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The Electromagnetic
Model

Introduction

Stared in a simple fashion, efectromagretios 1s the study of the sffects of electric
charges at rest and in motion. From clementary physics we know that Lthere are twa
kinds of charges: positive and negative, Hoth positive and negative chargss are sources
of an electric field. Moving charges produce a current, which gives nisc 1o 4 magmelic
fcld. Here we entalively speak of clecine Neld and magnetic feld in a general way;
more definitive meanings will be attached to these terms later. A fedd is a spatial dis-
{obutica of 4 gquantity, which may or may not be 4 [unctivn of time. A Ume-vatying
gleciric field i3 accompamed by a magnetic field, and vice versa. Tn other words, time-
varying electric and magnetic fields are conpled, resulting in an electromagnetic figld,
Under certain conditions, time-dependent lectromagnetic lelds produce waves that
radiate lrom the source.

The concept of ficlds and waves is cssential in Lhe cxplanation of action at a dis-
tance. For instance, we learned from elementary mechanics that masses attract cach
other, This s why objocts Tall towarnd the carth’s surface. Bul since there are no elastic
strings connecting a free-falling object and the earth, how do we explain this phenom-
crom? Woe cxplain thiy action-at-a-distance phenomenon by postulating the existence
of a gravitational field. The possibilities of satellite communication and of receiving
signals from space probes millions of milcs away can be explained oniy by postalating
the existence of electric and magnetic fields and electromagnetic waves. In this boclk,
Field and Wave Electromagnetics, we study the prnciples and applications of (he
laws of clestromagnetism Lhat govern clectromagnetic phenomena.

Electromagnetics is of fundamental importance to physicists and to electrical and
computer cogineers. Electromapnetic theory is indispensable i understanding the
principle of atom smashers, cathode-ray ascilloscopes, radar, satellite communication,
Lelevision recoplion, remote sensing, tadio astronomy, mictowive devices, oplical
fiber communication, transients in transmission lines, electromagnetic compatihility
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problems, instrumenl-landing systems, cleciromechanical energy conversion, and so
on. Circait concepts represent a restricted version, a special case, of electromagnetic
concepts. As we shall aee in Chapter 7, when the source frequency is very low so that
the dirmensions of 4 conducting network are mueh smaller Lhan the wavelength, we
have a quasi-static situation, which simplifies an electromagnetic problem to a circuit
problem. However, we hasien 1o add that ciremt theory is 1tseil a2 highly developed,
sophisticated discipline. It applies to a different class of electrical engineering prob-
lems, and it 15 important in ils own righl

Two sitvations illustrate the inadequacy of circuit-theory concepts and the need
for eleciromagnedie-fi¢ld concepls. Figure -1 depicls o monopole ganienna of the
tvpe we see on & walkie-taikie. On transmit, the souree at the base feeds the antenna
with a messuge-carrying currenl al an appropriale carmer fregueney, From g cireail-
theory point of view, the source feeds into an open circuit because the upper tip of
the anleona s not connccted to anything physically; hence ao current would Bow,
and nothing would happen. This viewpoint, of course, cannot cxplain why communi-
cation can be established between walkie-talkies at a distance. Electromagoetic con-
cepts must be nzed. We shall see in Chapler U that when the lenpth of the antenna
is an appreciable part of the carrier wavelength,” a nononiform current will fow
along the open-etnded anterma. This current tadiales a umne=varying cleclromagnetic
ficld in space, which propagates as an 2lectromagnetic wave and induces currents in
other antennas at a distance.

fon Fig. 1 2 we show a sitvation in which an electromagoetic wave is incident
from the left on a larpe conducting wall containing a small hole (aperture). Llectro-
magoctc fields will exist on the right side of the wall at points, such as P in the fig-
ure, that are not necessarily divectly behand the aperture. Civewl theory s obviously
madequate here for the determination {or even the explanation of the existence) of
the: ficled ut P, The situation in Fig. 1 2, however, represents a problem of practical
Importancs as its soelution is celevant in evaluating Lhe shiclding elfectiveness of the
conducting wall.

T The product af the wavelenpih and the Feyueney of an oa-c souree s the vty of wave propagation,
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Generally speaking, circuit theory deals with lumped-parameter systems —circuits
consisting of componcents characterized by lumped parameters such as resistances,
inductances, and capacitances. Voltages and currents are the main system variables.
For d-c circuits the system variables are constants, and the governing equations are
algebraic equations. The system variables in a-c circuits are time-dependent; they are
scalar quantities and are independent of space coordinates. The governing equations
are ordinary diflcrential equations. On the other hand, most clectremagnetic vari-
ables are functions ol timc as well as of space coordinates, Many are vectors with
both a magnitude and a direction, and their representation and manipulation require
a knowledge of vector algebra and vector calculus, Even in static cases the govern-
ing equations are, in general, partial differential equations, Tt is ¢ssential that we be
equipped to handle vector quantities and variables that are both time- and space-
dependent. The fundamentals of vector algebra and veclor calculus will be developed
in Chapter 2. Techniques for solving partial differential equations are needed in deal-
ing with certain types of electromagnetic problems. These technigues will be discussed
in Chapter 4. The importance of acquiring a facility in the use ol these mathematical
tools in the study of clectromagnetics cannot be overemphasized.

