第5章 形变特征建模

形变特征是在现有的特征基础上进行二次改变的特征命令,这类特征不需要绘制草 图。在 SolidWorks 建模中,形变特征包括边界特征、弯曲特征、压凹特征、变形特征、拔 模特征和圆顶特征。

5.1 筋 特 征

筋特征在轮廓与现有零件之间指定方向和厚度以进行延伸,可以使用单一或者多个草 图生成筋特征,也可以使用拔模生成筋特征,或者选择要拔模的参考轮廓。

5.1.1 筋特征的属性设置

单击【特征】工具栏中的 【筋】 按钮或者选择【插入】|【特征】|【筋】菜单命令,在【属性管理器】中弹出【筋】的属性设置,如图 5-1 所示。

1.【参数】选项组

(1)【厚度】: 在草图边缘添加筋的厚度。

• 🚍 【第一边】: 只延伸草图轮廓到草图的一边。

• 📕 【两侧】: 均匀延伸草图轮廓到草图的两边。

• 🚍 【第二边】: 只延伸草图轮廓到草图的另一边。

- (2) 《【筋厚度】: 设置筋的厚度。
- (3)【拉伸方向】: 设置筋的拉伸方向。
- 🔇 【平行于草图】: 平行于草图生成筋拉伸。

• 《【垂直于草图】: 垂直于草图生成筋拉伸。

选择不同选项时的效果如图 5-2 所示。

(a)选择面上单一开环草图生成筋特征 (箭头指示筋特征的方向)

(b)单击【平行于草图】按钮,生成筋特征

图 5-2 选择不同筋拉伸方向的效果

图 5-1 【筋】的属性设置

(c)选择平行基准面上的草图生成筋特征,与使用【拉伸 凸台/基体】具有相同的功能(箭头指示筋特征的方向)

(e)使用基准面上的草图生成筋特征,与使用【拉伸凸 台/基体】具有相同的功能(箭头指示筋特征的方向)

(d) 单击【垂直于草图】按钮, 生成筋特征

(f)单击【平行于草图】按钮,生成筋特征

图 5-2 (续)

- (4)【反转材料边】:更改拉伸的方向。
- (5) 💽 【拔模开/关】: 添加拔模特征到筋,可以设置【拔模角度】。
- •【向外拔模】: 生成向外拔模角度。
- (6)【类型】: 在【拉伸方向】中单击 《【垂直于草图】按钮时可用。
- ●【线性】: 生成与草图方向相垂直的筋。
- 【自然】: 生成沿草图轮廓延伸方向的筋。例如,如果草图为圆的圆弧,则自然使用圆形延伸筋,直到与边界汇合。
- 2.【所选轮廓】选项组

【所选轮廓】参数用来列举生成筋特征的草图轮廓。

5.1.2 生成筋特征的操作步骤

(1)单击选择【插入】 |【特征】 |【筋】菜单命令,在【属性管理器】中弹出【筋】的属性设置。在【参数】选项组中,单击【两侧】按钮,设置【筋厚度】为 30.00mm,在【拉伸方向】中单击【平行于草图】按钮,取消选择【反转材料方向】选项,如图 5-3 所示,单击 ✔ 【确定】按钮,如图 5-4 所示。

(2)在【参数】选项组中,选择【反转材料方向】选项,单击 ✔ 【确定】按钮,如图 5-5 所示。

(3) 在【参数】选项组中,在【拉伸方向】中单击【垂直于草图】按钮,取消选择【反

金筋 ?	
参数(P)	
★1 30.00mm 拉伸方向:	
□ 反转材料方向(E) 1.00度	

图 5-3 【筋】的属性设置

图 5-4 生成筋特征

转材料方向】选项,在【类型】中单击【线性】单选按钮,如图 5-6 所示,单击 ✔ 【确定】 按钮,如图 5-7 所示。

(4) 在【参数】选项组中,在【类型】中单击【自然】按钮,单击 ✔ 【确定】按钮, 如图 5-8 所示。

图 5-5 生成筋特征

图 5-7 生成筋特征(1)

图 5-6 【筋】的属性设置

图 5-8 生成筋特征 (2)

