CHAPTER 5 OPERATING SYSTEMS
(RIERG)

5.1 INTRODUCTION(f4i4)

Without its software, a computer is basically a useless lump of metal. With its
software, a computer can store, process, and retrieve information; display multimedia
documents; search the Internet; and engage in many other valuable activities to earn its
keep. Computer software can be divided roughly into two kinds: system programs, which
manage the operation of the computer itself, and application programs, which perform the
actual work the user wants. The most fundamental system program is the operating
system, which controls all the computer’s resources and provides the base upon which the
application programs can be written"!.

A modern computer system consists of one or more processors, some main memory
(often known as RAM—Random Access Memory), disks, printers, network interfaces,
and other input/output devices. All in all, a complex system. Writing programs that keep
track of all these components and use them correctly, let alone optimally, is an extremely
difficult job. If every programmer had to be concerned with how disk drives work, and
with all the dozens of things that could go wrong when reading a disk block, it is unlikely
that many programs could be written at all.

An operating system is software that manages the overall operation of the computer
system. Its primary purpose is to support application programs. The parts of an operating
system can be grouped into four broad functional categories. One set of parts forms the
shell or user interface; another set of parts is responsible for coordinating multiple
computers in a network; a third set coordinates multiple tasks or basic units of work
within a single computer; and, finally, the kernel of the operating system is software that
ties the hardware to the software and performs such tasks as keeping track of everything in
memory and managing the flow of information to and from disks, the keyboard, and the
display screen.

Operating systems have developed over past thirty years for two main purposes.
First, they provide a convenient environment for the development and execution of
programs. Second, operating systems attempt to schedule computational activities to
ensure good performance of the computing system.

The operating system must ensure correct operation of the computer system. To
prevent user programs from interfering with the proper operation of the system, the
hardware was modified to create two modes: user mode and monitor mode. Various

+ 166 -

instructions (such as I/O instructions and halt instructions) are privileged and can only be
executed in monitor mode. The memory in which the monitor resides must also be
protected from modification by the user. A timer prevents infinite loops. Once these
changes (dual mode, privileged instructions, memory protection, timer interrupt) have

been made to the basic computer architecture, it is possible to write a correct operating

system.
NOTES
[1] which 5|5 BR il ¥4 & 1 M 5], 81 operating system,
KEYWORDS
system program R timer D ET
processor Ab PR 2% keyboard Ly
display screen s instruction 84

B8 BRERS

501 1 I

BEAHAF T RUIEA LR . 2258 T AR AL Al DL A A B R (5 R
7R 2 R SO 7 AR 0L R DA S A S A R SRS B A S HLAR PR TT LA S
Ze TR SRR RGP M PAT P AR R R e AN A R SRy B2
PR R G0 e il 3 P LI BT IR R 4R 62 5 AR A S

— MR R ARG — DA T A7 (25 PR RAM. BB HL A7 fif
i) HEAL ATEPAL 4512 VR Al A/ s A . BT IR T — N R 2RI PL AR
Gi. 'SR R BRLER B A X SE2H 1 OF HAE R sl T e AT, 2 — I B AR TR, iR
AT P B AT e A 25 OG0 Tl 2 CE R A B L O L 214 152 TG 25 Bl o O A AT B A R R A B R
WHR T X A3 2R RATIE RS .

— AR RGO RE A PR LR G b B T A IR BB . B R B AR SRR
PR — ARG AR 730 4 DIRERE B . — AR I BT 7 42 10 5 55 — 38 23 97 53 Bh 3
W2 2 B TR S = R TR — A TR LA AR R 2 AE 55 BOR AR R TR f
— TR SRR R G T G0 RE R A O ELSRAT 98 A0 R D9 A 1) s — AR A Ak
Pl 2 R R A s i 22 T B AR AL

BAERGAE I K0 30 4R B EZAE AT AR . 5 — NN R I T e A PAT $ 43
TIOTERIRIGE . 5 R R G R R TR RE 1 OR W AR T AL R S R4S PERE .