Students who have mastered circuit theory may initially have the impression that
electromagnetic theory is abstract. Tn fact, cicctromagnetic theory is no more abstract
than circuit theory in the sense that the validity of both can be verified by experimen-
tally measured results. In clectromagnetics there is a need to define more quantitics
and to use more mathematical manipulations in order to develop a logical and com-
plete theory that can explain a much wider varicty of phenomena. The challenge of
field and wavc clectromagnetics is not in the abstractness of the subject matter but
rather in the process of mastering the electromagnetic modcl and (he associated rules
of operation. Dedication Lo acquiring this mastery will help us to meet the challenge
and reap immeasurablc satisfaction.

The Electromagnetic Model

There are two approaches in the development of a scientific subject: the inductive
approach and the deductive approach. Using the inductive approach, one follows
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the historical development of the subjeet, starting with the observations of some sim-
ple experiments and inferring from them laws and theorems. It is a process of reason-
ing from particular phenomena to gencral principles. The deductive approach, on
the other hand, postulates a few fundamental relations for an idealized model. The
postulated relations are axioms, from which particuiar laws and theorems can be de-
rived. The validity of the model and the axioms is verified by their ability to predict
consequences that check with experimental observations. Tn this book we prefer to
use the deductive or axiomatic approach because il is more ¢legant and cnables the
development of the subject of electromagnetics in an orderly way.

The idealized model we adopt for studying a scientific subject must relate to real-
world situations and be able to explain physical phenomena; otherwise, we would
be cngaged in mental exercises for no purpose. For example, a theoretical model
could be buiit, from which one might obtain many mathematical relations; but, if
these relations disagreed with observed results, the model would be of no use. The
mathematics might be correct, but the underlying assumptions of the model couid
be wrong, or the implied approximations might not be justified.

Three essential steps are tnvolved in building a theory on an idealized model.
First, some basic quantities germane to the subject of study are defined. Second, the
rules of operation (the mathematics) of these quantities are specified. Third, some
fundamental relations are postulated. These postulates or laws arc invariably based
on numerous experimental observations acquired under controlled conditions and
synthesized by brilliant minds. A familiar example is the circuit theory built on a
circuit model of ideal sources and pure resistances, inductances, and capacitances.
In this case the basic quantitics arc voltages (V), currents (f), resistances (R), induc-
tances (L), and capacitances (C); the rules of operations arc those of algebra, ordinary
differential equations, and Laplace transformation; and the fundamecntal postulates
are Kirchhoff's voltage and current laws, Many rclations and formulas can be de-
rived from this basically rather simple model, and the responscs of very claborate
networks can be determined. The validity and value of the model have been ampiy
demonstrated.

In a like manner, an clectromagnetic theory can be built on 4 suitably chosen
clectromagnetic model. [n this section we shall take the first step of defining the basic
quantities of clectromagnetics. The second step, the rules of operation, encompasses
vector algebra, vector calculus, and partial differential equations. The fundamentals
of vector algebra and vector calculus will be discussed in Chapter 2 (Vector Analysis),
and the techniques for solving partial dilferential equations will be introduced when
these equations arise later in the book. The third step, the fundamental postulates, will
be presented in three substeps in Chapiters 3, 6, and 7 as we deal with static clectric
fields, steady magnetic fields, and electromagnctic ficlds, respectively.

The quantities in our electromagnetic model can be divided roughly into two
categories: source quantities and field quantities. The source of an electromagnetic
ficld is invariably electric charges at rest or in motion. However, an electromagnetic
field may cause a redistribution of charges, which will, in turn, change the ficld; hence
the separation between the cause and the effect is not always so distinct.
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We e the symbaol ¢ Gometimes (0 1 denole efectrie charge. Floeimic charge
is 1 fundamental property of matier and exists only n positive or negative integral
muliiples of the charge on an clectron, &7

o= bl 10 Y (i i n

where (71 the abbreviation of the anit of charge, coulismbe B s named aller the
French physicist Chatles A, de Coulomb, who formulated Counlomb's law in L7835,
iCoulomb™ law will be discussed in Chapler 3 A coudomb iy o vory avge unit Tor
glectric charge; it takes 177160 = 107" or 6.25 millien trillion etectrons to make
up 1O Io Laet, two 1O charges 1 m apart will exert a force of approximately
I raillon tons on each ather. Some other phiysical constants for the cleelron are lsted
in Appendix B 2

The primaple of cormsersation of efecteic charge, like \he principle of couscrva-
tion af momentutn, is & fundamental postulale or law of phvaes Tatawes that electric
charges 15 conserved; that 1s, it can neither be created nor be destroyad. This is a law
of nature and canmod be derived rom other principiles or relatioms s trath bas never
been guestioned or doubted in practics.

