Contents

3.1

3.2

3.3

3.4

3.5

Operating Systems Concepts 114
3.1.1 The Kernel and Input/Output 115
312 Processes. 116
3.1.3 TheFilesystem 121
3.1.4 Memory Management 124
3.1.5 VirtualMachines 128
ProcessSecurity, 130
3.2.1 Inductive Trust from Startto Finish 130
3.2.2 Monitoring, Management, and Logging 132
Memory and Filesystem Security 136
3.3.1 Virtual Memory Security 136
3.3.2 Password-Based Authentication 137
3.3.3 Access Control and Advanced File Permissions . . 140
3.34 FileDescriptors. 146
3.3.5 Symbolic Links and Shortcuts 148
Application Program Security 149
3.4.1 CompilingandLinking 149
3.4.2 Simple Buffer Overflow Attacks 150
3.4.3 Stack-Based Buffer Overflow 152
3.4.4 Heap-Based Buffer Overflow Attacks 159
3.45 Format StringAttacks 162
3.4.6 RaceConditions 163
Exercises i i i e 166

114

Chapter 3. Operating Systems Security

An operating system (OS) provides the interface between the users of a
computer and that computer’s hardware. In particular, an operating system
manages the ways applications access the resources in a computer, includ-
ing its disk drives, CPU, main memory, input devices, output devices, and
network interfaces. It is the “glue” that allows users and applications
to interact with the hardware of a computer. Operating systems allow
application developers to write programs without having to handle low-
level details such as how to deal with every possible hardware device,
like the hundreds of different kinds of printers that a user could possibly
connect to his or her computer. Thus, operating systems allow application
programs to be run by users in a relatively simple and consistent way.

Operating systems handle a staggering number of complex tasks, many
of which are directly related to fundamental security problems. For ex-
ample, operating systems must allow for multiple users with potentially
different levels of access to the same computer. For instance, a university
lab typically allows multiple users to access computer resources, with some
of these users, for instance, being students, some being faculty, and some
being administrators that maintain these computers. Each different type of
user has potentially unique needs and rights with respect to computational
resources, and it is the operating system’s job to make sure these rights and
needs are respected while also avoiding malicious activities.

In addition to allowing for multiple users, operating systems also allow
multiple application programs to run at the same time, which is a concept
known as multitasking. This technique is extremely useful, of course, and
not just because we often like to simultaneously listen to music, read email,
and surf the Web on the same machine. Nevertheless, this ability has an
implied security need of protecting each running application from interfer-
ence by other, potentially malicious, applications. Moreover, applications
running on the same computer, even if they are not running at the same
time, might have access to shared resources, like the filesystem. Thus, the
operating system should have measures in place so that applications can’t
maliciously or mistakenly damage resources needed by other applications.

These fundamental issues have shaped the development of operating
systems over the last decades. In this chapter, we explore the topic of
operating system security, studying how operating systems work, how they
are attacked, and how they are protected. We begin our study by discussing
some of the fundamental concepts present in operating systems.

3.1. Operating Systems Concepts

The kernel is the core component of the operating system. It handles the
management of low-level hardware resources, including memory, proces-
sors, and input/output (I/O) devices, such as a keyboard, mouse, or video
display. Most operating systems define the tasks associated with the kernel
in terms of a layer metaphor, with the hardware components, such as the
CPU, memory, and input/output devices being on the bottom, and users
and applications being on the top.

The operating system sits in the middle, split between its kernel, which
sits just above the computer hardware, and nonessential operating system
services (like the program that prints the items in a folder as pretty icons),
which interface with the kernel. The exact implementation details of the
kernel vary among different operating systems, and the amount of respon-
sibility that should be placed on the kernel as opposed to other layers of
the operating system has been a subject of much debate among experts. In
any case, the kernel creates the environment in which ordinary programs,
called userland applications, can run. (See Figure 3.1.)

- Operating System

The OS Kernel

CPU, Memory, Input/

- Hardware

Output

Figure 3.1: The layers of a computer system.

Input/Output Devices

The input/output devices of a computer include things like its keyboard,
mouse, video display, and network card, as well as other more optional
devices, like a scanner, Wi-Fi interface, video camera, USB ports, and other
input/output ports. Each such device is represented in an operating system
using a device driver, which encapsulates the details of how interaction
with that device should be done. The application programmer interface

115

116

Chapter 3. Operating Systems Security

(API), which the device drivers present to application programs, allows
those programs to interact with those devices at a fairly high level, while
the operating system does the “heavy lifting” of performing the low-level
interactions that make such devices actually work. We discuss some of
the security issues related to input/output devices in the previous chapter
(Section 2.4.2), including acoustic emissions and keyloggers, so we will
instead focus here on the operating system calls that are needed to make
input/output and other hardware interactions possible.

