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Every Egyptian received two names, which were known respectively as the true
name and the good name, or the great name and the little name; and while the
good or little name was made public, the true or great name appears to have been
carefully concealed.

—The Golden Bough, Sir James George Frazer

To guard against the baneful influence exerted by strangers is therefore an ele-
mentary dictate of savage prudence. Hence before strangers are allowed to enter a
district, or at least before they are permitted to mingle freely with the inhabitants,
certain ceremonies are often performed by the natives of the country for the pur-
pose of disarming the strangers of their magical powers, or of disinfecting, so to
speak, the tainted atmosphere by which they are supposed to be surrounded.

—The Golden Bough, Sir James George Frazer

In addition to message confidentiality, message authentication is an important
network security function. This chapter examines three aspects of message
authentication. First, we look at the use of message authentication codes and hash
functions to provide message authentication. Then we look at public-key encryp-
tion principles and two specific public-key algorithms. These algorithms are useful
in the exchange of conventional encryption keys. Then we look at the use of
public-key encryption to produce digital signatures, which provides an enhanced
form of message authentication.

3.1 APPROACHES TO MESSAGE AUTHENTICATION

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and comes from its alleged source. Message authentication is a
procedure that allows communicating parties to verify that received messages are
authentic.! The two important aspects are to verify that the contents of the message
have not been altered and that the source is authentic. We may also wish to verify a
message’s timeliness (it has not been artificially delayed and replayed) and
sequence relative to other messages flowing between two parties. All of these
concerns come under the category of data integrity as described in Chapter 1.

Authentication Using Conventional Encryption

It would seem possible to perform authentication simply by the use of symmetric
encryption. If we assume that only the sender and receiver share a key (which is as
it should be), then only the genuine sender would be able to encrypt a message

!For simplicity, for the remainder of this chapter, we refer to message authentication. By this we mean
both authentication of transmitted messages and of stored data (data authentication).



3.1 / APPROACHES TO MESSAGE AUTHENTICATION 63

successfully for the other participant, provided the receiver can recognize a valid
message. Furthermore, if the message includes an error-detection code and a
sequence number, the receiver is assured that no alterations have been made and
that sequencing is proper. If the message also includes a timestamp, the receiver is
assured that the message has not been delayed beyond that normally expected for
network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentica-
tion. To give one simple example, in the ECB mode of encryption, if an attacker
reorders the blocks of ciphertext, then each block will still decrypt successfully.
However, the reordering may alter the meaning of the overall data sequence.
Although sequence numbers may be used at some level (e.g., each IP packet), it is
typically not the case that a separate sequence number will be associated with each
b-bit block of plaintext. Thus, block reordering is a threat.

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on encryption. In all of these approaches, an authentication tag is generated
and appended to each message for transmission. The message itself is not encrypted
and can be read at the destination independent of the authentication function at the
destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to
combine authentication and confidentiality in a single algorithm by encrypting a
message plus its authentication tag. Typically, however, message authentication is
provided as a separate function from message encryption. [DAVI89] suggests three
situations in which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Two examples are notification to users that the net-
work is now unavailable and an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication tag. The responsible system performs authenti-
cation. If a violation occurs, the other destination systems are alerted by a
general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is car-
ried out on a selective basis with messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message
authentication tag were attached to the program, it could be checked when-
ever assurance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.
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MESSAGE AUTHENTICATION CoDE One authentication technique involves the use of a
secret key to generate a small block of data, known as a message authentication code
(MAC), that is appended to the message. This technique assumes that two
communicating parties, say A and B, share a common secret key K45 When A has a
message to send to B, it calculates the message authentication code as a function of the
message and the key: MACy; = F(K 43, M). The message plus code are transmitted to
the intended recipient. The recipient performs the same calculation on the received
message, using the same secret key, to generate a new message authentication code.
The received code is compared to the calculated code (Figure 3.1). If we assume that
only the receiver and the sender know the identity of the secret key, and if the
received code matches the calculated code, then the following statements apply:

1. The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because no one
else knows the secret key, no one else could prepare a message with a proper code.

3. If the message includes a sequence number (such as is used with HDLC and
TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.
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Figure 3.1 Message Authentication Using a Message Authentication Code (MAC)
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A number of algorithms could be used to generate the code. The NIST specifi-
cation, FIPS PUB 113, recommends the use of DES. DES is used to generate an
encrypted version of the message, and the last number of bits of ciphertext are used
as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. Because
of the mathematical properties of the authentication function, it is less vulnerable to
being broken than encryption.