5.2 孔 特 征

孔特征是在模型上生成各种类型的孔。在平面上放置孔并设置深度,可以通过标注尺 寸的方法定义它的位置。

5.2.1 孔特征的属性设置

1. 简单直孔

单击选择【插入】|【特征】|【孔】|【简单直孔】菜单命令,在【属性管理器】中弹出【孔】的属性设置,如图 5-9 所示。

(1)【从】选项组(如图 5-10 所示)。

[] 7L	?
✓ X	
从(E)	~
草图基准面	•
方向1	~
给定深度	•
*	
⊀D1 30.00mm	•
Ø 10.00mm	* *
	* *
▶ 向外拔模(<u>○</u>)	

图 5-9	【孔】	的属性设置	

从(E)	*
方向	草图基准面 草图基准面 曲面/面/基准面 等距

图 5-10 【从】选项组选项

- ●【草图基准面】: 从草图所在的同一基准面开始生成简单直孔。
- ●【曲面/面/基准面】:从这些实体之一开始生成简单直孔。
- ●【顶点】:从所选择的顶点位置处开始生成简单直孔。
- ●【等距】: 从与当前草图基准面等距的基准面上生成简单直孔。
- (2)【方向1】选项组。
- 终止条件:其选项如图 5-11 所示。

【给定深度】: 从草图的基准面以指定的距离延伸特征。

【完全贯穿】: 从草图的基准面延伸特征直到贯穿所有现有的 几何体。

【成形到下一面】: 从草图的基准面延伸特征到下一面以生成 图 5-11 【终止条件】选项特征。

【成形到一顶点】: 从草图基准面延伸特征到某一平面,这个平面平行于草图基准面且 穿越指定的顶点。

【成形到一面】: 从草图的基准面延伸特征到所选的曲面以生成特征。

【到离指定面指定的距离】:从草图的基准面到某面的特定距离处生成特征。

- /【拉伸方向】:用于除了垂直于草图轮廓以外的其他方向拉伸孔。
- 💑 【深度】或者【等距距离】: 设置深度数值。
- 🖉 【孔直径】:设置孔的直径。
- 💽 【拔模开/关】:设置【拔模角度】。

2. 异型孔

单击【特征】工具栏中的圖【异型孔向导】按钮或者单 击选择【插入】|【特征】|【孔】|【向导】菜单命令,在【属 性管理器】中弹出【孔规格】的属性设置,如图 5-12 所示。

(1)【孔规格】的属性设置包括两个选项卡。

- ●【类型】: 设置孔类型参数。
- 【位置】: 在平面或者非平面上找出异型孔向导,使 用尺寸和其他草图绘制工具定位孔中心。

(2)【孔规格】选项组。

- ●【标准】:选择孔的标准,如 Ansi Metric 或者 JIS 等。
- ●【类型】: 选择孔的类型,以 Ansi Inch 标准为例, 其选项如图 5-13 所示(【旧制孔】为在 SolidWorks 2000 版本之前生成的孔,在此 不做赘述)。

	*]]]
标准:	
Ansi Inch	•
类型:	
平头螺钉(100)	•
平头螺钉(100)	
- 椭圆头	"
锥孔凹头盖螺钉	
#0	•
配合:	
正常	-
□ 显示自定义大小(Z)	
(b) 锥孔	

孔类型(T) ~ T Π \square 标准: Ansi Inch • 类型: 分级钻孔大小 Ŧ 分级钻孔大小 字毋钻孔: 所有钻孔: 数字钻孔大小 管螺纹钻孔 螺旋螺纹钻孔 螺纹钻孔 螺钉间隙 (c) 孔

孔类型(]	D	~
	Ŧ	
标准:		
GB		•
类型:		
底部螺纹	犼	•
[展前][1] 直管螺纹 螺纹孔	रमे. स्म	,
(d) 螺约	文孔

图 5-13 【类型】选项

◎ 孔规格	
✓ X	
收藏(E) ☆	
S C C C C C C C C C C C C C C C C C C C	终止条件(<u>C</u>)
没有选择收藏 👤	🍫 给定深度
孔类型(<u>1</u>) ☆	\ ∫ I 23.00mm ÷@
TTU	螺纹线: 给定深度(2*DIA) 💌
	10.00mm
标准:	选项
GB 、 类型:	
底部螺纹孔	▶ 帯螺纹标注
刀提赼 ◇	□ 螺纹线等级
大小:	☑ 近端锥孔(5)
M10×1.0	10.050mm ÷
□ 显示自定义大小(Z)	☆ 嘘 ÷