B RGBT LR R ER A . D9 7B (P T YR S8 B9 IE B 4R AT L RE
PAE U PIRP TARRE . P UM PR, 25 B & RE AO 45 4 (1 I 1/0 45 4 R 15 45
UL REAE M AR T AT o WL I A 2 8 A N A e PR . T I i By 1k T PR)

+ 167 -

(e P S S R R AQ S i SN S T E RN RE 7 A WD I L TDN W B N TR NI R
Ky n] LA S S IR B R L

5.2 HISTORY OF OPERATING SYSTEMS
(BRIEZR G

Operating systems have been evolving through the years. In the following sections we
will briefly look at this development. Since operating systems historically have been
closely tied to the architecture of the computers on which they run, we will look at
successive generations of computers to see what their operating systems were like'!. This
mapping of operating systems generations to computer generations is crude, but it does
provide some structure where there would otherwise be none.

The first true digital computer was designed by the English mathematician Charles
Babbage (1792—1871). Although Babbage spent most of his life and fortune trying to
build his “analytical engine”, he never got it working properly because it was purely
mechanical, and the technology of his day could not produce the required wheels, gears,
and cogs to the high precision that he needed. Needless to say, the analytical engine did
not have an operating system.

As an interesting historical aside, Babbage realized that he would need software for
his analytical engine, so he hired a young woman, named Ada Lovelace, who was the
daughter of the famed British poet, Lord Byron, as the world’s first programmer. The
programming language Ada is named after her.

The Zeroth Generation (1940s) Early computing systems had no operating system.
Users had complete access to the machine language. They hand-coded all instructions.

The First Generation (1950s) The operating systems of the 1950s were designed to
smooth the transition between jobs. Before the systems were developed, a great deal of
time was lost between the completion of one job and the initiation of the next. This was
the beginning of batch processing systems in which jobs were gathered in groups or
batches. Once a job was running., it had total control of the machine. As each job
terminated (either normally or abnormally) . control was returned to the operating system
that “cleaned up after the job” and read in and initiated the next job.

The Second Generation (Early 1960s) The second generation of operating systems
was characterized by the development of shared systems with multiprogramming, and the
beginnings of multiprocessing. In multiprogramming systems several user programs are in
main storage at once and the processor is switched rapidly between the jobs. In
multiprocessing systems, several processors are used on a single computer system to
increase the processing power of the machine.

Device independence began to appear. In first generation systems, a user wishing to
write data on tape had to reference a particular tape drive specifically. In second generation

+ 168 -

systems, the user program specified only that a file was to be written on a tape device with
a certain number of tracks and a certain density. The operating system located an available
tape device with the desired characteristics and instructed the operator to mount a tape in
that drive.

Timesharing systems were developed in which users could interface directly with the
computer through terminals. Timesharing systems operate in an interactive or
conversational mode with users. The user types a request to the computer, the computer
processed the request as soon as it can (often within a second or less), and a response (if
any) is typed on the user’s terminal. Conversational computing made possible great strides
in the program development process. A timesharing user could locate and correct errors in
seconds or minutes, rather than suffering the delays, often hours of days, in batch
processing environments.

The Third Generation (Mid 1960s to Mid 1970s) The third generation of operating
systems effectively began with the introduction of the IBM System/360 family of
computers in 1964. Third generation computers were designed to be general-purpose
systems. The concept sold a lot of computers, but users running particular applications
that did not require this kind of power paid heavily in increased run-time overhead,
learning time, debugging time, maintenance, etc.

Third generation operating systems were multimode systems. Some of them
simultaneously supported batch processing, timesharing, real-time processing, and
multiprocessing. They were large and expensive. Nothing like them had ever been
constructed before, and many of the development efforts finished well over budget and
long after scheduled completion. A notable exception to this is the UNIX system
developed at Bell Laboratories.

These systems introduced to computer environments a greater complexity. The
systems interposed a software layer between the user and the hardware. This software
layer was often so thick that a user lost sight of the hardware, and saw only the view
created by the software. To get one of these systems to perform the simplest useful task,
users had to become familiar with complex job control languages to specify the jobs and
their resource requirements.

