Chapter 3

Line Drawing Algorithms

~ Learning Objectives :~

The objectives of this chapter are to acquaint you with:

== Scan conversion line drawing
== Bresenham’s line drawing
= Drawing bar chart

= Problems

3.1 Prologue

In this chapter, we will explore the line drawing algorithms and their implementations in two-
dimensional space. Drawing a line is so simple! More so when you draw it in your computer
using two-dimensional graphics APl calls, with the help of standard compilers. Most of the
standard graphics libraries support usual routine with calls like line (Xq, Y1, X2, Y»), Where
(X1, Y1) and (X, Yo) are respectively the start and the end points of the line. Some graphics
libraries even provide more flexibility giving the user a set of choices to select line attributes
like thick or thin line, continuous or discontinuous line with various patterns. But how to select
those pixels between (x;, y1) and (X, Y») in the console screen which when turned “on”, form
the desired “digital” line? The term digital refers to 2D discrete or integer space representing
pixels in the computer screen. Since implementation of this line drawing involves scanning of
the computer screen, either row-wise or column-wise, these set of techniques are known as scan
conversion algorithms. We explore this in the following section.

114

Line Drawing Algorithms « 115

3.2 Scan Conversion Algorithm: A Simple Line Drawing
Algorithm

Consider the line equation y = mx + ¢ with slope m and intercept c. Also, take the point (x;, Vi)
to be the starting point from where the line needs to be drawn. Obviously, the screen being a
digital pixel space, (X, y;) are integers and all subsequent “on” pixels are integer points. Given
this, the y-coordinate y;,, of the next pixel on the line, for a change of the x-coordinate from
X 0 Xi41, IS given by

Yier = MXiyg + C
m(x + dx) + ¢ (3.1
mx, + ¢ + mdx
yi + mdx

The increment along x-direction is dx and for al practical purposes, we can take this to be unity,
i.e. dx = 1. Equation (3.1) then takes the form yi,; = y; + m. But it does not guarantee y;,; to
be an integer; because, usualy, the slope m would be a real number rather than an integer. To
make y;,; an integer, it is necessary that

Yi«1 = round (y; + m) (3.2
and typically, the rounding® function is given by
round (&) = floor (g + 0.5)
Therefore, the algorithm for drawing line between points (sx, sy) and (ex, ey) would be:

function line (int sx, int sy, int ex, int ey, BYTE color)

{

dy = ey — sy;
dx = ex - sx;
m = dy/dx;
X = SX;
y = Sy;
OnPixel (x, y, color);
for (x = (sx+1); x < ex; xX++)
{
y =y tm

OnPixel (x, round(y), color);
}
}

The implicit assumption behind the above function is that =1 < m < 1. This implies that for
every unit step along x-direction (dx = 1), there is a maximum unit step change aong the

1 Rounding a non-negative number to the nearest integer is carried out by adding 0.5 and truncating (taking the
floor value). Floor function of a number is the largest integer not greater than the number. Thus, floor
(3.2)=floor(3.0)=floor(3.8)=3 and round(3.0)=round(2.5)=round(2.7)=round(3.2) =3

116 w» Computer Graphics: Algorithms and Implementations

y-direction (y;;; — Yy, = dy < 1). This situation does not hold for m > 1 and dx = 1,
dy > 1. How will it affect the continuity of the line? Think carefully, you still get a line, but
there are chances that a few points will be scattered, and an undesired gap between two
subsequent points on the line may exist. Discontinuity will appear on the line as the difference
between two consecutive y-coordinate values of pixels will be greater than unity. The remedy
is simple! For m > 1, reverse the increment order:

Increment along y-axis: yi. =y, +dy, dy=1
Y _C
m m
_Yitdy ¢
m m

LA
m

Increment along x-axis: X+, =

c
m
(j+—(S|ncedy A

=X +E (3.3

To get the corresponding integer x-coordinate, X4 = round (x; + 1/m). This process is similar
to solving a differential equation by the numerical methods, and is often referred to as digital
differential analyzer (DDA). This works well but what happens if you are conscious about the
time complexity of the algorithm. Well, in that case the grey area is obviously the rounding
function, especially when it is being executed quite a few times while drawing even asmall line.
Let us see if we can improve this aspect.

