CHAPTER

fter drawing a few of the fields described in the previous chapter and becom-
ing familiar with the concept of the streamlines which show the direction of
the force on a test charge at every point, it is difficult to avoid giving these
lines a physical significance and thinking of them as flux lines. No physical particle
is projected radially outward from the point charge, and there are no steel tentacles
reaching out to attract or repel an unwary test charge, but as soon as the streamlines
are drawn on paper there seems to be a picture showing “something” is present.

It is very helpful to invent an electric flux which streams away symmetrically
from a point charge and is coincident with the streamlines and to visualize this flux
wherever an electric field is present.

This chapter introduces and uses the concept of electric flux and electric flux
density to solve again several of the problems presented in Chapter 2. The work here
turns out to be much easier, and this is due to the extremely symmetrical problems
which we are solving. &

3.1 ELECTRIC FLUX DENEITY

About 1837 the Director of the Royal Society in London, Michael Faraday, became
very interested in static electric fields and the effect of various insulating materials on
these fields. This problem had been bothering him during the past ten years when he
was experimenting in his now famous work on induced electromotive force, which we
shall discuss in Chapter 10. With that subject completed, he had a pair of concentric
metallic spheres constructed, the outer one consisting of two hemispheres that could
be firmly clamped together. He also prepared shells of insulating material (or dielectric
material, or simply dielectric) which would occupy the entire volume between the
concentric spheres. We shall not make immediate use of his findings about dielectric
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materials, for we are restricting our attention to fields in free space until Chapter 6. At
that time we shall see that the materials he used will be classified as ideal dielectrics.
His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2, The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.
4. The outer space was separated carefully, using tools made of insulating material

in order not to disturb the induced charge on it, and the negative induced charge
on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude to
the original charge placed on the inner sphere and that this was true regardless of the
dielectric material separating the two spheres. He concluded that there was some sort
of “displacement” from the inner sphere to the outer which was independent of the
medium, and we now refer to this flux as displacement, displacement flux, or simply
electric flux.

Faraday’s experiments also showed, of course, that a larger positive charge on the
inner sphere induced a correspondingly larger negative charge on the outer sphere,
leading to a direct proportionality between the electric flux and the charge on the inner
sphere. The constant of proportionality is dependent on the system of units involved,
and we are fortunate in our use of SI units, because the constant is unity. If electric
flux is denoted by W (psi) and the total charge on the inner sphere by @, then for
Faraday’s experiment

and the electric flux ¥ is measured in coulombs.

We can obtain more quantitative information by considering an inner sphere of
radius a and an outer sphere of radius b, with charges of Q and — Q, respectively
(Figure 3.1). The paths of electric flux W extending from the inner sphere to the outer
sphere are indicated by the symmetrically distributed streamlines drawn radially from
one sphere to the other.

At the surface of the inner sphere, ¥ coulombs of electric flux are produced by
the charge Q(= W) coulombs distributed uniformly over a surface having an area of
47a®> m?. The density of the flux at this surface is W/4wa® or Q/4mwa®C/m?, and
this is an important new quantity.

Electric flux density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given
the letter D, which was originally chosen because of the alternate names of displace-
ment flux density or displacement density. Electric flux density is more descriptive,
however, and we shall use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density”
class of vector fields, as opposed to the “force fields” class, which includes the electric
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Metal Insulating or
conducting dielectric
spheres material

Figure 3.1 The electric flux in the region between a
pair of charged concentric spheres. The direction and
magnitude of D are not functions of the dielectric
between the spheres.

field intensity E. The direction of D at a point is the direction of the flux lines at that
point, and the magnitude is given by the number of flux lines crossing a surface normal
to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction
and has a value of

D = %ar (inner sphere)
rea dma

D = Lar (outer sphere)
vy Amb?

and at a radial distance r, wherea <r < b,

Q

== _a
dr2™

If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q, it becomes a point charge in the limit, but the electric flux density at a
point r meters from the point charge is still given by

¢

for Q lines of flux are symmetrically directed outward from the point and pass through
an imaginary spherical surface of area 47 r?.

This result should be compared with Section 2.2, Eq. (10), the radial electric field
intensity of a point charge in free space,
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In free space, therefore,

(free space only) 2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of
a point charge. For a general volume charge distribution in free space

(free space only) 3)

where this relationship was developed from the field of a single point charge. In a
similar manner, (1) leads to

“4)

3

and (2) is therefore true for any free-space charge configuration; we shall consider
(2) as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point out now
that, for a point charge embedded in an infinite ideal dielectric medium, Faraday’s
results show that (1) is still applicable, and thus so is (4). Equation (3) is not applicable,
however, and so the relationship between D and E will be slightly more complicated
than (2).

