Tokens, Expressions and |
Control Structures

VVYVVYVYVYVYVYVYVYY

I5.1

Tokens

Keywords
Identifiers

Data types
User-defined types
Derived types
Symbolic constants
Declaration of variables
Initialization
Reference variables
Type compatibility

Introduction

YVVYVYVYVYVYVYVYVYY

Key Concepts

Scope resolution

Dereferencing

Memory management
Formatting the output

Type casting

Constructing expressions
Special assignment expressions
Implicit conversion

Operator overloading

Control structures

As mentioned earlier, C++ is a superset of C and therefore most constructs of C are legal in
C++ with their meaning unchanged. However, there are some exceptions and additions. In

36 & Object-Oriented Programming with C++

this chapter, we shall discuss these exceptions and additions with respect to tokens and
control structures.

I 3.2 Tokens

As we know, the smallest individual units in a program are known as tokens. C++ has the
following tokens:

Keywords

Identifiers
Constants
#* Strings

Operators

A C++ program is written using these tokens, white spaces, and the syntax of the language.

Most of the C++ tokens are basically similar to the C tokens with the exception of some
additions and minor modifications.

|3.3 Keywords

The keywords implement specific C++ language features. They are explicitly reserved identifiers
and cannot be used as names for the program variables or other user-defined program
elements.

Table 3.1 gives the complete set of C++ keywords. Many of them are common to both C and
C++. The ANSI C keywords are shown in boldface. Additional keywords have been added to
the ANSI C keywords in order to enhance its features and make it an object-oriented language.
ANSI C++ standards committee has added some more keywords to make the language more
versatile. These are shown separately. Meaning and purpose of all C++ keywords are given
in Appendix D.

|3.4 Identifiers and Constants

Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the
programmer. They are the fundamental requirement of any language. Each language has its
own rules for naming these identifiers. The following rules are common to both C and C++:

Only alphabetic characters, digits and underscores are permitted.
The name cannot start with a digit.

Uppercase and lowercase letters are distinct.

A declared keyword cannot be used as a variable name.

LR B B

Tokens, Expressions and Control Structures ® 37

Table 3.1 C++ keywords

asm double new switch
auto else operator template
break enum private this

case extern protected throw
catch float public try

char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default inline sizeof void
delete int static volatile
do long struct while
Added by ANSI C++

bool export reinterpret_cast typename
const_cast false static_cast using
dynamic_cast mutable true wchar_t
explicit namespace typeid

Note: The ANSI C keywords are shown in bold face.

A major difference between C and C++ is the limit on the length of a name. While ANSI
C recognizes only the first 32 characters in a name, ANSI C++ places no limit on its length
and, therefore, all the characters in a name are significant.

Care should be exercised while naming a variable which is being shared by more than one
file containing C and C++ programs. Some operating systems impose a restriction on the
length of such a variable name.

Constants refer to fixed values that do not change during the execution of a program.

Like C, C++ supports several kinds of literal constants. They include integers, characters,
floating point numbers and strings. Literal constant do not have memory locations. Examples:

123 // decimal integer

12.34 // floating point integer
037 // octal integer

0X2 // hexadecimal integer
"CHt" // string constant

‘A // character constant
L'ab' // wide-character constant

The wchar_t type is a wide-character literal introduced by ANSI C++ and is intended for
character sets that cannot fit a character into a single byte. Wide-character literals begin
with the letter L.

38 & Object-Oriented Programming with C++

C++ also recognizes all the backslash character constants available in C.

note

C++ supports two types of string representation — the C-style character string and the
string class type introduced with Standard C++. Although the use of the string class type is
recommended, it is advisable to understand and use C-style strings in some situations. The
string class type strings support many features and are discussed in detail in
Chapter 15.

|3.5 Basic Data Types

Data types in C++ can be classified under various categories as shown in Fig. 3.1.