The Fourth Generation (Mid 1970s to Present) The fourth generation systems are the
current state of the art. Many designers and users are still smarting from their experiences
with third generation operation systems and are careful before getting involved with
complex operating systems. With the widespread use of computer networking and online
processing, users gain access to networks of geographically dispersed computers through
various types of terminals. The microprocessor has made possible the development of the
personal computer, which is one of the most important developments of social consequence
in the last several decades. Personal computers are often equipped with data
communications interfaces, and also serve as terminals. The user of a fourth generation

+ 169 -

systems no longer may communicate with geographically dispersed systems. Security
problems have increased greatly with information now passing over various types of
communications lines. Encryption is receiving much attention—it has become necessary to
encode highly proprietary data.

The percentage of the population with access to computers in the 1980s is far greater
than ever before and growing rapidly. It is common to hear the term user friendly denoting
systems that give users of average intelligence easy access to computer power. The highly
symbolic, mnemonic, acronym-oriented user environments of the 1960s and 1970s are
being replaced in the 1980s by menu-driven systems that guide the user through various
options expressed in simple English.

An interesting development that began taking place during the mid-1980s is the
growth of networks of personal computers running network operating systems and
distributed operating systems. In a network operating system, the users are aware of the
existence of multiple computers and can log in to remote machines and copy files from one
machine to another. Each machine runs its own local operating system and has its own
local user (or users).

Network operating systems are nor fundamentally different from single-processor
operating systems. They obviously need a network interface controller and some low-level
software to drive it, as well as programs to achieve remote login and remote file access,
but these additions do not change the essential structure of the operating systems.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run or where
their files are located; that should all be handled automatically and efficiently by the
operating system.

True distributed operating systems require more than just adding a little code to a
uniprocessor operating system, because distributed and centralized systems differ in
critical ways. Distributed systems, for example, often allow applications to run on several
processors at the same time, thus requiring more complex processor scheduling algorithms

in order to optimize the amount of parallelism.

NOTES
[1] since 7EX HEJFH
[2] that 5] R HEMNA],

KEYWORDS

programmer BIF R generation 7
multiprogramming ZIER &It time-sharing i [a] =
real-time processing S A PR encryption e, AR
remote machine % A2 T A AL mnemonic R TR VA :0]

« 170 -

acronym-oriented HEREFN interface o
distributed operating system A ERE RS

5.2 #fEZRBEM DL

BAERGX SR TR KM AR, THfREm— T ENERE. iTE LERERS
TEIB AT B S5 BL RG4S A A — &, FRATH @ I TR TR ARk B R L
BAERG M LR, U FBRERSES IR LR R AR (e 24 T AR HELE

I LI B IE A B0 S L2 95 1 1) 202 &K Charles Babbage (1792—1871 4F) #% it
. R4 Babbage 162% T R i RS J1 1 1 25 223 57 Al 9 F AT L7 AELIX BIL 25 DA A I
TAE PR B R SN I ELA IR A AR 0 3K A 12 R 38 R BB ORIE AR 7™ 14 A2 5 L 0 5 R 1
I TEEMEE . ANEE AU XL — N RERS.

VB —AF7 # ¥ 77 52 Babbage tA 3R 2 il 75 22/ A7 HL 0 00 B fh B 9 T 44 1 Ada
Lovelace 452 A, b 23 44 19 95 B 5 A Lord Byron (% JL, t A L3y (7 B F t. B P %
PiE T Ada B LU 44 .

IR ITEN (20 42 40 £/ BEREMOEAERERSENTTEI. Pl E
5 HAT AWV AR b AT 4b 3 A 48 A AR

S RITEHL(20 L2 50 F£4/) 20 e 50 ERMWEBIER G RN T TAEZ AR
M. 7RG IR Z 0 KA A B RR 2% 7E — A AR 09 45 d A o) — A AR B9 I 16 2 1)
fOfE 3 b X TR R al it T BN AL B R S I 8. — B —MT 5 1E
FEIZAT s E A STHLA A 2Bl . 24— TAEZ IR QE 8 8N 5 45 i #B R [2] 2 17E &
B AL S SR Z IR W 29 R T — TS5 04T SRR) b Ak) TAE