图 5-12 【孔规格】的属性设置

【大小】: 为螺纹件选择尺寸大小。
【配合】: 为扣件选择配合形式。其选项如图 5-14 所示。
(3)【截面尺寸】选项组。
双击任一数值可以进行编辑。
(4)【终止条件】选项组。
【终止条件】选项组中的参数根据孔类型的变化而有所不同。
【官孔深度】(在设置【终止条件】为【给定深度】时可用):设定孔的深度。对于【螺纹孔】,可以设置【螺纹线类度】,如图 5-15 所示;对于【管螺纹孔】,可以设置【螺纹线深度】,如图 5-16 所示。

(5)【选项】选项组(如图 5-17 所示)。

终止条件(C) 分 给定深度

	\\ I 23.00mm <u>÷</u> @
	螺纹线:
图 5-15	设置【螺纹孔】的【终止条件】

为【给定深度】

终止条件(<u>C</u>)	~
螺纹孔钻孔:	
🗾 给定深度	-
Ն⊈ [11.59mm	÷
螺纹线:	
€.89mm	*

图 5-16 设置【管螺纹孔】的【终止条件】 为【给定深度】

(6)【收藏】选项组。

用于管理可以在模型中重新使用的常用异型孔清单,如图 5-18 所示。

☑ 带螺纹标注
□ 螺纹线等级
☑ 近端锥孔(5)
↓ 10.050mm ÷

图 5-17 【选项】选项组

收藏(F)	_ ☆ _
r the	£
没有选择收藏	•

图 5-18 【常用类型】选项组

- 🖉 【应用默认/无常用类型】: 重设到【没有选择最常用的】及默认设置。
- 🖬 【添加或更新常用类型】: 将所选异型孔添加到常用类型清单中。
- 🗹 【删除常用类型】: 删除所选的常用类型。
- 圖【保存常用类型】: 保存所选的常用类型。

● ☞【装入常用类型】:载入常用类型。

(7)【自定义大小】选项组(如图 5-19 所示)。
【自定义大小】选项组会根据孔类型的不同而发生变化。

5.2.2 生成孔特征的操作步骤

图 5-19 【自定义大小】选项组

(1)单击选择【插入】 | 【特征】 | 【孔】 | 【简单直孔】菜单命令,在【属性管理器】 中弹出【孔】的属性设置。在【从】选项组中,选择【草图基准面】,如图 5-20 所示;在 【方向 1】选项组中,设置【终止条件】为【给定深度】,【深度】为 30.00mm,【孔直径】 为 30.00mm,【拔模角度】为 26.00 度,单击 ✓ 【确定】按钮,如图 5-21 所示。

图 5-20 【孔】的属性设置

图 5-21 生成简单直孔特征

(2)单击选择【插入】 | 【特征】 | 【孔】 | 【向导】菜单命令,在【属性管理器】中 弹出【孔规格】的属性设置。选择【类型】选项卡,在【孔类型】选项组中,单击 【锥 孔】按钮,设置【标准】为 GB,【类型】为【内六角花形圆柱头螺钉-4.8 级】,【大小】为 M10,【配合】为【正常】;在【终止条件】选项组中,设置【终止条件】为【完全贯穿】, 如图 5-22 所示;选择【位置】选项卡,在图形区域中定义点的位置,单击 ✔ 【确定】按 钮,如图 5-23 所示。

图 5-22 【孔规格】的属性设置

图 5-23 生成异型孔特征

5.3 边界凸台/基体特征

5.3.1 边界凸台/基体特征的属性设置

1.【方向1】选项组

(1)【曲线】:确定用于以此方向生成边界特征的曲线。选择要连接的草图曲线、面或边线。边界特征根据曲线选择的顺序而生成,如图 5-25 所示。

- 【 上移】:选择曲线向上移动。
- 【 下移】:选择曲线向下移动。

(2)【相切类型】:设置边界特征的相切类型,其选项 如图 5-26 所示。

- ●【无】:没应用相切约束(曲率为零)。
- ●【方向向量】:根据用户所选的实体应用相切约束。
- ●【默认】:近似在第一个和最后一个轮廓之间刻画 的抛物线。
- ●【垂直于轮廓】:垂直曲线应用相切约束。