3.3 Bresenham’s Scan Conversion Algorithm

Bresenham has provided a computationally attractive scan conversion algorithm, commonly
known as Bresenham's scan conversion algorithm for line drawing. Following Bresenham
algorithm, let us rewrite the line equation y = mx + c in the form y = (dy/dx)x + c. Equivalently,
a function f(x, y) is given by

f(x, y) = x(dy) — y(dx) + c(dx) = 0 (34)
Comparing Eq. (3.4) with aline equation of the form Ax + By + C = 0, the coefficients are given
by A =dy, B=—dx and C = ¢(dx). Referring to the line in Figure 3.1, and Eq. (3.4), f(x, y) =0
for the point P(x, y) on the line, positive for points above the line and negative for points below
the line. Stating this with respect to the mid point m(x + 1, y + 1/2), as shown in Figure 3.1,
we have to evaluate the function of Eq. (3.4) with the following conditions in order to select
the next point on the line:

o |f f(x +1,y+ 1/2) <0, we choose pixel NE to be on the digital line
o |f f(x +1,y+ 1/2) <0, we choose pixel E to be on the digital line

Line Drawing Algorithms « 117

o If f(x + 1, y+ 1/2) =0, we choose any one of pixel E or NE but we should be
consistent throughout the entire line drawing process.

A

P(x, y) Next pixel

Figure 3.1 |Illustration of the Bresenham algorithm (for the current point P(x, y) and the mid point m, if
f(m) > 0, the NE pixel is chosen; otherwise, the choice is pixel E).

Now, let us formalize the selection of the next pixel on the line against the current selection
of East (E) or North-East (NE) pixel. If E is chosen as the current pixel, the coordinate of the
corresponding (next) mid point mg is (X + 2, y + 1/2).

f(mg) = f(x+2,y+%)=A(x+2)+B(y+%)+C
Since
f(m)=A(x+1)+B(y+%)+C

Therefore,
Afg = f(mg) — f(m) = A (3.5)

Instead, if NE is chosen as the current pixel following Figure 3.1, then

F(mye) = f(x+2,y+g)=A(x+2)+B(y+g)+c

Thus,
Afye = f(lmye) — f(m) = A+ B (3.6)

Further, if the first point on the line, that is, the starting point is (X, Yo), the immediate next
mid point is (X; + 1, yo + 1/2). The function f at this mid point is evaluated as

118 » Computer Graphics: Algorithms and Implementations

f(x0 +1,y0+%j=A(x0 +1)+B(y0+%)+c
B
=(Ax0+By0+C)+A+E

~ 10k, Y0) + A+ @7)

Now, (Xg, Yo) being the start point on the line, f(xg, Yo) is zero. Therefore, the starting increment
is A + B/2. Note that even the fraction in the starting increment can be eliminated by multiplying
the entire line equation, i.e. Eq. (3.7) by 2: f(x, y) = 2(Ax + By + C). It does not affect the
decision based on the sign of the line function value f(m) at the mid point but reduces the
complexity by removing the fraction. Then the start increment is changed from (A + B/2) to
(2A + B). The advantages are clear—no floating-point operation is involved in the scan
conversion. The complete agorithm is, therefore:

function BresenhamLine (int sx, int sy, int ex, int ey, BYTE color)
{
dx ex — sx; // B —-dx
dy ey - sy; // A dy
d = 2dy - dx; // the first increment
inE = 2dy; // increment for selection of E
inNE = 2(dy - dx);
// increment for selection of NE
X = SX;
y = sy;
OnPixel (x, y, color); // the first point
while (x <= ex)
{
if d <= 0 then // E is selected
{
d
X
}
else

{
// NE is selected

d + inE;
x + 1;

d = d + inNE;
x =x + 1;
y =y + 1

}
OnPixel (x, vy, color);
}
t

In subsequent sections, we will write a program to implement the scan conversion algorithm and
Bresenham'’s line drawing agorithm.

Line Drawing Algorithms « 119

3.3.1 Implementation

During execution, first a window is displayed and it contains a menu bar with Line, Clear
and Exit menu. Line menu contains Scan Line and Bresenham’s Line submenus.
The Clear menu is for erasing the content of the window and Exit menu is for stopping
the execution process. At any point of time, if the user chooses the Clear menu item, the
content of the screen is erased and subsequently, all menu items are enabled.

