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88 CHAPTER 3 @  Signal Transmission and Filtering

Signoi fransmission is the process whereby an electrical waveform gets from one location to another, ideally arriv-
ing without disfortion. In contrast, signal filtering is an operation that purposefully distorts a waveform by altering
its spectral content. Nonetheless, most transmission systems and filters have in common the properties of linearity and
fime invariance. These properties allow us to model both transmission and filtering in the time domain in terms of the
impulse response, or in the frequency domain in ferms of the frequency response.

This chapter begins with a general consideration of system response in both domains. Then we'll apply our
results to the analysis of signal fransmission and distortion for a variety of media and systems such as fiber optics and
satellites. VWe'll examine the use of various types of filters and filtering in communication systems. Some related
fopics—notably fransmission loss, Hilbert iransforms, and correlation—are also included as starting points for subse-
quent development.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. State and apply the input—output relations for an LTI system in terms of its impulse response A(1), step response
g(1), or transfer function H(f) (Sect. 3.1).
2. Use frequency-domain analysis to obtain an exact or approximate expression for the output of a system (Sect. 3.1).
3. Find H(f) from the block diagram of a simple system (Sect. 3.1).
4,  Distinguish between amplitude distortion, delay distortion, linear distortion, and nonlinear distortion (Sect. 3.2).
5.  Identify the frequency ranges that yield distortionless transmission for a given channel, and find the equalization
needed for distortionless transmission over a specified range (Sect. 3.2).
6.  Use dB calculations to find the signal power in a cable transmission system with amplifiers (Sect. 3.3).
7. Discuss the characteristics of and requirements for transmission over fiber optic and satellite systems (Sect. 3.3).
8.  Identify the characteristics and sketch H(f) and h(t) for an ideal LPF, BPF. or HPF (Sect. 3.4).
9.  Find the 3 dB bandwidth of a real LPF, given H(f) (Sect. 3.4).
10.  State and apply the bandwidth requirements for pulse transmission (Sect. 3.4).
11.  State and apply the properties of the Hilbert transform (Sect. 3.5).
12.  Define the crosscorrelation and auto-correlation functions for power or energy signals, and state their properties
(Sect. 3.6).
13.  State the Wiener-Kinchine theorem and the properties of spectral density functions (Sect. 3.6).
14.  Given H(f) and the input correlation or spectral density function, find the output correlation or spectral density
(Sect. 3.6).

3.1 RESPONSE OF LTI SYSTEMS

Figure 3.1-1 depicts a system inside a “black box™ with an external input signal
x(f) and an output signal y(#). In the context of electrical communication, the sys-
tem usually would be a two-port network driven by an applied voltage or current at
the input port, producing another voltage or current at the output port. Energy stor-
age elements and other internal effects may cause the output waveform to look quite
different from the input. But regardless of what’s in the box, the system is character-
ized by an excitation-and-response relationship between input and output.
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Black box
Input Output

x(t) ——{ System —— (1)

Figure 3.1-1 System showing external input and output.

Here we're concerned with the special but important class of linear time-
invariant systems—or LTI systems for short. We’ll develop the input—output rela-
tionship in the time domain using the superposition integral and the system’s impulse
response. Then we'll turn to frequency-domain analysis expressed in terms of the sys-
tem’s transfer function.

Impulse Response and the Superposition Integral

Let Fig. 3.1-1 be an LTI system having no internal stored energy at the time the input
x(1) is applied. The output y(¢) is then the forced response due entirely to x(1), as rep-
resented by

(1) = Fx(t)] (m

where F|x(r)] stands for the functional relationship between input and output. The
linear property means that Eq. (1) obeys the principle of superposition. Thus, if

x(r) = z a, xi(1) (2q)
%

where a;, are constants, then

y(1) = D ay Flxfr)] (2b)

k

The time-invariance property means that the system’s characteristics remain fixed
with time. Thus, a time-shifted input x(¢ — #,) produces

Flx(t — )] = y(t — 1) (3)

so the output is time-shifted but otherwise unchanged.