ONE-Way HasH FUNCTION An alternative to the message authentication code is
the one-way hash function. As with the message authentication code, a hash
function accepts a variable-size message M as input and produces a fixed-size
message digest H(M) as output. Unlike the MAC, a hash function does not take a
secret key as input. To authenticate a message, the message digest is sent with the
message in such a way that the message digest is authentic.

Figure 3.2 illustrates three ways in which the message can be authenticated.
The message digest can be encrypted using conventional encryption (part a); if it is
assumed that only the sender and receiver share the encryption key, then authentic-
ity is assured. The message digest can be encrypted using public-key encryption
(part b); this is explained in Section 3.5. The public-key approach has two advan-
tages: (1) It provides a digital signature as well as message authentication. (2) It does
not require the distribution of keys to communicating parties.

These two approaches also have an advantage over approaches that encrypt
the entire message in that less computation is required. Nevertheless, there has been
interest in developing a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92):

¢ Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

¢ Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

» Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

* An encryption algorithm may be protected by a patent.

Figure 3.2¢ shows a technique that uses a hash function but no encryption for
message authentication. This technique assumes that two communicating parties,
say A and B, share a common secret value S, 5. When A has a message to send to B,
it calculates the hash function over the concatenation of the secret value and the
message: MDy = H(S45|M).2 It then sends [M|MD ] to B. Because B possesses
S4B, it can recompute H(S 4 5|M) and verify MD,,. Because the secret value itself is

2| denotes concatenation.
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Figure 3.2 Message Authentication Using a One-Way Hash Function

not sent, it is not possible for an attacker to modify an intercepted message. As long
as the secret value remains secret, it is also not possible for an attacker to generate a
false message.

A variation on the third technique, called HMAC, is the one adopted for IP
security (described in Chapter 8); it also has been specified for SNMPv3 (Chapter 12).
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3.2 SECURE HASH FUNCTIONS

The one-way hash function, or secure hash function, is important not only in mes-
sage authentication but in digital signatures. In this section, we begin with a discus-
sion of requirements for a secure hash function. Then we look at the most important
hash function, SHA.

Hash Function Requirements

The purpose of a hash function is to produce a “fingerprint” of a file, message, or
other block of data. To be useful for message authentication, a hash function H must
have the following properties:

1. H can be applied to a block of data of any size.
2. H produces a fixed-fength output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4, For any given code h, it is computationally infeasible to find x such that H(x) = k.
A hash function with this property is referred to as one-way or preimage
resistant >

S. For any given block x, it is computationally infeasible to find y # x with H(y) =
H(x). A hash function with this property is referred to as second preimage resis-
tant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a
hash function to message authentication. The fourth property, preimage resistant, is
the “one-way” property: It is easy to generate a code given a message, but virtually
impossible to generate a message given a code. This property is important if the
authentication technique involves the use of a secret value (Figure 3.2c). The secret
value itself is not sent; however, if the hash function is not one way, an attacker can
easily discover the secret value: If the attacker can observe or intercept a transmis-
sion, the attacker obtains the message M and the hash code C = H(S 45||M). The
attacker then inverts the hash function to obtain §,z|M = H™'(C). Because the
attacker now has both M and S 45| M, it is a trivial matter to recover Sp.

The second preimage resistant property guarantees that it is impossible to find an
alternative message with the same hash value as a given message. This prevents forgery
when an encrypted hash code is used (Figures 3.2a and b). If this property were not
true, an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; third, generate an alternate message with the same hash code.

3For f(x) = y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage
values for a given y.



68 CHAPTER 3 / PUBLIC-KEY CRYPTOGRAPHY AND MESSAGE AUTHENTICATION

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it is
referred to as a strong hash function. The sixth property, collision resistant, protects
against a sophisticated class of attack known as the birthday attack. Details of this
attack are beyond the scope of this book. The attack reduces the strength of an
m-bit hash function from 2 to 2™, See [STAL11] for details.

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

Security of Hash Functions

As with symmetric encryption, there are two approaches to attacking a secure hash
function: cryptanalysis and brute-force attack. As with symmetric encryption algorithms,
cryptanalysis of a hash function involves exploiting logical weaknesses in the algorithm.

