3

Internet Applications And
Network Programming

3.1 Introduction

The Internet offers users a rich diversity of services that include web browsing,
email, text messaging, and video teleconferences. Surprisingly, none of the services is
part of the underlying communication infrastructure. Instead, the Internet provides a
general purpose communication mechanism on which all services are built, and indivi-
dual services are supplied by application programs that run on computers attached to the
Internet. In fact, it is possible to devise entirely new services without changing the In-
ternet.

This chapter covers two key concepts that explain Internet applications. First, the
chapter describes the conceptual paradigm that applications follow when they communi-
cate over the Internet. Second, the chapter presents the details of the socket Application
Programming Interface (socket API) that Internet applications use.

The chapter demonstrates that one does not need to understand the details of data
communication or network protocols to write innovative applications — once a pro-
grammer masters a few basic concepts, it is possible to construct applications that com-
municate over the Internet. The next chapter continues the discussion by examining ex-
ample Internet applications such as email.

Although programmers can get started easily, and it is possible to create Internet
applications without knowing how networks operate, understanding network protocols
and technologies allows a programmer to write efficient and reliable code that enables

27



28 Internet Applications And Network Programming Chap. 3

applications to scale across many sites. Later parts of the text provide the necessary in-
formation by explaining data communications and protocols used to form the Internet.

3.2 Two Basic Internet Communication Paradigms

The Internet supports two basic communication paradigms: a stream paradigm and
a message paradigm. Figure 3.1 summarizes the differences.

Stream Paradigm Message Paradigm
Connection-oriented Connectionless
1-to-1 communication Many-to-many communication

Sequence of individual bytes | Sequence of individual messages

Arbitrary length transfer Each message limited to 64 Kbytes
Used by most applications Used for multimedia applications
Built on TCP protocol Built on UDP protocol

Figure 3.1 The two paradigms that Internet applications use.

3.2.1 Stream Transport in The Internet

The term stream denotes a paradigm in which a sequence of bytes flows from one
application program to another. In fact, the Internet’s mechanism arranges two streams
between a pair of communicating applications, one in each direction. For example, a
browser uses the stream service to communicate with a web server: the browser sends a
request and the web server responds by sending the page. The network accepts input
from either application, and delivers the data to the other application.

The stream mechanism transfers a sequence of bytes without attaching meaning to
the bytes and without inserting boundaries. In particular, a sending application can
choose to generate one byte at a time, or can generate blocks of bytes. The network
chooses the number of bytes to deliver at any time. That is, the network can choose to
combine smaller blocks into one large block or can divide a large block into smaller
blocks. The point is:




Sec.3.2 Two Basic Internet Communication Paradigms 29

3.2.2 Message Transport In The Internet

The alternative Internet communication mechanism follows a message paradigm in
which the network accepts and delivers messages. Each message delivered to a receiver
corresponds to a message that was transmitted by a sender; the network never delivers
part of a message, nor does it join multiple messages together. Thus, if a sender places
exactly »n bytes in an outgoing message, the receiver will find exactly n bytes in the in-
coming message.

The message paradigm allows unicast, multicast, or broadcast delivery. That is, a
message can be sent from an application on one computer directly to an application on
another, the message can be broadcast to all computers on a given network, or the mes-
sage can be multicast to some of the computers on a network. Furthermore, applica-
tions on many computers can send messages to a given application. Thus, the message
paradigm can provide 1-to-1, 1-to-many, or many-to-1 communication.

Surprisingly, the message service does not make any guarantees about the order in
which messages are delivered or whether a given message will arrive. The service per-
mits messages to be:

* Lost (i.e., never delivered)
¢ Duplicated (more than one copy arrives)

e Delivered out-of-order

A programmer who uses the message paradigm must insure that the application operates
correctly, even if packets are lost or reorderedt. Because most applications require
delivery guarantees, programmers tend to use the stream service except in special situa-
tions, such as video, where multicast is needed and the application provides support to
handle packet reordering and loss. Thus, we will focus on the stream paradigm.

3.3 Connection-oriented Communication

The Internet stream service is connection-oriented, which means the service
operates analogous to a telephone call: before they can communicate, two applications
must request that a connection be created. Once it has been established, the connection
allows the applications to send data in either direction. Finally, when they finish com-
municating, the applications request that the connection be terminated. Algorithm 3.1
summarizes the interaction.

tLater chapters explain why such errors can occur.



30 Internet Applications And Network Programming Chap. 3

Algorithm 3.1
Purpose:
Interaction over a connection-oriented mechanism
Method:

A pair of applications requests a connection
The pair uses the connection to exchange data
The pair requests that the connection be terminated

Algorithm 3.1 Communication over a connection-oriented mechanism.