FEZRITEN 20 L 60 ERMED HAERGME AL 8 2 8B F i 2k
HAGHIF R ML . 7EL2ERTROFRGE D2 5 R 7 2008 A EA47 /b 38 1E AT
S Z AR AS e, AE 2 AN HR R S8 L F 22 A0 BEER AR B TS HL AR G 0 DL LA G Ab
HHE

WA M HTF R BB, 5 — RS 1P & AR EUE S ARG b 25l R e
R IR Bl & . ZE S ARTHSEAL T P R R AU AE — A SO L R B AN — R
TE RN A2 0 0 T8 9% FE Y WE A LA IS A8 o BRAE R R B RE A 2R T 0 A 0T HAR R AR
T OK B # L A

A 1) 52 R G0 S 76 P R Bl 0 20 S S L D RE B R R . iR R R S
BRSSP a8 B S E R . P m LR R T HLTE RE 65 Ab
PR 37 Z0 A0 B, O FLAE P 2ty 3R T 1N o 43 il X E B0 R Y & R Ao AR 1 KR B R v A
RATBE . — R P A A A BRIR B R BE AR JL AP BUL 4 22 P8 S A R4 I R L IR 2
BLiR LA /N LK

FEZRITEH (20 22 60 ERFHEIF 20 2 70 ERPH) 5 = VERIER G LM
& 1964 4 IBM [y System/360 F 4 B IFFHLH B0 & . 5 =R HHLE R T8 H &
Gt . EXNEE TN E B T2 SR, TR R N B R PR T Bk 33X A B
BRIz AT B3k 2 2T Bt) YRR T 2 B Bt T I AT S v S A SR

.« 171 -

FERBRMERGERZHEARG . EATH I —LE R I SRR A B (] 652 S 4k 21 A0
ZALE . BRI B . LARTIE OR B AR E IR RE A4 & . O BV 20T A I H i
TR T B TR B I R — P . R DRSS A T R UNIX R4 —MHE
a5k,

REERGATTRAPAEEE L T — D E RIS, RGP FAECEZ (a2 T —
MR . XA EREFERMS . U ETH P EABEE REER B2 XL
R Z— R IAT— AT B A T AR 55 T e 00 52 2% AR B Pl o 5 AR S R R 98 8
X e TARAE 55 A B IR AT K

EMARTTEN 20 g 70 EXPHBIME) BT 7445 T2k K
o VFZ BT E MR DRGS0 = AR R G A5 7R 52 AR M IRAE R GLZ R/ L
BLEL ., B TEIE AL 45 RTE L AR BE Y)2 T S T A A4 b A% R B 2 S 5) 23 TROTE 45 M
AT AL 45 o folah A S A THSRBL B e e iy T RE i 2 AR i 25 B9 L 47 Ok f B R
Mok gz — AL F BC a5 Kol 5 12 11 [] it 0 28 3 il 55 28 AR S pLER
YER GBI A] GE 5 3 B b 0 BUA R GE0E 15 15 B 19 22 2k B 180 A] 288 2 9 3 {5
2l H i A) R i A5 3 B 2 A A BRI R B R Y RA N B B 0 7
Tk .

2] 20 tha2 80 AFAUMEHITHE ALY LE 1 8 22 i AT O EL7E DR 3 4 o 2% 5 1 R AR AT
IR AR P 12 BT, 60 ARAUM 70 A AT (T B9 75 AL 9 L FiCAZ i R BCE 78 1Y
F P PRI AE B 20 HiE28 80 ARAUSE B UK Sl R 48 B AL . B & — A o S T R B8 15 3R IR 1Y
ARG,

80 ARA I — A B LB R &S NTHRE LB AT M 28 484 R G Ao A SR AE RS
P28 B R C TE R 2R A R G0 P 2 BB 2 TR LR AE A L T L RE % % SR B A
SEHL LN — S HLAS [53 A B ALAR 45 LSO . BB ALIE AT A © AR MR R 50F A A
cC .

