flows
from within the shaft to the
surface of the shaft, and
then from the shaft surface
to the water. This process
continues until the tempera-
ture of the shaft is equal to
that of the water.

The first mode of heat
transfer in the above de-
scription is called conduc-
tion, and it occurs because
the thermal conductivity of
steel causes heat to flow
from the higher temperature
inner core to the lower-
temperature surface. The
heat transfer conduction
coefficient k is analogous to
the resistivity p of an electric
conductor.

The second mode of
heat transfer, convection,
takes place at the boundary
of two dissimilar materials
(steel and water here). Heat
transfer between the shaft
and water is dependent on
the surface area of the shaft
in contact with the water A
and is determined by the
heat transfer convection
coefficient A.

Engine crankshaft
quenched in water bath.

Chapter 3 Resistive Network Analysis

The node analysis method may also be defined as a sequence of steps, as outlined
in the following box:

FOCUSONMETHODOLOGY
NODE VOLTAGE ANALYSIS METHOD
1. Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes are referenced to this node.

2. Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit is associated with a
dependent variable. If a node is not connected to a voltage source, then its
voltage is treated as an independent variable. v v

3. Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

4. Solve the linear system of n — | — m unknowns.

Following the procedure outlined in the box guarantees that the correct solution to a
given circuit will be found, provided that the nodes are properly identified and KCL
is applied consistently. As an illustration of the method, consider the circuit shown in
Figure 3.4. The circuit is shown in two different forms to illustrate equivalent graphical
representations of the same circuit. The circuit on the right leaves no question where
the nodes are. The direction of current flow is selected arbitrarily (assuming that i is
a positive current). Application of KCL at node a yields

is—ii—iy=0 3.2)
whereas at node b
ip—iz=0 3.3)

It is instructive to verify (at least the first time the method is applied) that it is not

necessary to apply KCL at the reference node. The equation obtained at node c,
i1 +i3—ig=0 34)

is not independent of equations 3.2 and 3.3; in fact, it may be obtained by adding the

Figure 3.4 Illustration of node analysis
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equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier:

Now, in applying the node voltage method, the currents i, i, and i3 are expressed as
functions of v,, vy, and v,, the independent variables. Ohm’s law requires that i, for
example, be given by

Vg — Ve
R,

since it is the potential difference v, — v, across R, that causes current i; to flow from
node a to node c. Similarly,

3.5)

i =

Vg — Vp
Ry
Up — U
R3
Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we obtain the following relationships:

i =
3.6)
iy =

3.7

R R 3.8)

Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice.
Note that these equations may be solved for v, and v, assuming that ig, R;, R, and
R3 are known. The same equations may be reformulated as follows:

L DYt (=)o, =i

JR— _ —_— =1

Rl R2 a R2 b N
! v + 1+1 v, =0
R,) “"\R "Ry) T

Examples 3.2 through 3.4 further illustrate the application of the method.

3.9

EXAMPLE 3.2 Node Analysis
Problem

Solve for all unknown currents and voltages in the circuit of Figure 3.5.

Solution
Known Quantities: Source currents, resistor values.
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Thermal Circuit
Model

The conduction resistance
of the shaft is described by
the following equation:

kA,

= —AT
1=
AT L
R = —_———
cond q kA,

where A, is a cross section-
al area and L is the distance
from the inner core to the
surface. The convection re-
sistance is described by a
similar equation, in which
convective heat flow is de-
scribed by the film coef-
ficient of heat transfer, A:

q = hAAT

AT 1
Rconv =—-—= E

where A, is the surface area
of the shaft in contact with
the water. The equivalent
thermal resistance and the
overall circuit model of the
crankshaft quenching
process are shown in the
figures below.

Reond R conv
Tshaft —WW—VN—e Ty ter

q
Thermal resistance

representation of quenching
process

AT@ 3

Electrical circuit
representing the quenching
process

Rcond

RCOHV
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Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: I, = 10 mA; I, = 50 mA;
R =1kQ; R, =2kQ; R; = 10kRQ; Ry = 2kQ.

Analysis: We follow the steps outlined in the Focus on Methodology box:

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. The circuit of Figure 3.5 is shown again in Figure 3.6, and two nodes are also shown in
the figure. Thus, there are two independent variables in this circuit: vy, v,.

Node 1 —

AAAA
Yvy
=

AAAA

!
er (O

Figure 3.5

J__ov

Figure 3.6
3. Applying KCL at nodes 1 and 2, we obtain
vl—O v — Uy vV — V2
I — - - =0 de 1
1 Rl R2 R3 node
— — -0
b + o % -L=0 node 2

R, R3 R4

Now we can write the same equations more systematically as a function of the unknown
node voltages, as was done in equation 3.9.