3.4 The Client-Server Model Of Interaction

The first step in Algorithm 3.1 raises a question: how can a pair of applications
that run on two independent computers coordinate to guarantee that they request a con-
nection at the same time? The answer lies in a form of interaction known as the client-
server model. One application, known as a server, starts first and awaits contact. The
other application, known as a client, start second and initiates the connection. Figure
3.2 summarizes the interaction.

Server Application Client Application

Starts first Starts second

Does not need to know which client | Must know which server to
will contact it contact

Waits passively and arbitrarily long | Initiates a contact whenever
for contact from a client communication is needed

Communicates with a client by both | Communicates with a server by

sending and receiving data sending and receiving data
Stays running after servicing one May terminate after interacting
client, and waits for another with a server

Figure 3.2 A summary of the client-server model.

Subsequent sections describe how specific services use the client-server model.
For now, it is sufficient to understand:



Sec. 34 The Client-Server Model Of Interaction 31

3.5 Characteristics Of Clients And Servers

Although minor variations exist, most instances of client-server interaction have
the same general characteristics. In general, client software:

* Is an arbitrary application program that becomes a client temporari-
ly when remote access is needed, but also performs other computa-
tion

e Is invoked directly by a user, and executes only for one session

¢ Runs locally on a user’s personal computer

e Actively initiates contact with a server

¢ (Can access multiple services as needed, but usually contacts one re-
mote server at a time

* Does not require especially powerful computer hardware
In contrast, server software:

¢ Is a special-purpose, privileged program dedicated to providing one
service that can handle multiple remote clients at the same time

¢ [s invoked automatically when a system boots, and continues to ex-
ecute through many sessions

¢ Runs on a large, powerful computer

e Waits passively for contact from arbitrary remote clients

* Accepts contact from arbitrary clients, but offers a single service
¢ Requires powerful hardware and a sophisticated operating system

3.6 Server Programs And Server-Class Computers

Confusion sometimes arises over the term server. Formally, the term refers to a
program that waits passively for communication, and not to the computer on which it
executes. However, when a computer is dedicated to running one or more server pro-
grams, the computer itself is sometimes called a server. Hardware vendors contribute to
the confusion because they classify computers that have fast CPUs, large memories, and
powerful operating systems as server machines. Figure 3.3 illustrates the definitions.



32 Internet Applications And Network Programming Chap. 3

client runs server runs in
in a standard a server-class
computer computer
l connection Internet

Figure 3.3 Illustration of a client and server.

3.7 Requests, Responses, And Direction Of Data Flow

The terms client and server arise from which side initiates contact. Once contact
has been established, two-way communication is possible (i.e., data can flow from a
client to a server or from a server to a client). Typically, a client sends a request to a
server, and the server returns a response to the client. In some cases, a client sends a
series of requests and the server issues a series of responses (e.g., a database client
might allow a user to look up more than one item at a time). The concept can be sum-
marized:

3.8 Multiple Clients And Multiple Servers

A client or server consists of an application program, and a computer can run mul-
tiple applications at the same time. As a consequence, a computer can run:

* A single client
* A single server

e Multiple copies of a client that contact a given server

Multiple clients that each contact a particular server

Multiple servers, each for a particular service

Allowing a computer to operate multiple clients is useful because services can be
accessed simultaneously. For example, a user can have three windows open simultane-
ously running three applications: one that retrieves and displays email, another that con-
nects to a chat service, and a third running a web browser. Each application is a client



Sec. 3.8 Multiple Clients And Multiple Servers 33

that contacts a particular server independent of the others. In fact, the technology al-
lows a user to have two copies of a single application open, each contacting a server
(e.g., two copies of a web browser).

Allowing a given computer to operate multiple servers is useful because the
hardware can be shared. In addition, a single computer has lower system administration
overhead than multiple computer systems. More important, experience has shown that
the demand for a server is often sporadic — a server can remain idle for long periods of
time. An idle server does not use the CPU while waiting for a request to arrive. Thus,
if demand for services is low, consolidating servers on a single computer can dramati-
cally reduce cost without significantly reducing performance. To summarize:

3.9 Server ldentification And Demultiplexing

How does a client identify a server? The Internet protocols divide identification
into two pieces:

* An identifier for the computer on which a server runs

¢ An identifier for a particular service on the computer

Identifying A Computer. Each computer in the Internet is assigned a unique 32-bit
identifier known as an Internet Protocol address (IP address)t. When it contacts a
server, a client must specify the server’s IP address. To make server identification easy
for humans, each computer is also assigned a name, and the Domain Name System
described in Chapter 4 is used to translate a name into an address. Thus, a user speci-
fies a name such as www. cisco.com rather than an integer address.

Identifying A Service. Each service available in the Internet is assigned a unique
16-bit identifier known as a protocol port number (often abbreviated port number). For
example, email is assigned port number 25, and the web is assigned port number 80.
When a server begins execution, it registers with its local system by specifying the port
number for the service it offers. When a client contacts a remote server to request ser-
vice, the request contains a port number. Thus, when a request arrives at a server,
software on the server uses the port number in the request to determine which applica-
tion on the server computer should handle the request.