Llevtoe charges can move Irom one plice to another and can be redisiributed
under the influence of an electromagnetic tield: bat the algebraic sum of the positive
and negative charges in a closed [isolated) sysiem remuans unchanged. The principle
of conservarion of electvic chavge musi be satisfied ar alf times and ander anv
circasstinees. 1L s reprosenicd mythemalicilly by Lhe equarion af eontdauiry, which
we will discuss in Section 3—4 Any formualation or solution of an electromagnetic
problom that visiates the principie of conservation ol clecloic charge must be incorrcel,
We recall that the KarehholTs current aw it cirewit theory, which maintains that
the sum of all the currents leaving a junction must equal the sum of all the currents
cntering Lhe junction, is 41 agseriion of the conservalion property of clectrie charge.
[Implicit in the current law is the assumption that there 1s no cumulation of charge
a1l the junction.)

Although, in a micrascopic sense, electric charge either does or does nat exist at
4 point in g diserele manner, those abrupl vanallons on an dlomic scale sre onim-
portunt when we consider the slsctromagnetic effects of large aggregates of churges.
Im comstrueting 4 macroseopic or laree-seale theary of deciromupnetism we find that
the use of smoothed-out average density functions yields very good resolis. (The same
approwch iy used inomechamics where d smoothed-oul mass densily [unetion is delined,
in apite of the fact that mass 35 associated only with elementary particles in a diserete

Tl 1962, Murray Gell-Muann hypothesized guarde as the basic hudlding blacks of matter, Quarks woee
prediceed to carry a fractiods of the charpe of an electren, and theeic existence has since been verified
sanenimentally.

* The system of units will e discussed io Scetion 1 3.
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manner on an atomic scale.} We define a volume charge densifp, p, as a source quan-
tity as follows:

o= tm 2 imy) (1-2)
an—o AL
where Ag s the amount of charge in g very small volume Ar. How small should Ar
ba? It should be amall enough to represent an accurate variation of p but large encugh
to contain 4 very lurge number of diserete charges, For cxampie, yn elemendal cube
with sides as small as [ micron (107% m or 1 ey bas a volume of 107 m?, which
will still contain about 107 {100 billicn) atoms, A smoothed-out fumeiion of spaee
coordinales, o defined with such o small Apds expected w yield accurale macroscopic
results for nearly all practical purposes.
Io somme physical situations an amount of charge Ag may be identified with an
element of surface As or an element of Time A7 T such cases it will be more appropriate
to define a suefiace charge density, p,. or a fine charge density, g,

. Ay Y
= ! | 3
2, ._En.]u As (C/m), (3
. Ay
= ). 1 4
o 31.31 s, Cim) {4

Except for certain special situations, churge densities vary from point Lo pomt; henee
it fhe and poare, i gencral, point functions of space coordinates.
Current is the rate of change of chares with respect to dme; (hal s,
_dq

f—=— (O or A, (5
dl

where J itsell may be time-dependent. The unit of current is coulormb per second (C/s)
which i3 the sume as ampere (A) A eurrent must fHow through a finite arca (a con-
ducting wire of a finite cross section, for instance); hence it is not 4 point function. In
clogtromapnetics we define 3 veglor poinl lunclion oedsme curvest deasity (or simply
chrvent densiry} J, which measures the amount of current Howing through a unil
wrea normal to the dircetion of qurrent Now. The boldlaced T s a vector whose mag-
nitude is the current per unit area (A;m*) and whose direction is the dircetion of cur-
rent flow, W shull elaborale on Lhe relation between ©and 3 in Chapter 5. Tor very
good comductors, high-Trequency alternating currents are confined in the surface layer
as a current sheet, instead of fowing throughout the interior of the conductar. In such
cases there is a need Lo deline o sewface covrent density X, which is the current per
unit width on the conductor surface normal to the direction of current flow and has
the unit of ampere per meter {A/'m).

There are four fundamental vector feid quantities in electromagnetics: electric
field intensity E, elecwvic fux density (o1 electric displacernent) D, muagretic fax



I 2 The Cleclromavnelic Model T

TARLY 1-1
Fundarmentad Flegtiromagngric Vichd Qran itiey

Symbuls und Units

fur Field uankilivs [Ficld Quantily Symbol Unit
Biectrie Deld intonsity E Yim

Llegiric :
Eleetrie flux densily D C/m?