(3)【对齐】: 控制 iso 参数的对齐,以控制曲面的流动,如图 5-27 所示。

图 5-25 【曲线】选项

无	N
无 方向向量	6
默认	
亜旦丁牝邸	

图 5-26 【相切类型】选项

图 5-27 【对齐】选项

(4)【拔模角度】: 应用拔模角度到开始或结束曲线。

(5)【相切长度】: 控制对边界特征的影响量。相切长度的效果限制到下一部分。(6)【应用到所有】: 显示一个为整个轮廓控制所有约束的控标。

2.【方向2】选项组

该选项组中的参数用法和【方向 1】选项组基本相同。两个方向可以相互交换,无论

图 5-24 【边界】的属性设置

选择曲线为【方向1】还是【方向2】,都可以获得相同的结果,如图5-28所示。

3. 【选项与预览】选项组

该选项组的属性设置如图 5-29 所示。

(1)【合并切面】:如果对应的线段相切,则会使所生成 的边界特征中的曲面保持相切。

(2)【闭合曲面】:沿边界特征方向生成一闭合实体。

(3)【拖动草图】: 激活拖动模式。

(4) ☑【撤销草图拖动】:撤销先前的草图拖动并将预 览返回到其先前状态。

(5)【显示预览】: 对边界进行预览。

4.【显示】选项组

该选项组的属性设置如图 5-30 所示。

(1)【网格预览】: 对边界进行预览。

●【网格密度】:调整网格的行数。

(2) 【斑马条纹】。

斑马条纹可查看曲面中标准显示难以分辨的小变化。斑 马条纹模仿在光泽表面上反射的长光线条纹。

(3)【曲率检查梳形图】: 按照不同方向显示曲率梳形图。

●【方向1】: 切换沿方向1的曲率检查梳形图显示。

●【方向2】: 切换沿方向2的曲率检查梳形图显示。

●【比例】:调整曲率,检查梳形图的大小。

●【密度】:调整曲率,检查梳形图的显示行数。

5.3.2 生成边界凸台/基体特征的操作步骤

(1) 在三个基准面上分别绘制不同的草图, 如图 5-31 所示。

(2)单击【特征】工具栏中的管【边界凸台/基体】按 钮或者单击选择【插入】|【凸台/基体】|【边界】菜单命令, 在【属性管理器】中弹出【边界】的属性设置。在【方向1】 选项组中,在【曲线】中选择三个草图,【相切类型】选择

【无】,【拔模角度】为 0 度,其他选项组使用默认设置,如图 5-32 所示,单击【确定】按钮,生成边界特征,如图 5-33 所示。

图 5-28 【方向 2】选项组

选项	与预览(0)		\approx
	☑ 合并切面(M)		
	🔲 闭合曲面(C)		
	拖动草图(D)	кЭ	
	☑ 显示预览(W)		

图 5-29 【选项与预览】选项组

显示(Y)	2
☑ 网格预览(E)	
网格密度:	
3	
🔲 斑马条纹(Z)	
☑ 曲率检查梳形图(V)	
☑ 方向1	
☑ 方向 2	
比例:	
25	
密度:	
40	

图 5-30 【显示】选项组

图 5-31 绘制草图

启边界
V X
方向1 ☆

0.00deg
方向2 ☆
默认 👻

图 5-32 【边界】的属性设置

图 5-33 生成边界特征

5.4 弯曲特征

弯曲特征以直观的方式对复杂的模型进行变形。

5.4.1 弯曲特征的属性设置

1. 折弯

单击选择【插入】|【特征】|【弯曲】菜单命令, 在【属性管理器】中弹出【弯曲】的属性设置。在【弯曲 键入】选项组中,单击【折弯】单选按钮,属性设置如 图 5-34 所示。

