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116 Basic Concepts of Convex Optimization Chap. 3

In this chapter, we introduce some basic concepts of convex optimization
and minimax theory, with a special focus on the question of existence of
optimal solutions.

3.1 CONSTRAINED OPTIMIZATION

Let us consider the problem

minimize f(x)

subject to x ∈ X,

where f : ℜn 7→ (−∞,∞] is a function and X is a nonempty subset of
ℜn. Any vector x ∈ X ∩ dom(f) is said to be a feasible solution of the
problem (we also use the terms feasible vector or feasible point). If there
is at least one feasible solution, i.e., X ∩ dom(f) 6= Ø, we say that the
problem is feasible; otherwise we say that the problem is infeasible. Thus,
when f is extended real-valued, we view only the points in X ∩ dom(f) as
candidates for optimality, and we view dom(f) as an implicit constraint set.
Furthermore, feasibility of the problem is equivalent to infx∈X f(x) < ∞.

We say that a vector x∗ is a minimum of f over X if

x∗ ∈ X ∩ dom(f), and f(x∗) = inf
x∈X

f(x).

We also call x∗ a minimizing point or minimizer or global minimum of f
over X . Alternatively, we say that f attains a minimum over X at x∗, and
we indicate this by writing

x∗ ∈ arg min
x∈X

f(x).

If x∗ is known to be the unique minimizer of f over X , with slight abuse
of notation, we also write

x∗ = arg min
x∈X

f(x).

We use similar terminology for maxima, i.e., a vector x∗ ∈ X such
that f(x∗) = supx∈X f(x) is said to be a maximum of f over X if x∗ is a
minimum of (−f) over X , and we indicate this by writing

x∗ ∈ argmax
x∈X

f(x).

If X = ℜn or if the domain of f is the set X (instead of ℜn), we also call
x∗ a (global) minimum or (global) maximum of f (without the qualifier
“over X”).
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Figure 3.1.1. Illustration of why local minima of convex functions are also global
(cf. Prop. 3.1.1). Given x∗ and x with f(x) < f(x∗), every point of the form

xα = αx∗ + (1 − α)x, α ∈ (0, 1),

satisfies f(xα) < f(x∗). Thus x∗ cannot be a local minimum that is not global.

Local Minima

Often in optimization problems we have to deal with a weaker form of
minimum, one that is optimum only when compared with points that are
“nearby.” In particular, given a subset X of ℜn and a function f : ℜn 7→
(−∞,∞], we say that a vector x∗ is a local minimum of f over X if x∗ ∈
X ∩ dom(f) and there exists some ǫ > 0 such that

f(x∗) ≤ f(x), ∀ x ∈ X with ‖x − x∗‖ < ǫ.

If X = ℜn or the domain of f is the set X (instead of ℜn), we also call x∗

a local minimum of f (without the qualifier “over X”). A local minimum
x∗ is said to be strict if there is no other local minimum within some open
sphere centered at x∗. Local maxima are defined similarly.

In practical applications we are typically interested in global minima,
yet we have to contend with local minima because of the inability of many
optimality conditions and algorithms to distinguish between the two types
of minima. This can be a major practical difficulty, but an important
implication of convexity of f and X is that all local minima are also global,
as shown in the following proposition and in Fig. 3.1.1.

Proposition 3.1.1: If X is a convex subset of ℜn and f : ℜn 7→
(−∞,∞] is a convex function, then a local minimum of f over X is
also a global minimum. If in addition f is strictly convex, then there
exists at most one global minimum of f over X .
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Figure 3.2.1. View of the set of optimal
solutions of the problem

minimize f(x)

subject to x ∈ X,

as the intersection of all the nonempty
level sets of the form

{

x ∈ X | f(x) ≤ γ
}

, γ ∈ ℜ.

Proof: Let f be convex, and assume to arrive at a contradiction, that x∗

is a local minimum of f over X that is not global (see Fig. 3.1.1). Then,
there must exist an x ∈ X such that f(x) < f(x∗). By convexity, for all
α ∈ (0, 1),

f
(

αx∗ + (1 − α)x
)

≤ αf(x∗) + (1 − α)f(x) < f(x∗).

Thus, f has strictly lower value than f(x∗) at every point on the line
segment connecting x∗ with x, except at x∗. Since X is convex, the line
segment belongs to X , thereby contradicting the local minimality of x∗.

Let f be strictly convex, let x∗ be a global minimum of f over X , and
let x be a point in X with x 6= x∗. Then the midpoint y = (x+x∗)/2 belongs
to X since X is convex, and by strict convexity, f(y) < 1/2

(

f(x)+ f(x∗)
)

,
while by the optimality of x∗, we have f(x∗) ≤ f(y). These two relations
imply that f(x∗) < f(x), so x∗ is the unique global minimum. Q.E.D.