Most LTI systems consist entirely of lumped-parameter elements (such as resis-
tors capacitors, and inductors), as distinguished from elements with spatially distrib-
uted phenomena (such as transmission lines). Direct analysis of a lumped-parameter
system starting with the element equations leads to the input—output relation as a
linear differential equation in the form

d'y(r) dy(r) o d™x(1) dx(r)
e T et ay) =b, th— =) @
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where the @’s and b’s are constant coefficients involving the element values. The
number of independent energy-storage elements determines the value of n, known as
the order of the system. Unfortunately, Eq. (4) doesn’t provide us with a direct ex-
pression for y(r).

To obtain an explicit input—output equation, we must first define the system’s

impulse response function
&

h(r) = F[&(1)] (5)

which equals the forced response when x(z) = (1
nal can be written as the convolution x(7) = x(r) =

Now any continuous input sig-

)
8(1), so
y(1) = F{ r X(A)8(t — A) da

= r X(A\)F[8(t — A)] dA

in which the interchange of operations is allowed by virtue of the system’s linearity.
Now, from the time-invariance property, F[8(r — A)] = h(t — A) and hence

) = r X(AVh(t — A) dA (6a)
- J'm h(A)x(t — A) dA (6b)

-3

where we have drawn upon the commutativity of convolution.

Either form of Eq. (6) is called the superposition integral. It expresses the
forced response as a convolution of the input x(f) with the impulse response h(t).
System analysis in the time domain therefore requires knowledge of the impulse
response along with the ability to carry out the convolution.

Various techniques exist for determining /(r) from a differential equation or some other
system model. However, you may be more comfortable taking x(r) = u(r) and calculating
the system’s step response

g(t) = Flu(r)] 7l
from which
_ 4980
W) == (7b)

This derivative relation between the impulse and step response follows from the gen-
eral convolution property

d B dw(r) ]
2 Lo o )] = o) [ 25
Thus, since g(r) = h(r) * u(r) by definition, dg(r)/dt = h(r) = [du(t)/dt] = h(1) = & (1) = h(1).
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Time Response of a First-Order System

The simple RC circuit in Fig. 3.1-2 has been arranged as a two-port network with
input voltage x(r) and output voltage y(r). The reference voltage polarities are indi-
cated by the +/— notation where the assumed higher potential is indicated by the +
sign. This circuit is a first-order system governed by the differential equation
dy(r)
RC—— + y(t) = x(t
—= () = x()
Similar expressions describe certain transmission lines and cables, so we're particu-
larly interested in the system response.
From either the differential equation or the circuit diagram, the step response is
readily found to be

8(t) = (1 — e"*Yu(r) (8a)

Interpreted physically, the capacitor starts at zero initial voltage and charges toward
y(oo) = 1 with time constant RC when x(t) = u(t). Figure 3.1-3a plots this behav-
ior, while Fig. 3.1-3b shows the corresponding impulse response

o) = s *ult) i8b)

obtained by differentiating g(r). Note that g(r) and h(r) are causal waveforms since
the input equals zero for 1 < 0.

The response to an arbitrary input x(7) can now be found by putting Eq. (8b) in
the superposition integral. For instance, take the case of a rectangular pulse applied
atr = 0,s0x(r) = Afor0 < t < 7. The convolution y(1) = h(t) = x(t) divides into
three parts, like the example back in Fig. 2.4—1 with the result that

0 t <0
y(t) =1 A(l — e7RC) 0<t<r
A(1 — e~ 7/RC)~(t=7VRC - o)

as sketched in Fig. 3.1-4 for three values of 7/RC.

Figure 3.1-2 RC lowpass filter.

EXAMPLE 3.1-1
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&)

(b)

Figure 3.1-3 Output of an RC lowpass filter: (a) step response; (b) impulse response.
A f‘ A #
i t b=
0 T T+RC 0 T 7+ RC
(a) (b)
t
Figure 3.1-4

Rectangular pulse response of an RC lowpass filter: (a) = = RC; (b) 7 = RC;
{¢) 7 < RC.