(1)【弯曲键入】选项组

- 【粗硬边线】:生成如圆锥面、圆柱面以及平面等的分析曲面,通常会形成剪裁基准面与实体相交的分割面。
- 【角度】: 设置折弯角度, 需要配合折弯半径。
- ▶【半径】:设置折弯半径。
- (2)【剪裁基准面1】选项组
- 【为剪裁基准面1选择一参考实体】:将剪裁基准面1的原点锁定到模型上的 所选的点。
- < 【基准面 1 剪裁距离】:沿三重轴的剪裁基准面轴(蓝色 Z 轴),从实体的外部界限移动到剪裁基准面上的距离。
- (3)【剪裁基准面 2】选项组

【剪裁基准面 2】选项组的属性设置与【剪裁基准面 1】选项组基本相同,在此不做

图 5-34 选择【折弯】单选按钮

赘述。

(4)【三重轴】选项组

使用这些参数来设置三重轴的位置和方向。

- ↓ 【为枢轴三重轴参考选择一坐标系特征】: 将三重轴的位置和方向锁定到坐标 系上。
- ○ 【X 旋转原点】、 【Y 旋转原点】、 【Z 旋转原点】:沿指定轴移动三重 轴位置(相对于三重轴的默认位置)。
- 【X 旋转角度】、【Y 旋转角度】、【Z 旋转角度】: 围绕指定轴旋转三重轴(相对于三重轴自身),此角度表示围绕零部件坐标系的旋转角度,且按照 Z、Y、X 顺序进行旋转。
- (5)【弯曲选项】选项组
- ◎ 【弯曲精度】: 控制曲面品质,提高品质还将会提高弯曲特征的成功率。

2. 扭曲

单击选择【插入】 | 【特征】 | 【弯曲】菜单命令,在【属性管理器】中弹出【弯曲】 的属性设置。在【弯曲键入】选项组中,单击【扭曲】单选按钮,如图 5-35 所示。

● [【角度】: 设置扭曲的角度。

其他选项组的属性设置不再赘述。

13 弯曲		
V X		
夸曲输入(E) ☆		
○ 折弯(<u>B</u>)		
● 扭曲(型)		
○ 锥削(<u>A</u>)		
○ 伸展(5)		
▼ 粗硬边线(H)		
ty @ 🗄		

图 5-35 单击【扭曲】单选按钮

⑦ 弯曲		
✓ X		
弯曲	输入(E)	
ď		
	○ 折弯(B)	
	○ 扭曲(W)	
	● 锥削(<u>A</u>)	
	○ 伸展(5)	
	☑ 粗硬边线(H)	
Ś	0	

图 5-36 单击【锥削】单选按钮

3. 锥削

单击选择【插入】 | 【特征】 | 【弯曲】菜单命令,在【属性管理器】中弹出【弯曲】 的属性设置。在【弯曲键入】选项组中,单击【锥削】单选按钮,如图 5-36 所示。

• 【 锥剃因子】: 设置锥削量。调整 【 锥剃因子】时,剪裁基准面不移动。 其他选项组的属性设置不再赘述。

4. 伸展

单击选择【插入】 | 【特征】 | 【弯曲】菜单命令, 在【属性管理器】中弹出【弯曲】

的属性设置。在【弯曲键入】选项组中,单击【伸展】单选按钮,如图 5-37 所示。

• 🕻 【伸展距离】: 设置伸展量。

其他选项组的属性设置不再赘述。

5.4.2 生成弯曲特征的操作步骤

1. 折弯

单击选择【插入】 | 【特征】 | 【弯曲】菜单命令,在 【属性管理器】中弹出【弯曲】的属性设置。在【弯曲键入】 选项组中,单击【折弯】单选按钮,单击 ☎【弯曲的实体】 选择框,在图形区域中选择模型右侧的拉伸特征,设置 【角度】为 30.00度, 【半径】为 275.02mm,单击 ✔【确 定】按钮,生成折弯弯曲特征,如图 5-38 所示。

前弯	∂ 弯曲		
1	×		
弯曲	输入(E)	~	
¢			
	〇 折弯(B)		
	○ 扭曲(⊻)		
	〇 锥削(<u>A</u>)		
	● 伸展(5)		
	▼ 粗硬边线(H)		
\checkmark_{D}	Omm	- -	