P25 48 A R GE W IF A AR A EOR] T B AL PR R AE R GE . HE AT AR B — > R 2%
1 il 8 A — BB R B0 B R 9k By o gl 14 e e S B R R S M s A ST) — R L {H R T
TR A A FE IO FR A 2R 48 A LA

A B Al AR AR R GE LIAL GE Y 5] R GER B 4y 1 B B S PR b2 phy 22 4 PR 2%
Rt e . P AN 36 0 (] B0 R 5 s A SR Bl s 1R) 2 L — DD AR 2w A 8l
HA R AR RGP b B

I3 A RARAE R GEAAUALTE AN —/NBACRD 2] — A~ B4 BEGR B4R R 42, K Oy 2 A XA
Hol R GRS o AR B o 0 o A R G2 W S VE R I AR TR 2 A B s AT A X
FERLT B 2 19 52 A b PR R A AL IR AT TAR B8R .

5.3 TYPES OF OPERATING SYSTEMS (31 & Sy)

The types of operating systems include single program, multiprogramming,
multiprocessing, and virtual machine operating systems. These operating systems can be
classified by two criteria; (1) whether they allow more than one user to use the computer

172

at the same time and (2) whether they allow more than one program to run at the same
time.

Single program operating systems allow only a single user to run a single program at
one time. This was the first type of operating systems developed. For example, if you are
working on a personal computer with a single program operating system you can load only
one application, such as a spreadsheet, into main memory. If you want to work on another
application, such as word processing, you must exit the spreadsheet application and load
the word processing program into memory.

Multiprogramming operating systems, also called multitasking operating systems,
allow more than one program to be run at the same time on one computer. Even though
the CPU is only capable of working on one program instruction at a time, its capability to
switch back and forth between programs makes it appear that all programs are running at
the same time. For example, with a multiprogramming operating system the computer
could be performing a complex spreadsheet calculation and at the same time be
downloading a file from another computer while the user is writing a memo with the word
processing program,

Multiprogramming operating systems on personal computers can usually support a
single user running multiple programs. Multiprogramming operating systems on some
personal computers and most minicomputers and mainframes can support more than one
user running more than one program. This version of a multiprogramming operating
system is sometimes called a multiuser-multiprogramming operating system. Most of these
operating systems also allow more than one user to be running the same program. For
example, a wholesale distributor may have dozens of terminal operators entering sales
orders using the same order entry program on the same computer. [

Computers that have more than one CPU are called multiprocessors. A
multiprocessing operating system coordinates the operations of computers with more than
one CPU. Because each CPU in a multiprocessor computer can be executing one program
instruction, more than one instruction can be executed simultaneously. Besides providing
an increase in performance, most multiprocessors offer another advantage. If one CPU
fails, work can be shifted to the remaining CPUs. In addition to an extra CPU, some
systems, called fault-tolerant computers, are built with redundant components such as
memory, input and output controllers, and disk drivers. If any one of the components
fails, the system can continue to operate with the duplicate component. Fault-tolerant
systems are used for airline reservation systems, communication networks, bank teller
machines, and other applications where it is important to keep the computer operating at
all times.

A virtual machine (VM) operating system allows a single computer to run two or
more different operating systems. The VM operating system allocates system resources
such as memory and processing time to each operating system. To users, it appears that

« 173 -

they are working on separate systems, hence the term virtual machine® .

The advantage
of this approach is that an organization can run different operating systems (at the same
time) that are best suited to different tasks. For example, some operating systems are best
for interactive processing and others are best for batch processing. With a VM operating

system, both types of operating systems can be run concurrently.

NOTES
[1] wholesale distributor & X 2“Ht X"
[2] appears TEULAL B & SR “FRE K,

KEYWORDS

virtual machine operating system VLS IER G criteria b
batch processing b Ab download T #;
wholesale distributor A fault-tolerant ZF4%
virtual machine (VM) J& AL

5.3 IERZMIHY

BAE R G RBIAIE SR P AR R G 2SR F IRAE R G L 2 40 BRERRAE 2R G A0 KR AL 4R
ERGE . X SEHRAE 2R G0 AT LU P A R 4] 4«

(D BT v 24 R 5L,

2) EflERRFZNETFRNET.