Figure 3.4 summarizes the discussion by listing the basic steps a client and server
take to communicate.

tChapter 21 explains Internet addresses in detail.



34 Internet Applications And Network Programming Chap. 3

¢ Start after server is » Start before any of
already running the clients

¢ Obtain server name * Register port N with
from user internet the local system

* Use DNS to translate * Wait for contact

name to IP address from a client
» Specify that the ¢ Interact with client
service uses port N until client finishes
* Contact server and * Wait for contact from
interact the next client...

Figure 3.4 The conceptual steps a client and server take to communicate.

3.10 Concurrent Servers

The steps in Figure 3.4 imply that a server handles one client at a time. Although
a serial approach works in a few trivial cases, most servers are concurrent. That is, a
server uses more than one thread of controlt, to handle multiple clients at the same
time.

To understand why simultaneous service is important, consider what happens if a
client downloads a movie from a server. If a server handles one request at a time, all
clients must wait while the server transfers the movie. In contrast, a concurrent server
does not force a client to wait. Thus, if a second client arrives and requests a short
download (e.g., a single song), the second request will start immediately, and may finish
before the movie transfer completes.

The details of concurrent execution depend on the operating system being used, but
the idea is straightforward: concurrent server code is divided into two pieces, a main
program (thread) and a handler. The main thread merely accepts contact from a client,
and creates a thread of control for the client. Each thread of control interacts with a sin-
gle client, and runs the handler code. After handling one client, the thread terminates.
Meanwhile, the main thread keeps the server alive — after creating a thread to handle a
request, the main thread waits for another request to arrive.

Note that if N clients are simultaneously using a concurrent server, N+/ threads
will be running: the main thread is waiting for additional requests, and N threads are
each interacting with a single client. We can summarize:

tSome operating systems use the term thread of execution or process to denote a thread of control.



Sec. 3.11 Circular Dependencies Among Servers 35

3.11 Circular Dependencies Among Servers

Technically, any program that contacts another is acting as a client, and any pro-
gram that accepts contact from another is acting as a server. In practice, the distinction
blurs because a server for one service can act as a client for another. For example, be-
fore it can fill in a web page, a web server may need to become a client of a database.
A server may also become the client of a security service (e.g., to verify that a client is
allowed to access the service).

Of course, programmers must be careful to avoid circular dependencies among
servers. For example, consider what can happen if a server for service X, becomes a
client of service X,, which becomes a client of service X,, which becomes a client of
X,. The chain of requests can continue indefinitely until all three servers exhaust
resources. The potential for circularity is especially high when services are designed in-
dependently because no single programmer controls all servers.

3.12 Peer-To-Peer Interactions

If a single server provides a given service, the network connection between the
server and the Internet can become a bottleneck. Figure 3.5 illustrates the architecture.

server
all traffic goes
over one connection

Internet

Figure 3.5 The traffic bottleneck in a design that uses a single server.

The question arises, “can Internet services be provided without creating a central
bottleneck?” One way to avoid a bottleneck forms the basis of file sharing applications.
Known as a peer-to-peer (p2p) architecture, the scheme avoids placing data on a central
server. Conceptually, data is distributed equally among a set of N servers, and each
client request is sent to the appropriate server. Because a given server only provides
1/N of the data, the amount of traffic between a server and the Internet is //N as much
as in the single-server architecture. Thus, server software can run on the same comput-
ers as clients. Figure 3.6 illustrates the architecture.



36 Internet Applications And Network Programming Chap. 3

1/N of all traffic

Internet

Figure 3.6 Interaction in a peer-to-peer system.

3.13 Network Programming And The Socket API

The interface an application uses to specify communication is known as an Appli-
cation Program Interface (APD)t. Although the exact details of an API depend on the
operating system, one particular API has emerged as the de facto standard for software
that communicates over the Internet. Known as the socket API, and commonly abbrevi-
ated sockets, the API is available for many operating systems, such as Microsoft’s Win-
dows systems as well as various UNIX systems, including Linux. The point is:

3.14 Sockets, Descriptors, And Network 1/0

Because it was originally developed as part of the UNIX operating system, the
socket API is integrated with 1/0. In particular, when an application creates a socket to
use for Internet communication, the operating system returns a small integer descriptor
that identifies the socket. The application then passes the descriptor as an argument
when it calls functions to perform an operation on the socket (e.g., to transfer data
across the network or to receive incoming data).

In many operating systems, socket descriptors are integrated with other 170
descriptors. As a result, an application can use the read and write operations for socket
I/0 or I/O to a file. To summarize:

tAppendix 1 contains a simplified API (with only seven functions) and example code that demonstrates
how such an API can be used to create Internet applications, including a working web server.