After the user clicks on Scan Line or Bresenham’ s Line menu item, the user starts
putting the points (two end vertices of the line) on the window by clicking the left mouse
button. While drawing the line, the menu item Scan Line or Bresenham’s Line
(whichever is used) gets disabled, and only the Clear and Exit menu items remain enabled.
As the user is marking the end vertices of the line on the screen by clicking left mouse buttons,
at any point of time if the user decides not to continue or start afresh, the user may choose to
exit the application or clear the screen and start afresh. The second left mouse button click puts
the second end point and also completes the line drawing algorithm using the chosen algorithm
(Scan Line or Bresenham'’s Line). Upon clearing the window canvas, the menu items
Scan Line or Bresenham’s Line get enabled again.

The execution of the Clear and the Exit buttons are aready discussed in previous
chapters. In this chapter, we will follow the program example similar to Program Source
Code 2.1 with certain changes as needed.

Also note that whenever the window is resized, the window area is not erased, thus the
window content remains intact.

Program files used

Sour ce files

Line.cpp Line drawing functions (including Bresenham'’s line drawing) as well as
some related supporting functions.

DrawLine.cpp Other utility functions for drawing utilities and using the line drawing

functions.
WMain.cpp Almost identical as in Program Source Code 2.1; only the window title
is changed.
Header files
windows.h (system header file)
Line.h Function declarations for using line drawing related functions
DrawLine.h Line drawing related specific header file
Resour ce file
Linerc Line drawing specific resource script for menu items
Code

Program Source Code 3.1

Line.rc

1. /* Line Drawing */

120

» Computer Graphics: Algorithms and Implementations

2. #include “DrawLine.h”
3. MyMenu MENU DISCARDABLE
4. BEGIN
5. POPUP “&Line”
6. BEGIN
7. MENUITEM “&Scan Line”, ID_SCLINE
8. MENUITEM “&Bresenham’s Line”, ID BLINE
9. END
10. MENUITEM “&Clear”, ID CLEAR
11. MENUITEM “&¢Exit”, ID EXIT
12. END
Line.h
1 void calculateSlope (POINT start, POINT end,
2 bool& bVerticalLine, floats& m);
3 // For Bresenham’s line drawing
4. void drawLineSegment (HDC hdc, POINT start, POINT end, COLORREF clr);
5. void drawNextLineSegment (POINT end, COLORREF clrLine);
6 void setupLineSegmentDrawing (HDC hdc, POINT& start, POINT& end);
7 bool findNextPtInLineSegment (POINT end, POINT& nextPt);
8. // For scan line drawing
9. void drawScanLineSegment (HDC hdc, POINT start,POINT end,COLORREF clr);
10. void drawNextScanLineSegment (POINT end, COLORREF clr);
11. void setupScanLineSegmentDrawing (HDC hdc, POINT& start, POINT& end);
12. bool findNextPtInScanLineSegment (POINT end, POINT& nextPt);

DrawLine.h

O J oy U WN

#define ID SCLINE 40001
#define ID BLINE 40004
#define ID CLEAR 40002
#define ID EXIT 40003

typedef enum

{
READY MODE,
SCLINE_MODE,
BLINE MODE,
DRAWN_MODE

} MODE;

const int nMaxNoOfPts = 2;

typedef struct
{
HDC hdcMem;
HBITMAP hbmp;
HPEN hDrawPen;
MODE drawMode;
POINT pts[nMaxNoOfPts];/* points of the line */
SIZE maxBoundary;
int nPts; /* end points of line */
} DRAWING_DATA;