3.2 EXISTENCE OF OPTIMAL SOLUTIONS

A basic question in optimization problems is whether an optimal solution
exists. It can be seen that the set of minima of a real-valued function f
over a nonempty set X , call it X∗, is equal to the intersection of X and
the level sets of f that have a common point with X :

X∗ = ∩∞
k=0

{

x ∈ X | f(x) ≤ γk

}

,

where {γk} is any scalar sequence with γk ↓ infx∈X f(x) (see Fig. 3.2.1).
From this characterization of X∗, it follows that the set of minima is

nonempty and compact if the sets

{

x ∈ X | f(x) ≤ γ
}

,
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are compact (since the intersection of a nested sequence of nonempty and
compact sets is nonempty and compact). This is the essence of the classical
theorem of Weierstrass (Prop. A.2.7), which states that a continuous func-
tion attains a minimum over a compact set. We will provide a more general
version of this theorem, and to this end, we introduce some terminology.

We say that a function f : ℜn 7→ (−∞,∞] is coercive if for every
sequence {xk} such that ‖xk‖ → ∞, we have limk→∞ f(xk) = ∞. Note
that as a consequence of the definition, if dom(f) is bounded, then f is
coercive. Furthermore, all the nonempty level sets of a coercive function
are bounded.

Proposition 3.2.1: (Weierstrass’ Theorem) Consider a closed
proper function f : ℜn 7→ (−∞,∞], and assume that any one of the
following three conditions holds:

(1) dom(f) is bounded.

(2) There exists a scalar γ such that the level set

{

x | f(x) ≤ γ
}

is nonempty and bounded.

(3) f is coercive.

Then the set of minima of f over ℜn is nonempty and compact.

Proof: It is sufficient to show that each of the three conditions implies
that the nonempty level sets Vγ =

{

x | f(x) ≤ γ
}

are compact for all
γ ≤ γ, where γ is such that Vγ is nonempty and compact, and then use the
fact that the set of minima of f is the intersection of its nonempty level
sets. (Note that f is assumed proper, so it has some nonempty level sets.)
Since f is closed, its level sets are closed (cf. Prop. 1.1.2). It is evident that
under each of the three conditions the level sets are also bounded for γ less
or equal to some γ, so they are compact. Q.E.D.

The most common application of Weierstrass’ Theorem is when we
want to minimize a real-valued function f : ℜn 7→ ℜ over a nonempty set
X . Then, by applying the proposition to the extended real-valued function

f̃(x) =

{

f(x) if x ∈ X ,
∞ otherwise,

we see that the set of minima of f over X is nonempty and compact if X is
closed, f is lower semicontinuous at each x ∈ X (implying, by Prop. 1.1.3,
that f̃ is closed), and one of the following conditions holds:
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(1) X is bounded.

(2) Some set
{

x ∈ X | f(x) ≤ γ
}

is nonempty and bounded.

(3) f̃ is coercive, or equivalently, for every sequence {xk} ⊂ X such that
‖xk‖ → ∞, we have limk→∞ f(xk) = ∞.

The following is essentially Weierstrass’ Theorem specialized to convex
functions.

Proposition 3.2.2: Let X be a closed convex subset of ℜn, and let
f : ℜn 7→ (−∞,∞] be a closed convex function with X ∩dom(f) 6= Ø.
The set of minima of f over X is nonempty and compact if and only
if X and f have no common nonzero direction of recession.

Proof: Let f∗ = infx∈X f(x) and note that f∗ < ∞ since X∩dom(f) 6= Ø.
Let {γk} be a scalar sequence with γk ↓ f∗, and consider the sets

Vk =
{

x | f(x) ≤ γk

}

.

Then the set of minima of f over X is

X∗ = ∩∞
k=1(X ∩ Vk).

The sets X∩Vk are nonempty and have RX ∩Rf as their common recession
cone, which is also the recession cone of X∗, when X∗ 6= Ø [cf. Props. 1.4.5,
1.4.2(c)]. It follows using Prop. 1.4.2(a) that X∗ is nonempty and compact
if and only if RX ∩ Rf = {0}. Q.E.D.

If X and f of the above proposition have a common direction of
recession, then either the optimal solution set is empty [take for example,
X = ℜ and f(x) = ex] or else it is nonempty and unbounded [take for
example, X = ℜ and f(x) = max{0, x}]. Here is another result that
addresses an important special case where the set of minima is compact.