{Flectoyv displacement)

Magnelic Qus densily B T
Mapnetic -
Magnelic [eld intensity H Am

densiry B, and magnetic feold infensity H, The definition and physical sipnificance
of these quantities wiil be explained fully when they are introduced later in the book,
AL this time we wanl only to establish the Dlowing. Electric Beld inlensity Fois the
only vector needed i discussing electrostatios (effects of stationary electric charpes)
in free space; it is defined as the clectric force on wounit test charge. Fleclric displace-
ment vector D 15 uselul in the study of electric field in material media, as we shall
soe in Chapter 3 Similarly, magnetic flux density B is the ooly vector nocded in dis-
cugsing magnelastatios {clfcew of sweady electne currenishin free space and is related
to the magnetic force acting on a charge moving with a given velocity. The magneric
ficld intensity veetor Hois uselul nothe study of mapoetie ficld in material media The
definition and significance of B and IT will be discussed in Chapter &

The four fundamental lectromagoetic fisld quantities, together with their vnits.
are tabulated in Table 1-1. 1o lable 1-1, Vim s voll per meter, and T stands Tor tesla
or volt-second per square mater. When there is no time variation (as in static, steady,
or siationary cases), the electric field quantives E and 1 and the magnetic field quan-
titics B and H forn two separate vector pairs. In time-dependent cases, however.
glectric and magnetic field quantiies are coupled; thal is, time-varying E and I will
give rise o B and H, and vice yorsg. Al four gquantilics are point funciions, they dare
detined at every point in space and, in general, are fanctions of space coordinates.
Material {or medium) propertics deleemine the relutions belween E oand 1Y and be-
tween B and H. These relations are called the comstitutive velations of 2 medium and
will he cxamined laer,

The principal objective of studying electromapnetism is W understand the inter-
acticn betwean charges and curreats af a distance based on the electromagnetic model.
Tields and waves (Ume- and spacec-glependent ieldys) are basic coneepud guyniilics
of this medel Fundamental pastulates will relate E, In, B, T, and the seurce quantities;
and derived relations will Tead Lo the explangtion and prediction of electromagnetic
plIGIIITen:L.
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TABLE | 2

Fundamental 51 Linits
Quantity Unit Abhroviation
Length meter m
Mass kilogram ke
Tinne: secomnd g
Currenlt HINprs A

51 Units and Universal Constants

A megsurcment of any physical quaniity must be cxprossed as o number lollowed by
a unit. Thus we may talk about a length of theee meters, 2 mass of two kilograms, and
4 time period of ten seconds, To be uscful, @ unit system should e bascd on some
fundamental units of convenient (practical) sizes. In mechanics, all quantities can be
expressed in terms of three Basic voits (for length, wass, and time). Tn electromapnctics
a fourth basic unit for currenth 15 needed. The ST {(Imernafional Spstem of Units
or Le Sysréme Invermavional £'Unités) is an MESA system bl from the four funda-
tnental units lsted in Tabie 1-20 All other units wsed in electromagnetics, including
those appearing in Table 1--1, are derived units expressible in terms of meters, kilo-
grimy, sceonds, and amperes. For example, the wnit for charee, coulomb 1C), s
ampere-second [A-s); the unit for electric field intensity (V/m) is kg m/A s% and the
unil. for magmelic Alux density, teska (T, 3s kgdA -5, More complele tables of the units
for various quantitics are piven in Appendix A

The official SI definitions, a5 adopted by the International Committee on Weights
and Measores, ave as follows?

Meter. Once the length between two scratches on a platinuae-iridium bar [and
originally cabenlated as one ten=-millionth of the distance beiween the North Pole
and the equator through Paris, France), is now defined by reference to the second
{5ee below) and the speed of ight which in g vacuum is 299,792 458 moeters per
second.

Kilogrom. Mass of a standard bar macde of g platinum-iridivm alloy and kepo
inside a set of nested enciosures that protect it from contamination and mis-
hundiing. It rests at the Intermations] Bureau of Weights and Measures in Sévres,
oulside Puris.

Second, 9,192 831,770 periods of the eleciromagnetic radiation emitted by a par-
ticular trapsition of a cesivim atom,

TP Wallich, *Vults and umps wre nol whal they wed Lo ke TEEE Speerrum val. 24, pp. 44—4% Muarch
1957,
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Ampere. The constant current that, if maintained in two straight parallel con-
ductors of mfinite lenplh and neglipible drewlar cross section, and placed one
meter apart in vacuum, would produce between these conductors a force equal
o2 = W 7 newlon per meter of leogth, (A newlon s the Toree thil gives a mass
of one kilogram an acceleration of one meter per second squared.)

In our electromagnetic moedel there are three universal constants, in addition to
the field quantities listed in Table 1-1. They relate 1o the properties of the ftee space
{vacuum). They ate as follows: velacity of electromagnetic wave {incloding light} In
frec space, o) permitiviy of free space, e,; and permeability of Tree space, g, Many
experiments have been performed for precise measurement of the veloaity of light,
Lo many decimal places. For our purpose it is suflicient o remember that

r=3x 107 {m/s). | (in fres space) {1-5)

The other two comstanly, eq and g, perlain 1o decinic and magmelic phonomena,
respectively: g, 15 the proporticnality constant between the electric ux density D
and the electric field intensity E m [ree space, sueh that

D =¢,E; | (in fres space) (1-71

itg 1% the proportionality constant between the magnetic flux density B and the mag-
netic field intemsity Hon e space, sueh thal