C++ Data Types

User-defined type Built-in type Derived type
structure array
union function
class pointer
enumeration reference
Integral type Void Floating type
int char float double

Fig. 3.1 < Hierarchy of C++ data types

Both C and C++ compilers support all the built-in (also known as basic or fundamental)
data types. With the exception of void, the basic data types may have several modifiers
preceding them to serve the needs of various situations. The modifiers signed, unsigned,
long, and short may be applied to character and integer basic data types. However, the
modifier long may also be applied to double. Data type representation is machine specific in
C++. Table 3.2 lists all combinations of the basic data types and modifiers along with their
size and range for a 16-bit word machine.

Tokens, Expressions and Control Structures ® 39

Table 3.2 Size and range of C++ basic data types

Type Bytes Range
char 1 —128 to 127
unsigned char 1 0 to 255
signed char 1 — 128 to 127
int 2 — 32768 to 32767
unsigned int 2 0 to 65535
signed int 2 — 31768 to 32767
short int 2 — 31768 to 32767
unsigned short int 2 0 to 65535
signed short int 2 -32768 to 32767
long int 4 —2147483648 to 2147483647
signed long int 4 —2147483648 to 2147483647
unsigned long int 4 0 to 4294967295
float 4 3.4E-38 to 3.4E+38
double 8 1.7E-308 to 1.7E+308
long double 10 3.4E-4932 to 1.1E+4932

ANSI C++ committee has added two more data types, bool and wchar_t. They are discussed
in Chapter 16.

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify the
return type of a function when it is not returning any value, and (2) to indicate an empty
argument list to a function. Example:

void functl(void);

Another interesting use of void is in the declaration of generic pointers. Example:
void *gp; // gp becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not be
dereferenced. For example,

int *ip; // int pointer
gp = ip; // assign int pointer to void pointer

are valid statements. But, the statement,
*ip = *gp;
is illegal. It would not make sense to dereference a pointer to a void value.
Assigning any pointer type to a void pointer without using a cast is allowed in both C++

and ANSI C. In ANSI C, we can also assign a void pointer to a non-void pointer without
using a cast to non-void pointer type. This is not allowed in C++. For example,

40 & Object-Oriented Programming with C++
void *ptrl;
char *ptr2;
ptr2 = ptrl;

are all valid statements in ANSI C but not in C++. A void pointer cannot be directly assigned
to other type pointers in C++. We need to use a cast operator as shown below:

ptr2 = (char *)ptrl;

|3.6 User-Defined Data Types

Structures and Classes

We have used user-defined data types such as struct and union in C. While these data types
are legal in C++, some more features have been added to make them suitable for object-
oriented programming. C++ also permits us to define another user-defined data type known
as class which can be used, just like any other basic data type, to declare variables. The
class variables are known as objects, which are the central focus of object-oriented
programming. More about these data types is discussed later in Chapter 5.

Enumerated Data Type

An enumerated data type is another user-defined type which provides a way for attaching
names to numbers, thereby increasing comprehensibility of the code. The enum keyword
(from C) automatically enumerates a list of words by assigning them values 0,1,2, and so on.
This facility provides an alternative means for creating symbolic constants. The syntax of an
enum statement is similar to that of the struct statement. Examples:

enum shape{circle, square, triangle};
enum colour{red, blue, green, yellow};
enum position{off, on};

The enumerated data types differ slightly in C++ when compared with those in ANSI C. In
C++, the tag names shape, colour, and position become new type names. By using these
tag names, we can declare new variables. Examples:

shape ellipse; // ellipse is of type shape
colour background; // background is of type colour

ANSI C defines the types of enums to be ints. In C++, each enumerated data type retains
its own separate type. This means that C++ does not permit an int value to be automatically
converted to an enum value. Examples:

colour background = blue; // allowed
colour background = 7; // Error in C++
colour background = (colour) 7; // 0K

Tokens, Expressions and Control Structures ® 41

However, an enumerated value can be used in place of an int value.
int ¢ = red; // valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first
enumerator, 1 for the second, and so on. We can over-ride the default by explicitly assigning
integer values to the enumerators. For example,

enum colour{red, blue=4, green=8};
enum colour{red=5, blue, green};

are valid definitions. In the first case, red is 0 by default. In the second case, blue is 6 and
green is 7. Note that the subsequent initialized enumerators are larger by one than their
predecessors.