PR AR RGAE R — I 2 N R A — A s fr — R X R W OT A B R AR &
GEAA . A QSRR IEAE G SR AT R GRS AT AL IR A R HRE K — S AR P
CUnHL 7 RMO BN B o WSRARE 55 — A B A8 Py Cln 5 Ak B0 R) & ol b AR
HE R L AR AR A P A B AR YR AT A AR

ZRIFBRERE . WA ZLFRERR, ERWE - GIHTRIL LRMNETZ0R)F.
CPU [r] i 2 AEXF— A5 F2 P 8 & BEAT b B (H 2 B BRI IS 65 DI 45 2 BB i & 76 5 Ok {817 2] i
AT T ZARER . Bl 66 2 AT 55 1R AE R G0 T A 6 AR B S — (8 o 1Y R
I 3SR AT RLAEAT B AR 0 i T R AT LR S — B ISR SO0 4

NN LM Z)P 8RR L@ W RS r st 2408y, —240 R
Pl R ZHUN AU R B AN EE N 2 R FRIERERTFZ I P s 2R,
ZRFREREN XA IRAA WIS ZHP-2 R R RS, XERIERE %R
ZRAB ARV Z AR R RS AT R — AR . Bl kB R R 24 K m AR AR R
— B AL LA R — AT SR AR Y AR T

A 24> CPU WM RHLFR A 2 AL B4R B HL . 2 A0 BB R A 24> CPU 133
PLAHEEAE . T2 M8 E L i B — A4 CPU AR RE AT — 5 B P 48 4, IRt X F it 45
PLEE R $0AT 2 2546 2 . BR T Mo AL BRAE) LLAh . R 2 52 4k BG5S HLiE BAT 55 4 — 1>
e R —A CPU i BUELFE , & 8 TAE] LU 32 45 Hofh CPU 047 . bR T &4 CPU, —
SEFR N AR HLAY R GE A — BB TUAR TR DA A5 A 4) 2 LB R B K B 2

o 174 -

S o QURAT AT — A AR 1 BB, 2R Ge30 v] LU 3 53 A e R AR 22 T AR . AR RS T
RMTIT S R G0 A5 P 26 ARATBGRALLL B AL 7 BB HLAG AR5 1B TAE S & .

ML (VMO EAE R R AW — GRS AR M RIER S . BIUPLERERSE N
B ERAE RGP LR GV UR W N AEFI AL BB)55 . b P T B AT R R AT R AEAS
A R GE E TAE . A mAS 24 AL AR 7. XA IR A0 R0 - TS HLARE R Ik iz 47 . JF AE fc 4f
M3 AN [T 55 B AN TR AE R Gt . Bl AT Se A R GEIE & T S8 HARAT L T 55 — LB U B3 5
FAHEALE . i PR AR R G WU RE [R] I 47 X P AR R 8

5.4 FUNCTIONS OF OPERATING SYSTEMS
(PR &SR) HE)

All application programs share some tasks in common. They include accepting
characters typed at the keyboard, displaying information on the screen, managing
information on a disk, and managing information in memory. The operating system takes
care of the details of these tasks. A most important example of how operating systems
support application programs is the task of managing files. A file is a named collection of
information. Whether your application is general or special purpose, your program needs
to store information in files.

The operating system takes care of ;

e Formatting the disk, which involves electronically preparing the disk to be able to

store files.

e Managing the location of information on the disk.

e Checking to make sure that errors do not occur when reading to and writing from

the disk.

e Performing the input and output necessary to retrieve and store information on the

disk.

Errors may occur in the CPU and memory hardware (such as a memory error or a
power failure), in I/O devices (such as a parity error on tape, a card jam in the card
reader, or the printer out of paper), or in the user program (such as an arithmetic
overflow, an attempt to access illegal memory location, or using too much CPU time).
For each type of error, the operating system should take the appropriate action to assure
correct and consistent computing.

Operating systems also manage the other components of a computer system. They
support programs, called device drivers, which control the various hardware devices, such
as the keyboard, display screen, and printer. The device driver translates instructions
from the application program wants to print something, it simply sends the information
and the appropriate instructions to the operating system, which, in turn, calls upon the

printer device driver to manipulate the printer to perform the desired task.

KEYWORDS
format # =1k retrieve VTS
o 175