1
H= 0 B. | (in free space} (1-8)
0

The values of €, and g, are determined by the cheice of the unit system, and they
are not independent. In Lhe SF spstem (ratiopglized! MKSA svstem), which is glmaos)
universally adopted for electromagnetics work, the perieeability of free space is chosen
to be

fy =41 % 107° (H/m). | (in free spacc) (19

where Hyro stands lor henry per meter. With the values of ¢ ound g, fxed in Vgs, (1-6)
and (1-9) the value of the permittivity of free space i then derived from the following

tI'his system of units s said o be retlomefzed Decanse the factor d= does not appear o the Maxwells
eguations (he Tundmnenlal pustolates of eleciremsenetzm). This [elor, hewever, will appear 19 many
derived relations. In the unrationalized MKSA system, j, woukd be 1077 (H/mE, and the faclor 3 wouhl
dppear in the Maxwell's equations,
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TAEBLE 1-3
Universal Constants in 51 Units
TTniversal Constants Swmibiol Yulue Linil
Yelocity of lighl in [ree spave ¢ 3= 1M mia
Permeability of lree spuce it dmow 1077 H:m
Pernittevity of free space Ep % = 10 ¥ Fm
relutionships:
1 .
= = () {1-10
WELMy
o1
: -
Epy — = s .
T i, T 36w {L-11}

= 4454 x 10712 (ki

where T7/m is 1he abbrevialion lor Taral per meter, The three universal constants and
their valuas are summarized in Table 1-3.

Mow thal we have detined the basic quantities and the universal constants of the
electramagnetic model, we can develop the vanous subjeels n clectromaenetios. Bul,
bedore we do that, we must be equipped with the appropriate mathematical tools. Tn
Lhe: Tollowing chapter we discuss the basic rules of operation for vector algesbra and
vector caleulus.

Review Questions

B.1-1 Whul is clociromugnetics?

R.1-2 Drcseribe two phenomena or situations, other than those depicted in Figs. 11 and
1 2, that cannot be adeguately explained by cirgnit thaory,

R.1-3 Whal are the thres essential step: m building an mdealtzed model for Lhe study ol a
seienlilic subject?

R.-4 Whar are the four fandamental 51 anits in elactromapnetics?

KE.1-5 What are the [our [undamuental leld quantiies- o the dectromugnetic model! Whet
arc their vnits?

R.l=f What are the three universal constants in the elecreomagnetic model, and what are
thetr relations?

W1-T What are 1he sowrce quantilies in the alectromapnetic model?
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Vector

Analysis

Introduction

As we nowd in Chapter |, some of the quanhitics in cdectromagnetics (such as charge,
current, and energy} are scalars, and some others {such as cleelric and mupmetic flicld
inlengilics) are voctors, Both sculars wnd vectors can be functions of time and posi-
tlon. At a given time and position, a yealasr i3 complelely specificd by il magnitude
{posilive or negative, together with its unith. Thus we can specity, for instance, a charge
of — 1 pC at & certain location wt £ — O, The specilication of 4 vecror at 2 given loca-
tion and time, on the other hand, requires hoth a magnitade and a diveciion. How do
wi srely the ditection of i vector? In o three-dimensional space, three numbers are
needed, and these numbers depend oo the chotee of 8 coordinale sysiem, Conversion
of a given vector from one coordinate sysiem 1o another will change these numbers.
However, physical laws and theorems relating various scalar and vector quantities
certainly must hold irrespective of the coordinate syslem. The peneral exprossions of
the laws of clectromagnetism, therefore, do not require the specification of a coordi-
nate system. A particular coordinace aysiem is chosen omly when a problem of a given
peomelry is 10 be analyzed, For exampie, if we are to determine the maguetic ticld at
the center of a current-carrying wire inop, (L is more convenient Lo use reclangular
goordinates if the loop is rectangular, whereas polar coordinates (two-dimensional}
will be mare appropriate il the loop @ aroular in shape. The basie cleetromegnitiy
relation goverming the solution of such a problem is the same for both geometries.
Three maim topcs will be deall with in this chapler on veclor analysis;

1. ¥eeror atpehra—addition, sublraction, and muitiplicalion of veelory

2. Orthogonal coordinare systems—Cartesian, oylindrical, and spherical coordi-
nates.

3. Vecwor calculus—differentiation and mlegration of veclors; line, surface, and
veldwme intcgrals; “del™ operatarn; gradient, divergence, and curl operations.
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Y ¥Yector Anulvsis

Throughout the rest of this book we will decom pose, combing, diferentiale, integrale,
and othemwise manipulale veclors. [Ls freperative W acguire a factlity in vector algebra
and veelor caleulus. In a three-dimensional space a vector relation is, o fact, three
gealar relations. The use of vector-analysis rechoigues in cleclromagnenios leads Lo
concize and clesant Tommualations. A delicieney in vector analysis in the study of elec-
trounagnetics is simikar to a deficiency in algebra and calculus in the study of physics;
and it 1% obviows that these deficiencies canmet vield feutlul resules.