Let the resistor and the capacitor be interchanged in Fig. 3.1-2. Find the step and
impulse response.

Transfer Functions and Frequency Response

Time-domain analysis becomes increasingly difficult for higher-order systems, and
the mathematical complications tend to obscure significant points. We’ll gain a
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different and often clearer view of system response by going to the frequency
domain. As a first step in this direction, we define the system transfer function to be
the Fourier transform of the impulse response, namely,

H(f) £ F[h(1)] = J h(t)e 2" dr (10)
This definition requires that H(f) exists, at least in a limiting sense. In the case of an
unstable system, h(f) grows with time and H(f) does not exist.
When h(r) is a real time function, H(f) has the hermitian symmetry

H(=f) = H¥(f) (11q)
so that
|H(=f)| = |H(f)|  argH(—f) = —arg H(f) (11b)

We'll assume this property holds unless otherwise stated.
The frequency-domain interpretation of the transfer function comes from
¥(t) = h = x(r) with a phasor input, say

x(t) = A e el —00 <t < 00 (124)

The stipulation that x(z) persists for all time means that we're dealing with steady-
state conditions, like the familiar case of ac steady-state circuit analysis. The steady-
state forced response is

¥(t) J h(A)A, e/ e2h(=N) g)

—0g

|iJ' k(/\)e_fzﬂfw‘d,\] A, el pi2mhi

Lo
= H(J%)A,ej"b* el ¥t

where, from Eq. (10), H(f;) equals H(f) with f = f;. Converting H( f;) to polar form
then yields

W) = Ae e —co <1< o0 (12b)
in which we have identified the output phasor’s amplitude and angle
A, =[H(f)A, ¢, = ag H(f) + &, (13)
Using conjugate phasors and superposition, you can similarly show that if
x(t) = A, cos 2mfyr + ¢,)
then
(1) = A, cos 2afyt + )
with A, and ¢, as in Eq. (13).

93



94

CHAPTER 3 ®  Signal Transmission and Filtering

Since A,/A, = |H(f)| at any frequency f,, we conclude that |H(f)| represents
the system’s amplitude ratio as a function of frequency (sometimes called the
amplitude response or gain). By the same token, arg H(f) represents the phase
shift, since ¢, — ¢, = arg H(f;). Plots of |H(f)| and arg H(f) versus frequency give
us the frequency-domain representation of the system or, equivalently, the system’s
frequency response. Henceforth, we’ll refer to H(f) as either the transfer function or
frequency-response function.

Now let x(r) be any signal with spectrum X(f). Calling upon the convolution the-
orem, we take the transform of y(t) = h(r) = x(t) to obtain

Y(f) = H(f)X(f) (14)

This elegantly simple result constitutes the basis of frequency-domain system analy-
sis. It says that

The output spectrum Y{(f] equals the input spectrum X(f] muliiplied by the trans-
fer function Hif).

The corresponding amplitude and phase spectra are

Y(H)| = [H() ()]
arg Y(f) = arg H(f) + arg X(f)
which compare with the single-frequency expressions in Eq. (13). If x() is an energy

signal, then y(r) will be an energy signal whose spectral density and total energy are
given by

Y(f)I? = [H()PX(F)] 2 (15q)
E, = J H(f)PIXCF )P af (15b)

as follows from Rayleigh’s energy theorem.

Equation (14) sheds new light on the meaning of the system transfer function
and the transform pair h(r) <> H(f). For if we let x(1) be a unit impulse, then
X(f) = 1 and Y(f) = H(f) — in agreement with the definition y(t) = h(t) when
x(t) = 6(r). From the frequency-domain viewpoint, the “flat”™ input spectrum
X(f) = 1 contains all frequencies in equal proportion and, consequently, the output
spectrum takes on the shape of the transfer function H(f).

