Operators and
Expressions

[3.1] INTRODUCTION

C supports a rich set of built-in operators. We have already used several of them, such as =,
+, —, *, & and <. An operator is a symbol that tells the computer to perform certain math-
ematical or logical manipulations. Operators are used in programs to manipulate data and
variables. They usually form a part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:
Arithmetic operators
Relational operators
Logical operators
Assignment operators
Increment and decrement operators
Conditional operators
Bitwise operators
Special operators

An expression is a sequence of operands and operators that reduces to a single value. For

example,

PN oA W

10 + 15

is an expression whose value is 25. The value can be any type other than void.

[3.2] ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 3.1. The operators +, —
, ¥, and / all work the same way as they do in other languages. These can operate on any
built-in data type allowed in C. The unary minus operator, in effect, multiplies its single
operand by —1. Therefore, a number preceded by a minus sign changes its sign.

Operators and Expressions l 53

Table 3.1 Arithmetic Operators

Operator Meaning
+ Addition or unary plus
Subtraction or unary minus
* Multiplication
/ Division
% Modulo division

Integer division truncates any fractional part. The modulo division operation produces
the remainder of an integer division. Examples of use of arithmetic operators are:

a-b a+b
a*b al/b
a%b —-a*b

Here a and b are variables and are known as operands. The modulo division operator %
cannot be used on floating point data. Note that C does not have an operator for
exponentiation. Older versions of C does not support unary plus but ANSI C supports it.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic.
Integer arithmetic always yields an integer value. The largest integer value depends on the
machine, as pointed out earlier. In the above examples, if a and b are integers, then for a =
14 and b = 4 we have the following results:

a-b = 10
a+b = 18
a*b = 56
a/b = 3 (decimal part truncated)

a%b

During integer division, if both the operands are of the same sign, the result is truncated
towards zero. If one of them is negative, the direction of trunction is implementation
dependent. That is,

2 (remainder of division)

6/7=0and —6/~7=0

but —6/7 may be zero or —1. (Machine dependent)
Similarly, during modulo division, the sign of the result is always the sign of the first
operand (the dividend). That is

-14 %3 = -2
-14% -3 = -2
14%-3 = 2

Example 3.1 The program in Fig. 3.1 shows the use of integer arithmetic to convert a

given number of days into months and days.

54 | Programming in ANSI C

Program
main ()

{

int months, days ;

printf("Enter days\n") ;
scanf("%d", &days) ;

months = days / 30 ;

days = days % 30 ;

printf("Months = %d Days = %d", months, days) ;
}

Output
Enter days
265
Months = 8 Days = 25
Enter days
364
Months = 12 Days = 4
Enter days
45

Months = 1 Days = 15

Fig. 3.1 lllustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement
months = days/30;
truncates the decimal part and assigns the integer part to months. Similarly, the statement
days = days%30;
assigns the remainder part of the division to days. Thus the given number of days is
converted into an equivalent number of months and days and the result is printed as shown
in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real oper-
and may assume values either in decimal or exponential notation. Since floating point values
are rounded to the number of significant digits permissible, the final value is an approxima-
tion of the correct result. If x, y, and z are floats, then we will have:

x =6.0/7.0 = 0.857143

y =1.0/3.0 = 0.333333

z =-2.0/3.0 = -0.666667
The operator % cannot be used with real operands.

Operators and Expressions l 55

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-
mode arithmetic expression. If either operand is of the real type, then only the real operation
is performed and the result is always a real number. Thus

15/10.0=1.5
whereas

15/10=1

More about mixed operations will be discussed later when we deal with the evaluation of
expressions.

RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For
example, we may compare the age of two persons, or the price of two items, and so on. These
comparisons can be done with the help of relational operators. We have already used the
symbol ‘<‘, meaning ‘less than’. An expression such as

a<borl<20

containing a relational operator is termed as a relational expression. The value of a relational
expression is either one or zero. It is one if the specified relation is true and zero if the
relation is false. For example

10 <20 is true
but
20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown
in Table 3.2.

Table 3.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to
= is equal to

1= is not equal to

A simple relational expression contains only one relational operator and takes the
following form:

56 l Programming in ANSI C
| g g

ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or
combination of them. Given below are some examples of simple relational expressions and
their values:

4.5 <= 10 TRUE
4.5 <-10 FALSE
-35 >= 0 FALSE
10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of
¢ and d.

When arithmetic expressions are used on either side of a relational operator, the
arithmetic expressions will be evaluated first and then the results compared. That is,
arithmetic operators have a higher priority over relational operators.

Relational expressions are used in decision statements such as if and while to decide the
course of action of a running program. We have already used the while statement in Chapter
1. Decision statements are discussed in detail in Chapters 5 and 6.

Relational Operator Complements

Among the six relational operators, each one is a complement of another operator.

is complement of <=
is complement of >=
= is complement of I=

NV

We can simplify an expression involving the not and the less than operators
using the complements as shown below:

Actual one Simplified one
I(x<y) X >=y
H(x>y) X <=y
I(x!=y) X ==Y
I(x<=y) X >y
I(x>=y) x <y

Ix ==y) xl=vy

Operators and Expressions l 57

LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.
&& meaning logical AND
|| meaning logical OR
! meaning logical NOT
The logical operators && and | | are used when we want to test more than one condition
and make decisions. An example is:

a>b &&x==10
An expression of this kind, which combines two or more relational expressions, is termed
as a logical expression or a compound relational expression. Like the simple relational
expressions, a logical expression also yields a value of one or zero, according to the truth

table shown in Table 3.3. The logical expression given above is true only if a > b is ¢rue and
x == 10 is true. If either (or both) of them are false, the expression is false.