Proposition 3.2.3: (Existence of Solution, Sum of Functions)
Let fi : ℜn 7→ (−∞,∞], i = 1, . . . , m, be closed proper convex func-
tions such that the function f = f1 + · · ·+ fm is proper. Assume that
the recession function of a single function fi satisfies rfi

(d) = ∞ for
all d 6= 0. Then the set of minima of f is nonempty and compact.

Proof: By Prop. 3.2.2, the set of minima of f is nonempty and compact if
and only if Rf = {0}, which by Prop. 1.4.6, is true if and only if rf (d) > 0
for all d 6= 0. The result now follows from Prop. 1.4.8. Q.E.D.
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As an example of application of the preceding proposition, if one of
the functions fi is a positive definite quadratic function, the set of minima
of the sum f is nonempty and compact. In fact in this case f has a unique
minimum because the positive definite quadratic is strictly convex, which
makes f strictly convex.

The next proposition addresses cases where the optimal solution set
is not compact.

Proposition 3.2.4: (Existence of Solution, Noncompact Level
Sets) Let X be a closed convex subset of ℜn, and let f : ℜn 7→
(−∞,∞] be a closed convex function with X ∩ dom(f) 6= Ø. The set
of minima of f over X , denoted X∗, is nonempty under any one of the
following two conditions:

(1) RX ∩ Rf = LX ∩ Lf .

(2) RX ∩ Rf ⊂ Lf and X is a polyhedral set.

Furthermore, under condition (1),

X∗ = X̃ + (LX ∩ Lf ),

where X̃ is some nonempty and compact set.

Proof: Let f∗ = infx∈X f(x) and note that f∗ < ∞ since X∩dom(f) 6= Ø.
Let {γk} be a scalar sequence with γk ↓ f∗, consider the level sets

Vk =
{

x | f(x) ≤ γk

}

,

and note that

X∗ = ∩∞
k=1(X ∩ Vk).

Let condition (1) hold. The sets X∩Vk are nonempty, closed, convex,
and nested. Furthermore, they have the same recession cone, RX ∩Rf , and
the same lineality space LX∩Lf , while by assumption, RX∩Rf = LX∩Lf .
By Prop. 1.4.11(a), it follows that X∗ is nonempty and has the form

X∗ = X̃ + (LX ∩ Lf ),

where X̃ is some nonempty compact set.
Let condition (2) hold. The sets Vk are nested and X∩Vk is nonempty

for all k. Furthermore, all the sets Vk have the same recession cone, Rf ,
and the same lineality space, Lf , while by assumption, RX ∩Rf ⊂ Lf , and
X is polyhedral and hence retractive (cf. Prop. 1.4.9). By Prop. 1.4.11(b),
it follows that X∗ is nonempty. Q.E.D.
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Note that in the special case X = ℜn, conditions (1) and (2) of Prop.
3.2.4 coincide. Figure 3.2.3(b) provides a counterexample showing that if
X is nonpolyhedral, the condition

RX ∩ Rf ⊂ Lf

is not sufficient to guarantee the existence of optimal solutions or even the
finiteness of f∗. This counterexample also shows that the cost function may
be bounded below and attain a minimum over any closed halfline contained
in the constraint set, and yet it may not attain a minimum over the entire
set. Recall, however, that in the special cases of linear and quadratic
programming problems, boundedness from below of the cost function over
the constraint set guarantees the existence of an optimal solution (cf. Prop.
1.4.12).

3.3 PARTIAL MINIMIZATION OF CONVEX FUNCTIONS

In our development of duality and minimax theory we will often encounter
functions obtained by minimizing other functions partially, i.e., with re-
spect to some of their variables. It is then useful to be able to deduce
properties of the function obtained, such as convexity and closedness, from
corresponding properties of the original.

There is an important geometric relation between the epigraph of a
given function and the epigraph of its partially minimized version: except
for some boundary points, the latter is obtained by projection from the
former [see part (b) of the following proposition, and Fig. 3.3.1]. This is
the key to understanding the properties of partially minimized functions.

Proposition 3.3.1: Consider a function F : ℜn+m 7→ (−∞,∞] and
the function f : ℜn 7→ [−∞,∞] defined by

f(x) = inf
z∈ℜm

F (x, z).

Then:

(a) If F is convex, then f is also convex.

(b) We have

P
(

epi(F )
)

⊂ epi(f) ⊂ cl
(

P
(

epi(F )
)

)

, (3.1)

where P (·) denotes projection on the space of (x, w), i.e., for any
subset S of ℜn+m+1, P (S) =

{

(x, w) | (x, z, w) ∈ S
}

.

