Timing in ASICs

3.1 INTRODUCTION

The number of ASICs designed increases every year. Advances in
technology allow more transistors to be packed onto a single die
which expands the applications where they can be used and acceler-
ates development. Successful development of an ASIC depends on
accurate modeling of its operation. Designing a circuit to be logically
correct is simple. Producing an accurate timing model is critical to
successful development. Current methodologies for generating accu-
rate timing models for ASIC designs are described here.

Integrated circuits start as computer representations of a phys-
ical device. The designer’s goal is to model the device characteristics
with sufficient accuracy that actual silicon behaves as the model
predicts, assuming the computer simulations exercise the model in
the same way the device is expected to operate in the real world.
Modeling a device’s logical operation is relatively simple, and the
translation from the model to the physical would be easy if it were
not for the major difference introduced during fabrication: timing
delays. The conversion of a logic statement to a model of its physical
implementation is shown in Figure 3.1. The operation of the circuit

45

45

Timing in ASICs Chap. 3

R R
Out = /(a & b) : ::l —N T N— out

[

. °T

| =

|
Logic I Physical
Statement [Device

Fig. 3.1 Accurate Models Require Inclusion of Parasitic Capacitors

in Figure 3.1 is affected by the charging and discharging of the par-
asitic capacitor through resistors, both of which are inherent to sili-
con physical implementation. The stray capacitance and resistance
can have such a great and deleterious effect that the physical opera-
tion is nothing like the simulated logical model.

A circuit’s correct operation can be assured only if the timing of
the simulated model is a close approximation of the final device. The
accurate modeling of delay is of major importance. As process geom-
etry shrinks and the number of transistors per die increases, the
task of modeling the effects of parasitic capacitance and resistance
makes it more challenging to correlate prelayout to postfabrication
timing. Fortunately, CAD tools exist to accurately estimate delays
before layout and extract the capacitance and resistance once layout
is complete. Modeling estimated and extracted delays plays an
important part in guaranteeing the timing and operation.

Any delay value used before the device is fabricated is merely
an estimate. The four sources of delay are shown in Figure 3.2. Gate
delay is determined by input slew rate and the inherent RC loading
of the gate. Delay through a line depends on the RC load the gate
drives. The fanout load simply increases the capacitance the driver
must charge and discharge. Methodologies for predicting delay are
well established. Gate delay is measured from fabricated test struc-

3.1 INTRODUCTION 47

R R
Input > \{ _L \(>°_
I

~—~ —

Input Inherent Line RC Fanout
rise & gate propagation load

fall delays delays delay
times

Fig. 3.2 Components of Circuit Delay: Input Slew Rate, Inherent Gate Delay,
Line Propagation Delay, Fanout Load

tures tested at specific operating points. A transistor’s speed, and
therefore the inherent delay in a gate, is affected by its dimensions,
the supply voltage, doping levels, input slew rate, operating temper-
ature, and fanout load. The data measured from the test structure
provides a device model that extrapolates to estimate delay under
all operating and fabrication conditions.

The delay due to signal lines may be modeled in two stages:
prelayout and postlayout. In either case, the physical characteris-
tics of fabricated traces are known, having been measured from test
structures. In the absence of layout, the unknown elements that
affect timing are the trace’s length, width, and surrounding signals.
Figure 3.3 shows the parasitic capacitors seen by a metal trace. Par-
asitic capacitance is explored in detail in section 3.3. Before the lay-
out is completed, any delay attributed to a signal line is an estimate
based on probable length and width of the trace. Since the actual
path is not known, the length is simply a guess based on the size of
the overall circuit and the probability of placing the output of one
gate close to the input terminals of the gates it drives. Another
unknown aspect of the trace is the topology over which it passes.
Once the layout is finished, the trace lines, and therefore their

48 Timing in ASICs Chap. 3

Fig. 3.3 Parasitic Capacitance of a Metal Line

delay, can be accurately modeled. The layout fixes their length and
reveals what lies under the trace, whether it is substrate, transis-
tors, or other layers.