C++ also permits the creation of anonymous enums (i.e., enums without tag names).
Example:

enum{off, on};

Here, off is 0 and on is 1. These constants may be referenced in the same manner as
regular constants. Examples:

int switch_1
int switch_2

off;
on;

In practice, enumeration is used to define symbolic constants for a switch statement.
Example:

enum shape

{
circle,
rectangle,
triangle

}s

int main()
{
cout << "Enter shape code:";
int code;
cin >> code;
while(code >= circle && code <= triangle)
{

switch(code)

42 o Object-Oriented Programming with C++

case circle:

break;

}
cout << "Enter shape code:";
cin >> code;

}
cout << "BYE \n";

return 0;

}

ANSI C permits an enum to be defined within a structure or a class, but the enum is
globally visible. In C++, an enum defined within a class (or structure) is local to that class (or
structure) only.

|3.7 Derived Data Types

Arrays

The application of arrays in C++ is similar to that in C. The only exception is the way character
arrays are initialized. When initializing a character array in ANSI C, the compiler will allow
us to declare the array size as the exact length of the string constant. For instance,

char string[3] = "xyz";
is valid in ANSI C. It assumes that the programmer intends to leave out the null character \0
in the definition. But in C++, the size should be one larger than the number of characters in

the string.

char string[4] = "xyz"; // 0.K. for C++

Functions

Functions have undergone major changes in C++. While some of these changes are simple,
others require a new way of thinking when organizing our programs. Many of these

Tokens, Expressions and Control Structures ® 43

modifications and improvements were driven by the requirements of the object-oriented
concept of C++. Some of these were introduced to make the C++ program more reliable and
readable. All the features of C++ functions are discussed in Chapter 4.

Pointers

Pointers are declared and initialized as in C. Examples:

int *ip; // int pointer
ip = &x; // address of x assigned to ip
*ip = 10; // 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.
char * const ptrl = "GOOD"; // constant pointer

We cannot modify the address that ptrl is initialized to.
int const * ptr2 = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but the
contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants in the following way:
const char * const cp = "xyz";

This statement declares cp as a constant pointer to the string which has been declared a

constant. In this case, neither the address assigned to the pointer cp nor the contents it

points to can be changed.

Pointers are extensively used in C++ for memory management and achieving
polymorphism.

|3.8 Symbolic Constants

There are two ways of creating symbolic constants in C++:

Using the qualifier const, and
Defining a set of integer constants using enum keyword.

In both C and C++, any value declared as const cannot be modified by the program in
any way. However, there are some differences in implementation. In C++, we can use const in a

44 e Object-Oriented Programming with C++

constant expression, such as

const int size = 10;
char name[size];

This would be illegal in C. const allows us to create typed constants instead of having to
use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults to int. For example,
const size = 10;
means
const int size = 10;
The named constants are just like variables except that their values cannot be changed.

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is
given, it initializes the const to 0.

The scoping of const values differs. A const in C++ defaults to the internal linkage and
therefore it is local to the file where it is declared. In ANSI C, const values are global in
nature. They are visible outside the file in which they are declared. However, they can be
made local by declaring them as static. To give a const value an external linkage so that it
can be referenced from another file, we must explicitly define it as an extern in C++. Example:

extern const total = 100;
Another method of naming integer constants is by enumeration as under;
enum {X,Y,Z};

This defines X, Y and Z as integer constants with values 0, 1, and 2 respectively. This is
equivalent to:

const X = 0;
const Y = 1;
const Z 2;

We can also assign values to X, Y, and Z explicitly. Example:
enum{X=100, Y=50, Z=200};

Such values can be any integer values. Enumerated data type has been discussed in detail
in Section 3.6.