Figure 3.1-5 summarizes our input—output relations in both domains. Clearly,
when H(f) and X(f) are given, the output spectrum Y(f) is much easier to find than the
output signal y(7). In principle, we could compute y(f) from the inverse transform

W) = FIH(F)X(f)] = J

o0

H(P)X(F)e™™ df

But this integration does not necessarily offer any advantages over time-domain con-
volution. Indeed, the power of frequency-domain system analysis largely depends on
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Input System Output
x(1) hir) V(1) = h = x(1)
X(f) H(f) Y(f)=H(X(S)
Figure 3.1-5 Input-oulput relations for an LTI system.
staying in that domain and using our knowledge of spectral properties to draw infer-
ences about the output signal.

Finally, we point out two ways of determining H(f) that don’t involve A(r). If you
know the differential equation for a lumped-parameter system, you can immediately
write down its transfer function as the ratio of polynomials

b, (j2mf)" + - + b(j27f) + b
H(F) = (J‘ f)" [(,‘* f) + b -
a,(j2mf)" + -+ a(j27f) + ag
whose coefficients are the same as those in Eq. (4). Equation (16) follows from
Fourier transformation of Eq. (4).

Alternatively, if you can calculate a system’s steady-state phasor response,

Eqgs. (12) and (13) show that

y(t "

H(f) = Y0 when  x(1) = &' (17)

x(r)
This method corresponds to impedance analysis of electrical circuits, but is equally
valid for any LTI system. Furthermore, Eq. (17) may be viewed as a special case of
the s domain transfer function H(s) used in conjunction with Laplace transforms.
Since s = o + jw in general, H(f) is obtained from H(s) simply by letting s = j27/.
These methods assume, of course, that the system is stable.
Frequency Response of a First-Order System EXAMPLE 3.1-2

The RC circuit from Example 3.1-1 has been redrawn in Fig. 3.1-6a with the im-
pedances Z, = R and Z. = 1/jwC replacing the elements. Since v(f)/x(r) =
Zl(Z + Zy) when x(1) = €', Eq. (17) gives

(1/j2mfC) 1
H{f)= 7 = ,
(1/j2mfC) + R 1 + j2@fRC
1
TS (18q)
I+ j(f/B)
where we have introduced the system parameter
1
BE (18b)

2aRC
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Identical results would have been obtained from Eq. (16), or from H(f) = F[h(1)].
(In fact, the system’s impulse response has the same form as the causal exponential
pulse discussed in Example 2.2-2.) The amplitude ratio and phase shift are

1

H(f)| = W

as plotted in Fig. 3.1-6b for f = 0. The hermitian symmetry allows us to omit f << 0
without loss of information.

The amplitude ratio |H( i )[ has special significance relative to any frequency-
selective properties of the system. We call this particular system a lowpass filter because
it has almost no effect on the amplitude of low-frequency components, say |f| << B,
while it drastically reduces the amplitude of high-frequency components, say | f| = B.
The parameter B serves as a measure of the filter’s passband or bandwidth.

arg H( f) = —arctang (184

To illustrate how far you can go with frequency-domain analysis, let the input
x(t) be an arbitrary signal whose spectrum has negligible content for |f| > W. There
are three possible cases to consider, depending on the relative values of B and W:

1. If W << B, as shown in Fig. 3.1-7a, then |H(f)| = 1 and arg H(f) = 0 over the
signal’s frequency range [f| < W. Thus, ¥(f) = H(f)X(f) = X(f) and y(t) =
x(r) so we have undistorted transmission through the filter.

2. If W= B, as shown in Fig. 3.1-7b, then Y(f ) depends on both H(f) and X(f). We

can say that the output is distorted, since y(r) will differ significantly from (),
but time-domain calculations would be required to find the actual waveform.

IH(f)I

1.0
g

450 |oeen

-90°

(b)

Figure 3.1-6 RC lowpass filter. (a) circuit; (b) transfer function.