Delay estimations are made in all stages of design: prelayout,
synthesis, and postlayout. The most common methods used to esti-
mate delays at all stages of the design cycle are explored.

3.2 PRELAYOUT TIMING

The design environment and methodology determine the accuracy
and ease of modeling delays before the layout is finished. HDL lan-
guages, such as Verilog and VHDL, make it possible to add both
gate and interconnect delays; however, except in situations where
the layout is regular and known, such as in memories or decoders,
the effects of delays due to interconnect are ignored until after syn-
thesis or layout. The ease of including gate delays also depends on
the type of model used. HDL modeling can also be done at two dif-
ferent levels: RTL and gate level.

3.2 PRELAYOUT TIMING 49

3.2.1 RTL vs. Gate-Level Timing

RTL code models a logic function without regard to its implementa-
tion, whereas gate-level code specifies the exact gates required.
Both the RTL and gate-level code for the logic function shown in
Figure 3.4 are given in Example 3.1.

Example 3.1
RTL Code

out = ((a & b) | ta);

Gate-Level Code

and(a, b, s2);
not(a, sl);
or(sl, s2, out};

Modeling delay at the gate level is straightforward. The delay
of each gate is found in the technology library. The appropriate
delay can be assigned to every gate in the code and the propagation
delay of signals estimated to provide a fairly accurate representa-
tion. However, manually implementing HDL code with delays for
each gate is time consuming. At the prelayout stage, most design
methodologies use synthesis to provide a gate model with delays
while RTL code is used to model the circuit’s behavior.

a ~4“{:::>c s1 L-J

s2

>— out

Fig. 3.4 Circuits Can Be Represented as RTL Code or Instantiated Gates

50

Timing in ASICs Chap. 3

A clear method of accounting for delay is to determine the delay
through each gate. The technology library already has delay infor-
mation for every gate. Accurate modeling requires the assignment
of the appropriate delay to each gate as described below. Estimating
the delay of the RTL code is more difficult because of its level of
abstraction. Until synthesis is complete, there is no straightforward
way to correlate RTL code to actual gate delays.

The level of coding used affects the delays that can be modeled.
Generally, RTL code is used to determine correct logical operation
without regard for delays. A design at the gate level not only checks
for correct operation, it also ensures that delays meet the required
timing. Most designs start with an RTL code, then use synthesis to
generate the gates needed to verify timing. Furthermore, few
designs start at the gate level because the simulations, especially
when timing is included, are very slow. Design at the RTL level
offers a fast method to ensure that the logic is properly imple-
mented. Synthesis then converts the design to gates that include
delays from gates, estimated routing, and fanout.

3.2.2 Timing in RTL Code

Although it is impractical to assign delays to individual lines of RTL
code, it is feasible to assign delays to entire modules. In RTL code,
timing should be applied to any module or port that has a known
response such as:

= Bus models

= Memories

= J/O ports

= Setup and hold times

A high-level system is shown in Figure 3.5. Each block is imple-
mented as RTL. The RAM and the EPROM will not be synthesized.
They are both modeled as an array of memory indexed by the
address. The processor comes from a vendor’s library. Its model
reflects only the bus transactions that take place. The address-

3.2 PRELAYOUT TIMING 51

Program >
—> RAM
l >|EPROM
<«—— Address >
Processor »| Decoder
Bus
Model Address
Data >
o Low Speed
- /0
- Port

!

Fig. 3.5 Delays of Entire Modules Are Easy to Implement in an HDL

decode and low-speed I/O port will be synthesized and include any
logic and flip-flops needed to perform their functions. Timing is
important in the system simulation. At the RTL level, it is possible to
see if the processor bus timing matches the RAM and EPROM tim-
ing. It can be determined if the decoder has too much delay or if the
read/write timing of the I/O port meshes with the processor’s require-
ments. The timing response of each block can be added to the model.