Table 3.3 Truth Table

Value of the expression

op-1 op-2

op-1 && op-2 op-1|| op-2
Non-zero Non-zero 1 1
Non-zero 0 0 1
0 Non-zero 0 1
0 0 0 0

Some examples of the usage of logical expressions are:
1. if (age > 55 && salary < 1000)
2. if (number < 0 | | number > 100)
We shall see more of them when we discuss decision statements.
NOTE: Relative precedence of the relational and logical operators is as follows:

Highest !

Lowest | |

It is important to remember this when we use these operators in compound expressions.

[3.5] ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have
seen the usual assignment operator, ‘=". In addition, C has a set of ‘shorthand’ assignment
operators of the form

58 l Programming in ANSI C
I g g

v op= exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The
operator op= is known as the shorthand assignment operator.
The assignment statement
vV op= exp;
is equivalent to
v =v op (exp);
with v evaluated only once. Consider an example
X += y+l;
This is same as the statement
x = x + (y+l);
The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’. For y = 2, the
above statement becomes

X += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the
new value of x is 8. Some of the commonly used shorthand assignment operators are
illustrated in Table 3.4.

Table 3.4 Shorthand Assignment Operators

Statement with simple Statement with
assignment operator shorthand operator
a=a+1 at+=1

a=a-—1 a—1

a=a*(ntl) a*=n+1
a=a/(nt+l) a/=n+l

a=a%b a%=>b

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes
easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement like
value(5*j-2) = value(5*j-2) + delta;
With the help of the += operator, this can be written as follows:
value(5*j-2) += delta;

It is easier to read and understand and is more efficient because the expression 5%j-2 is
evaluated only once.

Operators and Expressions I 59

Example 3. Program of Fig. 3.2 prints a sequence of squares of numbers. Note the
use of the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The state-
ment

a *= a;
which is identical to

a = a*a;
replaces the current value of a by its square. When the value of a becomes equal or greater
than N (=100) the while is terminated. Note that the output contains only three values 2, 4
and 16.

Program
#define N 100
#define A 2
main()
{
int a;
a = A;
while(a < N)
{
printf("%d\n", a);
a *= a;
}
}
Output
2
4
16

Fig. 3.2 Use of shorthand operator *=

INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the
increment and decrement operators:

++ and — -

The operator ++ adds 1 to the operand, while — — subtracts 1. Both are unary operators and
takes the following form:

60 l Programming in ANSI C
I g g

++tm; or mtt;
==l OF [ii==5

++m; is equivalent to m = m+l; (or m += 1;)
—-m; is equivalent tom = m-1; (or m —= 1;)
We use the increment and decrement statements in for and while loops extensively.
While ++m and m++ mean the same thing when they form statements independently,
they behave differently when they are used in expressions on the right-hand side of an
assignment statement. Consider the following:
m=5;
y = +Hm;
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements
as
m=5;
Y = mg
then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand
and then the result is assigned to the variable on left. On the other hand, a postfix operator
first assigns the value to the variable on left and then increments the operand.
Similar is the case, when we use ++ (or — —) in subscripted variables. That is, the statement
a[i++] = 10;
is equivalent to
a[i] = 10;
i = i+l;
The increment and decrement operators can be used in complex statements. Example:
m = n++ —j+10;
Old value of n is used in evaluating the expression. n is incremented after the evaluation.
Some compilers require a space on either side of n++ or ++n.

Rules for + + and — — Operators

e Increment and decrement operators are unary operators and they require
variable as their operands.

e When postfix ++ (or —-) is used with a variable in an expression, the
expression is evaluated first using the original value of the variable and then
the variable is incremented (or decremented) by one.

e When prefix + + (or — -) is used in an expression, the variable is incremented
(or decremented) first and then the expression is evaluated using the new
value of the variable.

e The precedence and associatively of ++ and — — operators are the same as
those of unary + and unary —.

Operators and Expressions l 61

CONDITIONAL OPERATOR

A ternary operator pair “? :” is available in C to construct conditional expressions of the form
expl ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the
expression exp?2 is evaluated and becomes the value of the expression. Ifexp1 is false, exp3 is
evaluated and its value becomes the value of the expression. Note that only one of the
expressions (either exp2 or exp3) is evaluated. For example, consider the following
statements.

a = 10;
b = 15;
x=(a>b) 2 a: b;

In this example, x will be assigned the value of b. This can be achieved using the if..else
statements as follows:

if (a > b)
X = a;
else
X = b;

BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipula-
tion of data at bit level. These operators are used for testing the bits, or shifting them right
or left. Bitwise operators may not be applied to float or double. Table 3.5 lists the bitwise
operators and their meanings. They are discussed in detail in Appendix I.

Table 3.5 Bitwise Operators

Operator Meaning
& bitwise AND
\ bitwise OR
A bitwise exclusive OR
<< shift left
>> shift right

SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator,
pointer operators (& and *) and member selection operators (. and —>). The comma and
sizeof operators are discussed in this section while the pointer operators are discussed in