System Calls

Since user applications don’t communicate directly with low-level hard-
ware components, and instead delegate such tasks to the kernel, there
must be a mechanism by which user applications can request the kernel to
perform actions on their behalf. In fact, there are several such mechanisms,
but one of the most common techniques is known as the system call, or
syscall for short. System calls are usually contained in a collection of
programs, that is, a library such as the C library (libc), and they provide
an interface that allows applications to use a predefined series of APIs
that define the functions for communicating with the kernel. Examples
of system calls include those for performing file I/O (open, close, read,
write) and running application programs (exec). Specific implementation
details for system calls depend on the processor architecture, but many
systems implement system calls as software interrupts—requests by the
application for the processor to stop the current flow of execution and
switch to a special handler for the interrupt. This process of switching
to kernel mode as a result of an interrupt is commonly referred to as a
trap. System calls essentially create a bridge by which processes can safely
facilitate communication between user and kernel space. Since moving into
kernel space involves direct interaction with hardware, an operating system
limits the ways and means that applications interact with its kernel, so as
to provide both security and correctness.

The kernel defines the notion of a process, which is an instance of a program
that is currently executing. The actual contents of all programs are initially
stored in persistent storage, such as a hard drive, but in order to actually be
executed, the program must be loaded into random-access memory (RAM)
and uniquely identified as a process. In this way, multiple copies of the
same program can be run by having multiple processes initialized with

3.1. Operating Systems Concepts

the same program code. For example, we could be running four different
instances of a word processing program at the same time, each in a different
window.

The kernel manages all running processes, giving each a fair share of the
computer’s CPU(s) so that the computer can execute the instructions for all
currently running applications. This time slicing capability is, in fact, what
makes multitasking possible. The operating system gives each running
process a tiny slice of time to do some work, and then it moves on to the
next process. Because each time slice is so small and the context switching
between running processes happens so fast, all the active processes appear
to be running at the same time to us humans (who process inputs at a much
slower rate than computers).

Users and the Process Tree

As mentioned above, most modern computer systems are designed to
allow multiple users, each with potentially different privileges, to access
the same computer and initiate processes. When a user creates a new
process, say, by making a request to run some program, the kernel sees this
as an existing process (such as a shell program or graphical user interface
program) asking to create a new process. Thus, processes are created by a
mechanism called forking, where a new process is created (that is, forked)
by an existing process. The existing process in this action is known as the
parent process and the one that that is being forked is known as the child
process.

On most systems, the new child process inherits the permissions of its
parent, unless the parent deliberately forks a new child process with lower
permissions than itself. Due to the forking mechanism for process creation,
which defines parent-child relationships among processes, processes are or-
ganized in a rooted tree, known as the process tree. In Linux, the root of this
tree is the process init, which starts executing during the boot process right
after the kernel is loaded and running. Process init forks off new processes
for user login sessions and operating system tasks. Also, init becomes the
parent of any “orphaned” process, whose parent has terminated.

Process IDs

Each process running on a given computer is identified by a unique non-
negative integer, called the process ID (PID). In Linux, the root of the
process tree is init, with PID 0. In Figure 3.2, we show an example of the
process tree for a Linux system, in both a compact form and an expanded
form.

117

118 Chapter 3. Operating Systems Security

init-+-Xprt init(1)-+-Xprt(1166)
|-6*[artsd] |-artsd(29493, shitov)
|-atd | -artsd(18719,accharle)
| ~automount---22*[{automount}] |-artsd(25796,mdamiano)
| -avahi-daemon---avahi-daemon |-artsd (16834, mchepkwo)
|-3*[bonobo-activati---{bonobo-activati}] |-artsd(25213,x11)
| -console-kit-dae---63*[{console-kit-dae}] |-artsd(27782,wc9)

|-cron | -atd(4031,daemon)
| -cupsd | -automount(3434) -+-{automount} (3435)
| —dbusjdaemcn | | -{automount} (3436)
| »dl)c] ient3 | | -{automount} (3439)
| -dirmngr | | -{automount}(3442)
|-esd | | -{automount}(3443)
|-gdm-—-gdm—f—xorg . | | -{automount}(3444)
| -gdmlogin | | -{automount}(3445)
[-6*[getty] | | -{automount}(3446)
| -gmond---6*[{gmond}] | | -{automount}(3447)
|-hald---hald-runner-+-hald-addon-acpi | | -{automount}(3448)
| l -hald-addon-inpu | | -{automount} (3449)
|) -hald-addon-stor | | -{automount}(3450)
|-hcid | | -{automount}(3451)
I—hogd | | -{automount}(3452)
|-inetd | | -{automount}(3453)
l-k?ogd | | -{automount}(3454)
|-1isa . | | -{automount}(3455)
|»master»f-p1 ckup | | -{automount}(3456)
. -qmgr | | -{automount}(3457)
| -monit---{monit} | | -{automount}(3458)
|-nscd---8*[{nscd}] | | -{automount} (3459)
|-ntpd | " -{automount}(3460)
I—por'"tmap | -avahi-daemon(2772,avahi)---avahi-daemon(2773)
| -privoxy | -bonobo-activati (6261, pmartada)---{bonobo-activati}(6262)
|-rpc.statd | -bonobo-activati (2059, j1albert)---{bonobo-activati}(2060)