The read timing of the RAM is given in Figure 3.6. When the
RTL model detects a read cycle, it can instantaneously get the data
from its memory array and present it on the bus, but a fast response
does not correspond to reality. The delay, shown in Figure 3.6 as
Tvavd must be implemented in the model to reflect the time actu-
ally needed for the RAM to access and present valid data. The

52

Timing in ASICs Chap. 3

Address
RWb
OE
~ Tvavd Ts2z
Read Timing

Fig. 3.6 RAM Timing Diagram

response time of the address decode cannot be instantaneous, but
should reflect a delay based on the maximum delay it can have and
still work in the system. The I/O port also needs bus timing to
match the processor’s characteristics. The processor model comes
from the vendor with timing that matches the processor’s real oper-
ation. The processor cycle time provides a check of the timing of all
the other blocks. If a block meets the bus cycle time, it will work

when fabricated.

A snippet of Verilog code, shown in Example 3.2, demonstrates
how to implement the Tvavd and Ts2z delays in the memory model.

Example 3.2
1. 'define Twvavd 10 // data delay out of memory
2. '‘define Ts2z 5 // delay of deselect to tristate
3. module RAM (addr, data, sel, rw);
4. input [15:01] addr;
5. inout [15:0] data;
6. input sel, rw;
7. reg [15:0] mem_array [0:65536], data_internal;
8. // data bus tristate. Bi-directional.
9. assign #Ts2z data = (sel) ? data_internal : 16'bz;

3.2 PRELAYOUT TIMING 53

Example 3.2 (Continued)
10. always @ (addr, rw)
11. begin
12. // read memory
13. if ((rw === 1'bl) && (sel === 1'bl))
14. #Tvavd data_internal = mem_array [addr(15:0]1];
15. // write memory
16. if ((rw === 1'b0) && (sel === 1'bl))
17. mem_array [addr([15:0]] = data;
18. end
19. end module

Note when the memory is read, the assignment of the data
from the array to the bus is delayed by the time Tvavd. The data
bus response to the sel signal is also delayed by Ts2z. Whenever the
timing of a module is known, it should be implemented in the RTL
model; however, HDL languages offer different types of delays. It is
important to understand how the delay is applied to ensure the
model mirrors the real world. In Verilog, the two main default types
are regular and intra-assignment. The effects of both types on con-
tinuous blocking, and nonblocking assignments are discussed below.

3.2.3 Delay with a Continuous Assignment Statement

The regular delay applied to the continuous assignment statement
provides an inertial delay. An inertial delay means that the inputs
must change and remain at their new values longer than the specified
delay before the output is affected. A continuous assignment state-
ment with a regular delay of 5 time units is shown in Example 3.3.

Example 3.3

Assign #5 sel = addressl5 | addressl6 | addressl?;

The output, sel, is simply the OR of the inputs address15,
address16, and address17. Logically, whenever one of the address
signals goes high, sel goes high; however, delay changes that funda-
mental assumption slightly. The relationship between the input and
the output signals is shown in Figure 3.7.

54 Timing in ASICs Chap. 3

Address15 1

Address16

Address17 I 11

Sel l | .

0 5 10 15 20 25 30 35 40 45 50 55 60 €65 70 75 80 85 90 95 100 105

Fig. 3.7 Signals Corresponding to Example 3.3

At 20ns, each input sequentially goes high for 3ns. Each input
stays high for less time than the specified delay of 5. The output
does not change because the delay is inertial and no input is high-
longer than the delay. At 50ns, address15 goes high for 6ns. After
the input signal has been high for 5ns, the output responds and pro-
duces a pulse 6ns wide. At 70ns, both address16 and address17 go
high for 3ns, but they are coincident and do not satisfy the inertial
delay requirement, so the output does not change. At 90ns, a 3ns-
wide pulse on address16 overlaps a 4ns-wide pulse from address17.
The simulator interprets the overlap as meeting the delay require-
ment and a 7ns pulse occurs on the output.

Both the continuous assignment statement and the regular
delay operate like combinatorial logic. Just as the delay through a
gate suppresses glitches, so does the regular delay when used with a
continuous assignment statement.

3.2.4 Delay in a Process Statement

Process statements, such as always or initial, support two types of
assignment statements: blocking and nonblocking. The effects of