Proof: (a) If epi(f) = Ø, i.e., f(x) = ∞ for all x ∈ ℜn, then epi(f) is
convex, so f is convex. Assume that epi(f) 6= Ø, and let (x, w) and (x̃, w̃)
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Figure 3.2.3. Illustration of the issues regarding existence of an optimal solution
assuming RX ∩Rf ⊂ Lf , i.e., that every common direction of recession of X and
f is a direction in which f is constant [cf. Prop. 3.2.4 under condition (2)].

In both problems illustrated in (a) and (b) the cost function is

f(x1, x2) = ex1 .

In the problem of (a), the constraint set X is the polyhedral set shown in the
figure, while in the problem of (b), X is specified by a quadratic inequality:

X =
{

(x1, x2) | x2

1
≤ x2

}

,

as shown in the figure. In both cases we have

RX =
{

(d1, d2) | d1 = 0, d2 ≥ 0
}

,

Rf =
{

(d1, d2) | d1 ≤ 0, d2 ∈ ℜ
}

, Lf =
{

(d1, d2) | d1 = 0, d2 ∈ ℜ
}

,

so that RX ∩ Rf ⊂ Lf .
In the problem of (a) it can be seen that an optimal solution exists. In

the problem of (b), however, we have f(x1, x2) > 0 for all (x1, x2), while for
x1 = −√

x2 where x2 ≥ 0, we have (x1, x2) ∈ X with

lim
x2→∞

f
(

−√
x2, x2

)

= lim
x2→∞

e−
√

x2 = 0,

implying that f∗ = 0. Thus f cannot attain the minimum value f∗ over X. Note
that f attains a minimum over the intersection of any line with X.

If in the problem of (b) the cost function were instead f(x1, x2) = x1,
we would still have RX ∩ Rf ⊂ Lf and f would still attain a minimum over the
intersection of any line with X, but it can be seen that f∗ = −∞. If the constraint

set were instead X =
{

(x1, x2) | |x1| ≤ x2

}

, which is polyhedral, we would still
have f∗ = −∞, but then the condition RX ∩ Rf ⊂ Lf would be violated.
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be two points in epi(f). Then f(x) < ∞, f(x̃) < ∞, and there exist
sequences {zk} and {z̃k} such that

F (x, zk) → f(x), F (x̃, z̃k) → f(x̃).

Using the definition of f and the convexity of F , we have for all α ∈ [0, 1]
and k,

f
(

αx + (1 − α)x̃
)

≤ F
(

αx + (1 − α)x̃, αzk + (1 − α)z̃k

)

≤ αF (x, zk) + (1 − α)F (x̃, z̃k).

By taking the limit as k → ∞, we obtain

f
(

αx + (1 − α)x̃
)

≤ αf(x) + (1 − α)f(x̃) ≤ αw + (1 − α)w̃.

It follows that the point α(x, w) + (1 − α)(x̃, w̃) belongs to epi(f). Thus
epi(f) is convex, implying that f is convex.

(b) To show the left-hand side of Eq. (3.1), let (x, w) ∈ P
(

epi(F )
)

, so that
there exists z such that (x, z, w) ∈ epi(F ), or equivalently F (x, z) ≤ w.
Then

f(x) = inf
z∈ℜm

F (x, z) ≤ w,

implying that (x, w) ∈ epi(f).
To show the right-hand side, note that for any (x, w) ∈ epi(f) and

every k, there exists a zk such that

(x, zk, w + 1/k) ∈ epi(F ),

so that (x, w + 1/k) ∈ P
(

epi(F )
)

and (x, w) ∈ cl
(

P
(

epi(F )
))

. Q.E.D.

Among other things, part (b) of the preceding proposition asserts
that if F is closed, and if the projection operation preserves closedness of
its epigraph, then partial minimization of F yields a closed function. Note
also a connection between closedness of P

(

epi(F )
)

and the attainment of
the infimum of F (x, z) over z. As illustrated in Fig. 3.3.1, for a fixed
x, F (x, z) attains a minimum over z if and only if

(

x, f(x)
)

belongs to

P
(

epi(F )
)

. Thus if P
(

epi(F )
)

is closed, F (x, z) attains a minimum over z
for all x such that f(x) is finite.

We now provide criteria guaranteeing that closedness is preserved
under partial minimization, while simultaneously the partial minimum is
attained.

Proposition 3.3.2: Let F : ℜn+m 7→ (−∞,∞] be a closed proper
convex function, and consider the function f given by

f(x) = inf
z∈ℜm

F (x, z), x ∈ ℜn.