Line Drawing Algorithms « 121

Line.cpp |
1. #include <windows.h>
2.
3. typedef struct
4. {
5. HDC hdc;
6. bool bVerticallLine;
7. float m;
8. long d, ine, inne;
9. int linetype;
10. float x, vy;
11. } LINE SEGMENT DATA;
12.
13. typedef struct
14. {
15. HDC hdc;
16. bool bVerticallLine;
17. float m;
18. int linetype;
19. float x, vy;
20. } SCANLINE SEGMENT_ DATA;
21
22 // global data for scan line drawing as contiguous segments
23 SCANLINE SEGMENT DATA gscl;
24
25 // global data for Bresenham’s line drawing as contiguous segments
26 LINE SEGMENT_ DATA gbrl;
27
28. void calculateSlope (POINT start, POINT end,
29. bool& bVerticallLine, float& m)
30. {
31 if (end.x == start.x)
32 bVerticalline = true;
33 else
34 {
35 m = ((float) (end.y - start.y))/((float) (end.x - start.x));
36 bVerticalline = false;
37 }
38. }
39.
40. void rearrangeOnX(long &sx, long &sy, long &ex, long &ey)
41. {
42. long tempx, tempy;
43. if(sx > ex)
44 . {
45. tempx=ex; tempy=ey;
46. ex=sx;ey=sy;
47. sx=tempx; sy=tempy;
48. }
49. }
50.
51 void rearrangeOnY (long &sx, long &sy, long &ex, long &ey)

{

122 w Computer Graphics: Algorithms and Implementations

53. long tempx, tempy;

54. if(sy > ey)

55. {

56. tempx=ex; tempy=ey;

57. ex=sx;ey=sy;

58. sx=tempx; sy=tempy;

59. }

60. }

61.

62. // for Bresenham’s line drawing

63. void setupLineSegmentDrawing (HDC hdc, POINT& start, POINT& end)
64. {

65. // setup global line segment data for entire line stretch
66. // start and end points of line get rearranged after the call
67.

68. long dx;

69. long dy;

70.

71. gbrl.hdc = hdc;

72. calculateSlope (start, end, gbrl.bVerticallLine, gbrl.m);
73.

74 . if (gbrl.bVerticallLine)

75. {

76. rearrangeOnY (start.x,start.y,end.x,end.y);
77. gbrl.linetype = 1;

78. }

79. else

80. {

81. // non-vertical line

82. if((gbrl.m >= 0) && (gbrl.m <= 1))

83. {

84. rearrangeOnX (start.x,start.y,end.x,end.y);
85. gbrl.linetype = 2;

86. }

87. else if((gbrl.m >= -1) && (gbrl.m < 0))

88. {

89. rearrangeOnX (start.x,start.y,end.x,end.y);
90. gbrl.linetype = 3;

91. }

92. else if (gbrl.m > 1)

93. {

94 . rearrangeOnY (start.x,start.y,end.x,end.y);
95. gbrl.linetype = 4;

96. }

97. else

98. {

99. // gbrl.m < -1
100. rearrangeOnY (start.x,start.y,end.x,end.y);
101. gbrl.linetype = 5;
102. }
103. }
104.
105. dx = end.x - start.x;

106. dy = end.y - start.y;

Line Drawing Algorithms

«

123

107.
108.
109.
110.
111.
112.
113.
114.
115.
1le.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
l46.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.

switch(gbrl.linetype)

{

case 2:

case 3:
if (dy < 0)
dy = -dy;

gbrl.d = 2*dy-dx;
gbrl.ine = 2*dy;

gbrl.inne = 2* (dy-dx);

break;
case 4:
case b:
if (dx < 0)
dx = -dx;

gbrl.d = 2*dx-dy;
gbrl.ine = 2*dx;

gbrl.inne = 2* (dx-dy);

break;
default:
break;
}
// set current position
gbrl.x = (float) start.x;
gbrl.y = (float) start.y;
}
bool

{

//
//
/7

findNextPtInLineSegment (POINT end,

POINT& nextPt)

find next pt in the line segment from current pt

upto and including end pt
return true if next point exists,

float ex, ey;

ex =
ey

(float) end.x;
(float) end.y;

nextPt.x = (int) gbrl.x;
nextPt.y = (int) gbrl.y;

switch(gbrl.linetype)

{

case 1:
if (gbrl.y <= ey)
{
gbrl.y++;
return true;
}

break;

case 2:
case 3:

false otherwise

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.283 x 9.055 inches / 185.0 x 230.0 mm
 Shift: 无
 Normalise (advanced option): 'original'

 32

 D:20110806111024
 651.9685
 十六开
 Blank
 524.4094

 Tall
 1
 0
 No
 281
 183

 None
 Down
 28.3465
 0.0000

 Both
 3
 AllDoc
 11

 CurrentAVDoc

 Uniform
 17.0079
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 qi2base