| -rwhod---rwhod
| -sshd---sshd---sshd---tcsh---pstree

| -bonobo-activati(2684,bcrow)---{bonobo-activati}(2690)
|-console-kit-dae(31670)-+-{console-kit-dae}(31671)

| -syslogd |-{console-kit-dae}(31673)
| -system-tools-ba |-{console-kit-dae}(31674)
| -udevd |-{console-kit-dae}(31675)

|-{console-kit-dae}(31676)

|-{console-kit-dae}(31677)

|

|

|

| -vmnet-bridge |
| -2*[vmnet-dhcpd] |
|

|

| -vmnet-natd . |-{console-kit-dae}(31679)
: »2;[vmnet—net1 fup] |-{console-kit-dae} (31680)
-xfs
“-zhm

(a) (b)

Figure 3.2: The tree of processes in a Linux system produced by the pstree
command. The process tree is visualized by showing the root on the
upper left-hand corner, with children and their descendants to the right
of it. (a) Compact visualization where children associated with the same
command are merged into one node. For example, 6*[artsd] indicates that
there are six children process associated with artsd, a service that manages
access to audio devices. (b) Fragment of the full visualization, which also
includes process PIDs and users.

Process Privileges

To grant appropriate privileges to processes, an operating system associates
information about the user on whose behalf the process is being executed
with each process. For example, Unix-based systems have an ID system
where each process has a user ID (uid), which identifies the user associated
with this process, as well as a group ID (gid), which identifies a group of
users for this process. The uid is a number between 0 and 32,767 (0x7fff in

3.1. Operating Systems Concepts

hexadecimal notation) that uniquely identifies each user. Typically, uid 0 is
reserved for the root (administrator) account. The gid is a number within
the same range that identifies a group the user belongs to. Each group
has a unique identifier, and an administrator can add users to groups to
give them varying levels of access. These identifiers are used to determine
what resources each process is able to access. Also, processes automatically
inherit the permissions of their parent processes.

In addition to the uid and gid, processes in Unix-based systems also
have an effective user ID (euid). In most cases, the euid is the same as the
uid—the ID of the user executing the process. However, certain designated
processes are run with their euid set to the ID of the application’s owner,
who may have higher privileges than the user running the process (this
mechanism is discussed in more detail in Section 3.3.3). In these cases, the
euid generally takes precedence in terms of deciding a process’s privileges.

Inter-Process Communication

In order to manage shared resources, it is often necessary for processes to
communicate with each other. Thus, operating systems usually include
mechanisms to facilitate inter-process communication (IPC). One simple
technique processes can use to communicate is to pass messages by reading
and writing files. Files are are readily accessible to multiple processes as
a part of a big shared resource—the filesystem—so communicating this
way is simple. Even so, this approach proves to be inefficient. What if
a process wishes to communicate with another more privately, without
leaving evidence on disk that can be accessed by other processes? In
addition, file handling typically involves reading from or writing to an
external hard drive, which is often much slower than using RAM.

Another solution that allows for processes to communicate with each
other is to have them share the same region of physical memory. Processes
can use this mechanism to communicate with each other by passing mes-
sages via this shared RAM memory. As long as the kernel manages the
shared and private memory spaces appropriately, this technique can allow
for fast and efficient process communication.

Two additional solutions for process communication are known as pipes
and sockets. Both of these mechanisms essentially act as tunnels from
one process to another. Communication using these mechanisms involves
the sending and receiving processes to share the pipe or socket as an in-
memory object. This sharing allows for fast messages, which are produced
at one end of the pipe and consumed at the other, while actually being in
RAM memory the entire time.

119

120

Chapter 3. Operating Systems Security

Signals

Sometimes, rather than communicating via shared memory or a shared
communication channel, it is more convenient to have a means by which
processes can send direct messages to each other asynchronously. Unix-
based systems incorporate signals, which are essentially notifications sent
from one process to another. When a process receives a signal from another
process, the operating system interrupts the current flow of execution of
that process, and checks whether that process has an appropriate signal
handler (a routine designed to trigger when a particular signal is received).
If a signal handler exists, then that routine is executed; if the process does
not handle this particular signal, then it takes a default action. Terminating
a nonresponsive process on a Unix system is typically performed via sig-
nals. Typing Ctrl-C in a command-line window sends the INT signal to the
process, which by default results in termination.