1+1+1v+ ! 1v—l node 1
R R, Ry R, Ry) > "

11 1 11
_—— —_— et — vy =1 de 2
( R, R3)vl+(R2+R3+R4)U2 2 node

4. We finally solve the system of equations. With some manipulation, the equations finally
lead to the following form:

1.6v; — 0.6v, =10
—0.6v; + 1.1v, = =50
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These equations may be solved simultaneously to obtain

vy =—-1357V

v, = —52.86 V
Knowing the node voltages, we can determine each of the branch currents and voltages
in the circuit. For example, the current through the 10-k2 resistor is given by

v — U2

10,000 =393 mA

ioke =

indicating that the initial (arbitrary) choice of direction for this current was the same as
the actual direction of current flow. As another example, consider the current through the
1-kS2 resistor:

. Uy

i =——=-1357TmA

'k 1,000

In this case, the current is negative, indicating that current actually flows from ground
to node 1, as it should, since the voltage at node 1 is negative with respect to ground.
You may continue the branch-by-branch analysis started in this example to verify that the

solution obtained in the example is indeed correct.

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (we could use the opposite
convention), but we shall use it consistently in this book.

EXAMPLE 3.3 Node Analysis @
Problem
Write the nodal equations and solve for the node voltages in the circuit of Figure 3.7. Ry
Wy
Solution i,,@ SRR 20 §§R4
Known Quantities: Source currents, resistor values.
Find: All node voltages and branch currents. _l_
Schematics, Diagrams, Circuits, and Given Data: i, = 1 mA; i, =2 mA; R, = 1kQ; Figure 3.7

R, =500 Q; R; =2.2kQ; Ry =4.7kQ.
Analysis: We follow the steps of the Focus on Methodology box.

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. See Figure 3.8. Two nodes remain after the selection of the reference node. Let us label
these a and b and define voltages v, and v,. Both nodes are associated with independent
variables.

3. We apply KCL at each of nodes a and b:

VU, Vg — Up
R, R,

=0 node a

Figure 3.8
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and rewrite the equations to obtain a linear system:
1 + 1 + 1 .
—+—)v —— =i
Rl R2 a R2 b a

DYoot (L4 L LYy, =i
iV (e )y, =
R, R, Ry Rs) """

4. Substituting the numerical values in these equations, we get

3x 1073y, —2x 103y, =1 x 1073
—2%x 1073, +2.67 x 10730, =2 x 1073

or 3v, =2, =1
—2v, +2.67v, =2

The solution v, = 1.667 V, v, = 2 V may then be obtained by solving the system of
equations.

EXAMPLE 3.4 Solution of Linear System of Equations Using
Cramer’s Rule

Problem

Solve the circuit equations obtained in Example 3.3, using Cramer’s rule (see Appendix A).

Solution
Known Quantities: Linear system of equations.
Find: Node voltages.

Analysis: The system of equations generated in Example 3.3 may also be solved by using
linear algebra methods, by recognizing that the system of equations can be written as

[ el ]-[e]

By using Cramer’s rule (see Appendix A), the solution for the two unknown variables v, and
v, can be written as follows:

1 =2
} 2 267 ‘ (H(2.67) — (=2)(2)  6.67
NETT3 T (3)(2.67) = (=2)(=2) 4 = 1.667V
-2 267
o]
e 17221 __O@=-C20) _8_,,
3 -2 (3)(2.67) — (=2)(=2) 4
-2 267

The result is the same as in Example 3.3.

Comments: While Cramer’s rule is an efficient solution method for simple circuits (e.g.,
two nodes), it is customary to use computer-aided methods for larger circuits. Once the nodal
equations have been set in the general form presented in equation 3.9, a variety of computer
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aids may be employed to compute the solution. You will find the solution to the same example
computed using MathCad™ in the electronic files that accompany this book.

89

CHECK YOUR UNDERSTANDING

Find the current i, in the circuit shown on the left, using the node voltage method.

- Vx +
AAA AAAA AAA AAAA
YYyvy YYyvy . Yyvy Yvyvy
100 Q 50Q lu 10Q 300

yyvy

=1ov ZAdD 2003 2003
T < <

\AAAS
<
S
te)

yyvy

@14 5003
<

Find the voltage v, by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL at one or more nodes.

A 81— 'V [S8T () ‘Slamsuy

EXAMPLE 3.5

Problem

Use the node voltage analysis to determine the voltage v in the circuit of Figure 3.9. Assume
that Ry =2Q, R, =1Q,R3=4Q, Ry =3Q, ], =2A,and [, =3 A.

Solution

Known Quantities: Values of the resistors and the current sources.

Find: Voltage across Rj.

Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.9.
2. Next, we define the three node voltages v,, v, v3, as shown in Figure 3.9.

3. Apply KCL at each of the n — 1 nodes, expressing each current in terms of the adjacent
node voltages.

U3 — V) V2 — V)
—=-15;=0 de 1
Rl R2 1 nodae
V1 — 0V V2
— = +4+5L=0 de 2
R, R3+2 node
vy — U3 U3
——-05L=0 de 3
Rl R4 2 nodae

4. Solve the linear system of n — 1 — m unknowns. Finally, we write the system of equations
resulting from the application of KCL at the three nodes associated with independent
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R,
AAAA
yvvy
R h
Vi 2 V2 )\ W
yvvy U

+ >
(Pl. vZR;
-5

Figure 3.9 Circuit for
Example 3.5
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