Since D is directly proportional to E in free space, it does not seem that it should
really be necessary to introduce a new symbol. We do so for several reasons. First,
D is associated with the flux concept, which is an important new idea. Second, the D
fields we obtain will be a little simpler than the corresponding E fields, since € does
not appear. And, finally, it helps to become a little familiar with D before it is applied
to dielectric materials in Chapter 6.

Let us consider a simple numerical example to illustrate these new quantities and
units.

We wish to find D in the region about a uniform line charge of 8 nC/m lying along
the z axis in free space.

Solution. The E field is
oL 8 x 107? 143.8

E = a, = = a, V/
Tmeop ? T 2m(B8854 x 10-12)p P T 5 o0 VM
Atp =3m, E =47.9a, V/m.
Associated with the E field, we find
8 x 107° 1.273 x 10~°
D= 'O—Lap =2 a, = - a, C/m?
270 2np 0

The value at p = 3 m is D = 0.424a, nC/m.
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The total flux leaving a 5-m length of the line charge is equal to the total charge
on that length, or ¥ = 40 nC.
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3.2 GAUSE'S LAW

The results of Faraday’s experiments with the concentric spheres could be summed up
as an experimental law by stating that the electric flux passing through any imaginary
spherical surface lying between the two conducting spheres is equal to the charge
enclosed within that imaginary surface. This enclosed charge is distributed on the
surface of the inner sphere, or it might be concentrated as a point charge at the center
of the imaginary sphere. However, since one coulomb of electric flux is produced by
one coulomb of charge, the inner conductor might just as well have been a cube or a
brass door key and the total induced charge on the outer sphere would still be the same.
Certainly the flux density would change from its previous symmetrical distribution
to some unknown configuration, but + @ coulombs on any inner conductor would
produce an induced charge of —Q coulombs on the surrounding sphere. Going one
step further, we could now replace the two outer hemispheres by an empty (but
completely closed) soup can. @ coulombs on the brass door key would produce
W = Q lines of electric flux and would induce —Q coulombs on the tin can'

These generalizations of Faraday’s experiment lead to the following statement,
which is known as Gauss’s law:

The electric flux passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has
ever produced, was actually not in stating the law as we have, but in providing a
mathematical form for this statement, which we shall now obtain.

! If it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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Figure 3.2 The electric flux density Dg at P due to
charge Q. The total flux passing through ASis Ds - AS.

Let us imagine a distribution of charge, shown as a cloud of point charges in
Figure 3.2, surrounded by a closed surface of any shape. The closed surface may be
the surface of some real material, but more generally it is any closed surface we wish
to visualize. If the total charge is O, then Q coulombs of electric flux will pass through
the enclosing surface. At every point on the surface the electric-flux-density vector
D will have some value Dg, where the subscript S merely reminds us that D must be
evaluated at the surface, and Dy will in general vary in magnitude and direction from
one point on the surface to another.

We must now consider the nature of an incremental element of the surface. An
incremental element of area AS is very nearly a portion of a plane surface, and the
complete description of this surface element requires not only a statement of its mag-
nitude A S but also of its orientation in space. In other words, the incremental surface
element is a vector quantity. The only unique direction which may be associated
with AS is the direction of the normal to that plane which is tangent to the surface
at the point in question. There are, of course, two such normals, and the ambiguity
is removed by specifying the outward normal whenever the surface is closed and
“outward” has a specific meaning.

At any point P consider an incremental element of surface AS and let Dy make
an angle 6 with AS, as shown in Figure 3.2. The flux crossing AS is then the product
of the normal component of Dg and AS,

AVY = flux crossing AS = Dg om AS = Dscos8AS = Dg - AS

where we are able to apply the definition of the dot product developed in Chapter 1.
The total flux passing through the closed surface is obtained by adding the dif-
ferential contributions crossing each surface element AS,

qx:/dqz:f Dg-dS
closed

surface

The resultant integral is a closed surface integral, and since the surface element
dS always involves the differentials of two coordinates, such as dxdy, pd¢ dp,
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or r?sin@ df d¢, the integral is a double integral. Usually only one integral sign is
used for brevity, and we shall always place an § below the integral sign to indicate
a surface integral, although this is not actually necessary since the differential dS is
automatically the signal for a surface integral. One last convention is to place a small
circle on the integral sign itself to indicate that the integration is to be performed over
a closed surface. Such a surface is often called a gaussian surface. We then have the
mathematical formulation of Gauss’s law,

&)

The charge enclosed might be several point charges, in which case
Q =3X0n
or a line charge,
0= [ma
or a surface charge,

0= / psdS (not necessarily a closed surface)
s

or a volume charge distribution,

QZ/ Py dv
vol

The last form is usually used, and we should agree now that it represents any or
all of the other forms. With this understanding, Gauss’s law may be written in terms
of the charge distribution as

©)

a mathematical statement meaning simply that the total electric flux through any
closed surface is equal to the charge enclosed.