In solving practical problems we alwiys deal with regions or objects of 4 given
shape, and 111 necessary Lo capress general fommulas in a coordinate system appro-
priate for the given peometry. Tor example, the familiar rectanguiar (x, ¥, =) cocrdi-
nales are, obviously, awkward Lo wse lor problems mvodving a circolar eylinder o
a sphere because the boundaries of a circular cylinder and a sphere cannot be de-
scribed by constant values of x, 1, and z. In this chapter we diseuss (he three most
commemly used orthogonal {perpendicular) conrdinate systems and the representa-
tion and operation of vectors o these systems. Familarity with these coordinate
systems is essentigl in the solution of clecloomagnetic problems

Veclor caleulus pertains to the differentiation and integration of vectars. By de-
tining certain ditferential operators we cin cxpress the basic laws of cleelromignetism
m a concise way Lhai i invariant with the choice of a coordinate system. In this chap-
ter we introduce the techniques for cvalwaling dilferent Lrpes of infeprals invelving
veclars, and we deline and discuss the various kinds of differential operators.

Vector Addition and Subtraction

W know thal g veulor his 3 magmivnde und o direction. A veelor A can he written
3k
A =a,4, 21

where 4 3: the masnilude {und has Lhe unil and dimension} of A,
A=Al {2-2
and a, is a dimensionless unit vector” with a unity magnitude having the direction

of A Thus,
A A

Tl A

(2 3
The vector A can be represented graphically by a directed straight-line segment of a
icngth |A| = 4 with its arrewhead pointing in the ditection of s, asshown in Fig 2 1.
Twa vectors are equal iF they have the same magnilude and the same direclion, cven

*Imosomne Dooks the nwie veetor in e direction of A iz wariously deneled by jt, u,. uri,. We preler Lo wrile
A s in By (2 {]iostead wlas A Ad A vecter poing from paint Py to eninl F; will Lhen be wrilten as
fp, P ol instead of as ™ Byl Polowhich is somewhar cumbersoms, 'The symbnlz v and i ane ased lor
velocily unil current, tespectively.
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FIGURE 2-1
Graphical represeniation of vector A.

though they may be displaced in space. Since it is difficult to writc beldfaced letters
by hand, it is a common practice to usc an arrow or a bar over a letter (A or A) or
a wiggly line under a lettcr (A) to distinguish a vector from a scalar. This distinguish-
ing mark, once chosen, should never he omitted whenever and wherever vectors are
written.

Two vectors A and B, which are not in the same direction nor in opposite direc-
tions, such as given in Fig. 2—2{a), determine a plane. Their sum is another vector C
in the same plane. C = A + B can be obtained graphically in two ways.

1. By the parallelogram rule: The resultant C is the diagonal vector of the parailelo-
gram formed by A and B drawn from the same point, as shown in Fig. 2-2(b).

2. By the head-to-tail rule: The head of A connects to the tail of B. Their sum C is
the vector drawn from the tail of A to the head of B; and veclors A, B, and C lorm
a triangle, as shown in Fig. 2-2(¢).

It is obvious that vector addition obeys the commutative and associative laws.

Commutative law: A+ B=B + A. (2-4
Associative law: A+ {(B+C=(A+ B} + C §{2-3)

Yector subtraction can be defined in terms of vector addition in the following way:
A—-B=A+(—B), 2 6

where — B is the negative of vector B; that is, ~ B has the same magnitude as B, but
its direction is opposite to that of B. Thus

—B =(—ay)B. z7
The operation represented by Eq. (2 -6) is illustrated in Fig, 2-3.

C
B B
A
(a} Two vectors, A and B. (M) Parallelogram rule. (¢) Head-1o-tail rule.
FIGURE 2-2

Yector addition, C= A + B,
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{31 Two voorors, (b Sulriacticn of FIGURE 2-2

A

and B. veclore, A H. Foector subtractioon.

2-3

Products of Vectors

Multiplicatiom ol a vector A by a positive scalar & changes Lhe magmitade of A by &
times without changing its direction [k can be either greater or less than 1},

A = a kA 28]

11y nol sudlicient (o say "the multiplicalion of one veetor by wnather™ or *the prod-
nct of two vectors” because there are two distinet and very different types of products
of two vectors, They ate (1) scalar ot dot products, and (2} veclar or cross prodocts,
These will be defined in the following subsections.

2-1.1 SCALAR OR DOT PRODUCT

The scalar or dol product of lwo veetors A and B, denoled by A - B, is a1 scalar,
which equals the product of the magnmitudes of A and B and the cosime of the angle
between them, Thus,

A-B2 dBcos 2-9

In Eq. (2 -9) the symbol £ signifies “equal by definition,” and ., is the smaller angle
between A and B and 15 less (han 7 radians (180F), gy indhicated in Fig, 2 4. The dol.
product of two vectors (1) is less than or equal to the product of their magnitudes,
() can be cither @ posibive or w negalive quanlity, depending on wheither Lhe gngle
between them is smaller or larger than =2 radians (90°) {3] is equal 1o the product

A—- -I KIGLRE 2-3
Thustrating the dot prodnet of A and 1B,




23 Mroducts of Yeclors 15

of the magnitude of one vector and the projection of the other vecter upon the firsl
coe; and (4) is zero when the vectors are perpendicular o cach aher. Tt is evident
thut

AA =42 [2—-110}

o A=7AA 2-11}

Equatiom [2—11} enables us to flod the magnitude of a vectar when 1he expression

of the vector is given in any coordinale system. '
The dot produet iz commutative and distribotive.