Remote Procedure Calls

Windows supports signals in its low-level libraries, but does not make
use of them in practice. Instead of using signals, Windows relies on the
other previously mentioned techniques and additional mechanisms known
as remote procedure calls (RPC), which essentially allow a process to call
a subroutine from another process’s program. To terminate a process,
Windows makes use of a kernel-level API appropriately named Termi-
nateProcess(), which can be called by any process, and will only execute
if the calling process has permission to kill the specified target.

Daemons and Services

Computers today run dozens of processes that run without any user in-
tervention. In Linux terminology, these background processes are known
as daemons, and are essentially indistinguishable from any other process.
They are typically started by the init process and operate with varying levels
of permissions. Because they are forked before the user is authenticated,
they are able to run with higher permissions than any user, and survive the
end of login sessions. Common examples of daemons are processes that
control web servers, remote logins, and print servers.

Windows features an equivalent class of processes known as services.
Unlike daemons, services are easily distinguishable from other processes,
and are differentiated in monitoring software such as the Task Manager.

3.1. Operating Systems Concepts

Another key component of an operating system is the filesystem, which is
an abstraction of how the external, nonvolatile memory of the computer
is organized. Operating systems typically organize files hierarchically into
folders, also called directories.

Each folder may contain files and/or subfolders. Thus, a volume, or
drive, consists of a collection of nested folders that form a tree. The topmost
folder is the root of this tree and is also called the root folder. Figure 3.3
shows a visualization of a file system as a tree.

¥ Wrogeam Fieommien Fles\Sysiamtiady
Ble Bt Sew Ppvartes Took :

st tros

oy CiProgas BusiCnsemns Fhrsitysamhuts

£ S Lo Ok £2
® ATt
G5 Dell
& £ Docwansks and Suttins
¥ 5y FEI sl SR e S R I 3BT
Y gkt
& £ piscache.
B L2 My Waldy Dosusents
5 Frogram Fins
Y troadkss
1 Caroril
@ 7 Sommge Fis
B oy Canont
2 MRl Stond
& £y ot
2y Sarvivet
& 3 TpsestEnyiney

Figure 3.3: A filesystem as a tree, displayed by Windows Explorer.

File Access Control

One of the main concerns of operating system security is how to delineate
which users can access which resources, that is, who can read files, write
data, and execute programs. In most cases, this concept is encapsulated in
the notion of file permissions, whose specific implementation depends on
the operating system. Namely, each resource on disk, including both data
files and programs, has a set of permissions associated with it.

121

122

Chapter 3. Operating Systems Security

File Permissions

File permissions are checked by the operating system to determine if a
file is readable, writable, or executable by a user or group of users. This
permission data is typically stored in the metadata of the file, along with
attributes such as the type of file. When a process attempts to access a
file, the operating system checks the identity of the process and determines
whether or not access should be granted, based on the permissions of the
file.

Several Unix-like operating systems have a simple mechanism for file
permissions known as a file permission matrix. This matrix is a represen-
tation of who is allowed to do what to the file, and contains permissions
for three classes, each of which features a combination of bits. Files have
an owner, which corresponds to the uid of some user, and a group, which
corresponds to some group id.

First, there is the owner class, which determines permissions for the
creator of the file. Next is the group class, which determines permissions
for users in the same group as the file. Finally, the others class determines
permissions for users who are neither the owner of the file nor in the same
group as the file.

Each of these classes has a series of bits to determine what permissions
apply. The first bit is the read bit, which allows users to read the file. Second
is the write bit, which allows users to alter the contents of the file. Finally,
there is the execute bit, which allows users to run the file as a program
or script, or, in the case of a directory, to change their current working
directory to that one. An example of a file permission matrix for a set of
files in a directory is shown in Figure 3.4.

1 goodrich faculty 2496 Jul 27 08:43 Floats.class

1 goodrich faculty 2723 Jul 12 2006 Floats.java
1 goodrich faculty 460 Feb 25 2007 Test.java

Figure 3.4: An example of the permission matrices for several files on a Unix
system, using the Is - command. The Floats.class file has read, write,
and execute rights for its owner, goodrich, and nonowners alike. The
Floats.java file, on the other hand, is readable by everyone, writeable only
by its owner, and no one has execute rights. The file, Test.java, is only
readable and writable by its owner—all others have no access rights.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.283 x 9.055 inches / 185.0 x 230.0 mm
 Shift: move 下 by 11.34 points
 Normalise (advanced option): 'original'

 32

 D:20110806111024
 651.9685
 十六开
 Blank
 524.4094

 Tall
 1
 0
 No
 807
 234

 Fixed
 Down
 11.3386
 0.0000

 Both
 1
 AllDoc
 11

 CurrentAVDoc

 Uniform
 17.0079
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 qi2base