To illustrate the application of Gauss’s law, let us check the results of Faraday’s
experiment by placing a point charge Q at the origin of a spherical coordinate system
(Figure 3.3) and by choosing our closed surface as a sphere of radius a. The electric
field intensity of the point charge has been found to be

e,
47'[60}"2 "

and since

D:E()E
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Figure 3.3 Application of Gauss’s
law to the field of a point charge Q on a
spherical closed surface of radius a. The
electric flux density D is everywhere
normal to the spherical surface and has
a constant magnitude at every point
onit.

we have, as before,
_ 2.
4r2’
At the surface of the sphere,

Y

Di= —= 4
Adga?™"

The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,
dS =r*sin6df d¢ = a*sinf do d¢
or
dS = a’sinf db do a,
The integrand is

[0
Dy-dS =
d 4ma?

a*sinf db dga, -a, = 42 sin® dd d¢
4

leading to the closed surface integral
¢=21 pO=n
f 2 sin6 do d¢
$=0 0=¢ 4
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where the limits on the integrals have been chosen so that the integration is carried
over the entire surface of the sphere once.? Integrating gives

2 Q x ZnQ
/0 4H( cos6),d¢ = i 2nd¢ =0
and we obtain a result showing that Q coulombs of electric flux are crossing the
surface, as we should since the enclosed charge is Q coulombs.

The following section contains examples of the application of Gauss’s law to
problems of a simple symmetrical geometry with the object of finding the electric
field intensity.

3.3 APPLICATION OF GAUSSE'S LAW: B0ME
SYWIMETRICAL CHARGE DISTRIBUTIONS

Let us now consider how we may use Gauss’s law,

to determine Dy if the charge distribution is known. This is an example of an integral
equation in which the unknown quantity to be determined appears inside the integral.

The solution is easy if we are able to choose a closed surface which satisfies two
conditions:

1. Dy is everywhere either normal or tangential to the closed surface, so that
Dy - dS becomes either DgdS or zero, respectively.

2. On that portion of the closed surface for which Dy - dS is not zero, Dg =
constant.

2 Note that if 8 and ¢ both cover the range from 0 to 2z, the spherical surface is covered twice.
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This allows us to replace the dot product with the product of the scalars Dg and
d S and then to bring Dy outside the integral sign. The remaining integral is then |, odS
over that portion of the closed surface which Dy crosses normally, and this is simply
the area of this section of that surface.

Only a knowledge of the symmetry of the problem enables us to choose such a
closed surface, and this knowledge is obtained easily by remembering that the electric
field intensity due to a positive point charge is directed radially outward from the point
charge.

Let us again consider a point charge Q at the origin of a spherical coordinate
system and decide on a suitable closed surface which will meet the two requirements
previously listed. The surface in question is obviously a spherical surface, centered
at the origin and of any radius r. Dy is everywhere normal to the surface; Dy has the
same value at all points on the surface.

Then we have, in order,

Q:fns.dszf DsdS
S sph

¢=2n pb=n
=DS7§ dS:DS/ / r2sinf do dg¢
sph ¢=0 6=0

= 47‘[1’2DS

and hence

Qo
D =
57 42

Since r may have any value and since Dy is directed radially outward,

which agrees with the results of Chapter 2. The example is a trivial one, and the
objection could be raised that we had to know that the field was symmetrical and
directed radially outward before we could obtain an answer. This is true, and that
leaves the inverse-square-law relationship as the only check obtained from Gauss’s
law. The example does, however, serve to illustrate a method which we may apply
to other problems, including several to which Coulomb’s law is almost incapable of
supplying an answer.

Are there any other surfaces which would have satisfied our two conditions? The
student should determine that such simple surfaces as a cube or a cylinder do not meet
the requirements.

As a second example, let us reconsider the uniform line charge distribution py, ly-
ing along the z axis and extending from —oo to +o00. We must first obtain a knowledge