Commutative law: A-B =B+ A (214

Distributive law: A B+ {1=A B+ A-C f2-13

The commutative luw is obvious [rom the definiion of the dot produoct in Eq, (2-9),

and the prool of Fa. (2-13) s left as an exercise. The associative law does not upply

to the dot product, since no more than two vectors can be so multiphivl and an cx-
pression such as A+ B+ iy meuningless.

EXAMPLE 2-1  Prove the luw of cosings o a Lriangle.

Solution  The law of cosines it a scalar relationship that expresses the length of a
side of a triangle in terms of the lengths of the two ether sides and the angls between
them, Referming (o B, 2-5, we find the law of cosines states that

We prove this by considering the sides as vectors; that is,
C=A+B
Taking the dot product of C with itself, we have, from Eqs. (2 10) and (2 13),
C2=C-C={A-B)-(4A I B
A+A+B-B+2A-B
=A% + B* + 24AB cos 8 4.

FIGLIRE 2-5
Musirating Dxampls 2—1.
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MNote that #,, is, by definition, the smaller angle between A and B and is equal to
(180" — &) hence cos £, = cos (180" - 2} = —eos = Therelore,
2= A7 + B2 — 2AB cos =,

and the law of cosines lollows directiy. -

2-1.2 VECTOR DR CROSS 'IOOUCT

The veotor or cross produet of two veolors A and B, denoled by A x B, 15 a vector
perpendicular to the plane containing A and B; its magnitude is AF sin 0 g5, wher
{15 is the spraller anple between A and B, and itz direction follows that of the thomb
of the right hand when the fingers rotate from A to B through the angle 8,4, {the
righl-hand rule),

Ax BEalARn 4 2--14)

This is Nustrated in Fig. 2- 6. Since B sin #, 4 is the hefght of the paralielogram formed

by the vectors A and B, we recogmze that the magnitude of A x B, 4B sin ),

which is always positive, is numericaily equal to the area of the pagallclogram,
Llzing the definition in Tg. (2-14) and foillowing the right-hand rule, we find that

BxA-—-4xH {2-15)

Hence the cross product is net commutative, We can sco that the cross producl obeys
Lhe distnbutive law,
AXB-O=AxB+AxC i2—18)
Can vou show this in general without resolving the vectors inte rectangular
Componenis?
The vector product {8 obviously rot associative, that is,

AXxBxC#AxBxC [2-17

Fy

B

f,_ﬁ_i’. A

a) A % B o= a5 |4AR sin 8,5 () The right-tund rule.

FHGUIRE 2—i
Cross prodoct of A and B, & % B
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The vector representing the triple product on the left side of the expression above is
perpendicular to A and lies in the plane formed by B and C, whereas that on the
right side is perpendicular to C and lies in the planc formed by A and B. The order
in which the two vector products are performed is Ltherefore vital, and in no case
should the parentheses be omitted.

s EXAMPLE 2-2 The motion of a rigid disk rotating about its axis shown in Fig.
2—7{a} car be described by an angular velocity vector @. The direction of e is along
the axis and foliows the right-hand rute; that is, if the fingers of the right hand bend
in the direction of rotation, the thumb peints to the direction of . Find the vector
expression for the lineal velocity of a point on the disk, which is at a distance 4 from
the axis of rotation.

Solution From mechanics we know that the magnitude of the lineal velocity, v, of
a point P at a distance d from the rotating axis is wd and the direction is always
tangential to the circle of rotation. However, since the point P is moving, the direc-
tion of v changes with the position of P. How do we write its vector representation?

Let O be the origin of the chosen coordinate system. The position vector of the
point P can be written as R, as shown in Fig. 2-7(b). We have

|¥| = wd = wR sin 6.
No matter where the point P is, the dircction of v is always perpendicular to the
plane containing the vectors @ and R. Hence we can write, very simply,
v=wx R,

which represents correctly both the magnitude and the dircction of the lincal velocity
of P. -

FIGURE 2-7
{a) A rotating disk. (b} Vector representation.  [llustraling Example 2-2.
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4
B xC
T
<< T~
~ =
A P a7
5 / v /
/ 4
C e’ - / /
P T i r
L /S T
Lo FIGURE 2-8
Arca=Bx(C B Tllustrating scalar triple product A (B x C).