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length n,
the level of effort required is proportional to the following:

Preimage resistant 2"
Second preimage resistant 2"
Collision resistant 2n2

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2™? determines the strength of the hash code
against brute-force attacks. Van Oorschot and Wiener [VANO94] presented a
design for a $10 million collision search machine for MD35, which has a 128-bit hash
length, that could find a collision in 24 days. Thus, a 128-bit code may be viewed as
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a
160-bit hash length. With a hash length of 160 bits, the same search machine would
require over four thousand years to find a collision. With today’s technology, the
time would be much shorter, so that 160 bits now appears suspect.

Simple Hash Functions

All hash functions operate using the following general principles. The input (mes-
sage, file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one
block at a time in an iterative fashion to produce an »-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as

Ci=bi@bn®...Dbim
where
C; = ith bit of the hash code, 1 <i<n
m = number of n-bit blocks in the input
b;; = ith bit in jth block
@ = XOR operation
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Figure 3.3 Simple Hash Function Using Bitwise XOR

Figure 3.3 illustrates this operation; it produces a simple parity for each bit
position and is known as a longitudinal redundancy check. It is reasonably effective
for random data as a data integrity check. Each n-bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash value is 27"
With more predictably formatted data, the function is less effective. For example, in
most normal text files, the high-order bit of each octet is always zero. So if a 128-bit
hash value is used, instead of an effectiveness of 27128 the hash function on this type
of data has an effectiveness of 27112

A simple way to improve matters is to perform a 1-bit circular shift, or rotation,
on the hash value after each block is processed. The procedure can be summarized as

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data:
a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any
regularities that appear in the input.

Although the second procedure provides a good measure of data integrity, it
is virtually useless for data security when an encrypted hash code is used with a
plaintext message, as in Figures 3.2a and b. Given a message, it is an easy matter to
produce a new message that yields that hash code: Simply prepare the desired alter-
nate message and then append an n-bit block that forces the combined new message
plus block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the
hash code is encrypted, you may still feel that such a simple function could be useful
when the message as well as the hash code are encrypted. But one must be careful. A
technique originally proposed by the National Bureau of Standards used the simple
XOR applied to 64-bit blocks of the message and then an encryption of the entire
message using the cipher block chaining (CBC) mode. We can define the scheme as
follows: Given a message consisting of a sequence of 64-bit blocks Xi, X5, . . ., Xy,
define the hash code C as the block-by-block XOR or all blocks and append the hash
code as the final block:

C=Xnn=X1X,D... DXN
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Next, encrypt the entire message plus hash code using CBC mode to produce the
encrypted message Yy, Ys, . . ., Ynu1. [JUENSS] points out several ways in which
the ciphertext of this message can be manipulated in such a way that it is not
detectable by the hash code. For example, by the definition of CBC (Figure 2.10),
we have

X1 =1V DY)
X;=Yi1 @ DK, Y)
Xn+1 = YN @ D(K, Y1)
But X is the hash code:

X1 =X1DXD.. . DXy
=IVODK YD ®[Y1 @DK. Y)]D. .. ®[Yn-1D DK Yn)]

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

The SHA Secure Hash Function

In recent years, the most widely used hash function has been the Secure Hash
Algorithm (SHA). Indeed, because virtually every other widely used hash function
had been found to have substantial cryptanalytic weaknesses, SHA was more or less
the last remaining standardized hash algorithm by 2005. SHA was developed by the
National Institute of Standards and Technology (NIST) and published as a federal
information processing standard (FIPS 180) in 1993. When weaknesses were discov-
ered in SHA (now known as SHA-0), a revised version was issued as FIPS 180-1 in
1995 and is referred to as SHA-1. The actual standards document is entitled “Secure
Hash Standard.” SHA is based on the hash function MD4, and its design closely
models MD4. SHA-1 is also specified in RFC 3174, which essentially duplicates the
material in FIPS 180-1 but adds a C code implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised
version of the standard, FIPS 180-2, that defined three new versions of SHA with
hash value lengths of 256, 384, and 512 bits known as SHA-256, SHA-384, and SHA-
512, respectively. Collectively, these hash algorithms are known as SHA-2. These
new versions have the same underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. A revised document was issued
as FIP PUB 180-3 in 2008, which added a 224-bit version (Table 3.1). SHA-2 is also
specified in RFC 4634, which essentially duplicates the material in FIPS 180-3 but
adds a C code implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and
move to a reliance on SHA-2 by 2010. Shortly thereafter, a research team described
an attack in which two separate messages could be found that deliver the same
SHA-1 hash using 2%° operations, far fewer than the 2% operations previously
thought needed to find a collision with an SHA-1 hash [WANGOS5]. This result
should hasten the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are
quite similar.