2~-3.3 PRODUCT OF THREE VECTORS

There are two kinds of products of three vectors; namely, the scalar triple product
and the vector triple product. The scalar triple product is much the simpler of the
two and has the following property:

A-BxCO=B-(CxA)=C-(A xB) 2-18)

Note the cyclic permutation of the order of the three vectors A, B, and C. Of course,
A-(BxC)=—A-(Cx B)
= —B:(A x C) (2-19)
=—C+(BxA)
As can be seen from Fig. 2—8&, each of the three expressions in Eq. (2—18) has a magni-
tude equal to the volume of the parallelepiped formed by the three vectors A, B, and
C. The parallelepiped has a base with an area equal to |B x C| = |BC sin 6,| and a
height equal to |4 cos 8,[; hence the volume is [ABC sin 8, cos 8,).

The vector triple product A x (B x C) can be expanded as the difference of two
simple vectors as follows:

A x(BxC) =BA-C)—CA - B). (2-20)

Equation {2 -20} is known as the “back-cabh” rule and is a useful vector identity. (Note
“BAC-CAB" on the right side of the equation’)

e EXAMPLE 2-3" Prove the back-cab rule of vector triple product.

* The back-cab rule can he verified in a straightforward manner by expanding the vectars in the Cartesian
coordinale system {Problem P.2-12}. Only those intercsted in a general proof need to study this example,



BlA,+ fw

»

FIGLRE 2-%
Musirating the hack-cab rule of vector Lriples product,

Solution  Tn order to prove BEq. (2-20) it is convenient to expand A inlo (wo
COMponents:
A=A + 4,

where A and A_ are paraliel and perpendicular, respectively, to the plane containing
B and C. Because the vectar representing (B x €)1y also perpendicular Lo the plane,
the crows product of A_ and (B x Ch vanishes. Let D= A x (B x C), Since cnly A
is effective here, we have

D=A,x(BxC).

Referring to Fip. 2-0, which shows the plane containing B, €. and A, wu nole
thitt 1 Jigy in the same plane and s normal o A The magnitude of (B x €] is
BC siniit, — f};), and that of A x (B x C)is 4 BCsini¥, #,). Henee,

D=D-a,=ABCsin (#, #,)
= (Bsin 804, Ceos 8,) (0 sin A B eos )
= [RtA - C)  ClA B - ap,

The cxpression above docs nol glone pugrunie: the quantity inside the brackets to
be D, since the former may contain a vector that is normal to D (parallel to &%
that is, I+ a;, = E « a, does not guarantee E = T In gengral, we can weile

BiA, €y — CiA, - BY =D + kA,

where k is a scalar quancity. To determine £, we scalar-multiply both sides of the
above equation by A and obtaio

(A BIA Q) — (A - C)4) By =0=A, D+ kdj.
Since A - 1> =0, then b = 0 and
1= HiA ) C)— ClA) - B,
which proves the back-cab rule, inasmuch as 4 -C=A-Cand 4 -B—-A-B

DMvision by a vector §x nor defined, und cxprossions such as /A and B/A are
meaningless.
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2—4 Orthogonal Coordinate Systems

We have indicated before that although the laws of electromagnetism are invatriant
with coordinale system, solution ol practical problems reguines that the relations
derived rom these laws be cxpressed in a coordinale system appropriale Lo the geome-
try of the given problems. For example, il we wre to determine the electric field at a
certain point in space. we at leasl need 1o describe the position of the source and the
lovation of this point in a coordinate system, I a threc-dimensional space a point
can be located as the intersection of three surfaces. Assume that the three families of
surtaces are deseribed by i, = constant, ¢, = constant, and v, = constant, where the
u's need not all be lengths iTo the [amiliar Cartesian or reclangular coordinaie system,
Uy, ty. and u, correspond to x. v and =z, tespectively.] When these three surfaces
are mulually perpendicular o one another, we hivve an orthegonal coardingte spstem,
Meonarthegonal coardinate syatems are not used because they complicate problems.

Some surfaces represenied by 1, = comslant (i = 1, 2, or 3] in a coordinate system
may not be plangs; they may be curved surfaces, Let a,,, a,,, and a,, be the nnit
veclors in the three ecoordinale dircclions. They are called Lhe base peciors. In g
general right-handed. erthogenal curvilinear coordinate system the base vectors are
arranged in such g way thal the Toltowing relations ure salisfcd:

a, xa, =4, (2 31ah
a,, %xa, -=4a,,. {2-21
a, ¥a =a,. (2-21c)

These three cquations are not all independent, as the specification of one au(omati-
cally implies the olther (wo, We have, of course,

4, ‘8, =8, A, =4,

\ -a, =0 {2-22)

z
and

W, c#y, =4#,.-a,=a, -a, —L {(2-13)

Any veclor A can be wrillen as the sum of ils components 1o the three orthogonal
directions, as follows:

A=a, A, +a,d, +a,d,. (2-24)

From Eg. (2 24) the magmitide of &
A= |A| = (AZ + AL + AZ)H2, (2 25

[F}

o EXAMPLE 2-4  Given three veclors A, B, and C, obluin the ecxpressions of {a) A - B,
ity A =B, amd (¢ C-(4 x Bl in the orthegonal curvilinear coordinate svstem
{11, 1y, tigh