图 5-37 单击【伸展】单选按钮

2. 扭曲

单击选择【插入】 | 【特征】 | 【弯曲】菜单命令,在【属性管理器】中弹出【弯曲】 的属性设置。在【弯曲键入】选项组中,单击【扭曲】单选按钮,单击 II (弯曲的实体】 选择框,在图形区域中选择模型右侧的拉伸特征,设置 【角度】为 90.00 度,单击 ✓ 【确 定】按钮,生成扭曲弯曲特征,如图 5-39 所示。

图 5-38 生成折弯弯曲特征

图 5-39 生成扭曲弯曲特征

3. 锥削

单击选择【插入】|【特征】|【弯曲】菜单命令,在【属性管理器】中弹出【弯曲】 的属性设置。在【弯曲键入】选项组中,单击【锥削】单选按钮,单击 【弯曲的实体】 选择框,在图形区域中选择模型右侧的拉伸特征,设置 【锥剃因子】为1.5,单击 《【确 定】按钮,生成锥削弯曲特征,如图 5-40 所示。

4. 伸展

单击选择【插入】 | 【特征】 | 【弯曲】菜单命令,在【属性管理器】中弹出【弯曲】 的属性设置。在【弯曲键入】选项组中,单击【伸展】单选按钮,单击 【弯曲的实体】 选择框,在图形区域中选择模型右侧的拉伸特征,设置 【伸展距离】为 30.00mm,单 击 ✔【确定】按钮,生成伸展弯曲特征,如图 5-41 所示。

图 5-41 生成伸展弯曲特征

5.5 压凹特征

压凹特征是通过使用厚度和间隙而生成的特征,其应用包括封装、冲印、铸模以及机器的压入配合等。根据所选实体类型,指定目标实体和工具实体之间的间隙数值,并为压凹特征指定厚度数值。______

5.5.1 压凹特征的属性设置

单击选择【插入】 | 【特征】 | 【压凹】菜单命令,在【属 性管理器】中弹出【压凹】的属性设置,如图 5-42 所示。

1.【选择】选项组

- ●【保留选择】、【移除选择】:选择要保留或者移除的模型边界。
- ●【切除】:选择此选项,则移除目标实体的交叉区域。
- 2.【参数】选项组
- 【厚度】(仅限实体):确定压凹特征的厚度。
- ●【间隙】:确定目标实体和工具实体之间的间隙。

5.5.2 生成压凹特征的操作步骤

(1) 单击选择【插入】 | 【特征】 | 【压凹】菜单命令, 在【属性管理器】中弹出【压

合压	凹?
 3 	×
选择	*
	目标实体:
	● 保留选择(K)
	○ 移除选择(<u>R</u>)
	工具实体区域:
1	
	□ 切除(⊆)
参数	(<u>P</u>) *
×T1	10.00mm
×	0.00mm

图 5-42 【压凹】的属性设置

凹】的属性设置。

(2)在【选择】选项组中,单击
 (2)在【选择】选项组中,单击
 (1)位式
 (2)在【选择】选项组中,单击
 (2)位式
 (2)位式<

(3) 在【参数】选项组中,设置 ,【厚度】为 1.00mm,如图 5-43 所示,在图形区域 中显示出预览,单击 《【确定】按钮,生成压凹特征,如图 5-44 所示。

	PropertyManager	T.
⊗ Ji	E凹5	?
V	×	
选择		*
	目标实体:	
	凸台-拉伸3	
	◎ 保留选择(K)	
	◎ 移除选择(R)	
	工具实体区域:	
	点@面<1>	
	🔲 切除(C)	
参数	(P)	*
× Ti	1.00mm	^
R	0.00mm	
		*

图 5-43 【压凹】的属性设置

图 5-44 生成压凹特征

5.6 变形特征

变形特征是改变复杂曲面和实体模型的局部或者整体形状,无须考虑用于生成模型的 草图或者特征约束。

5.6.1 变形特征的属性设置

变形有3种类型,包括【点】、【曲线到曲线】和【曲面推进】。

1. 点

单击选择【插入】 | 【特征】 | 【变形】菜单命令,在【属性管理器】中弹出【变形】 的属性设置。在【变形类型】选项组中,单击【点】单选按钮,其属性设置如图 5-45 所示。

- (1)【变形点】选项组
- []【变形点】:设置变形的中心,可以选择平面、边线、顶点上的点或者空间中的点。
- ●【变形方向】:选择线性边线、草图直线、平面、基准面或者两个点作为变形方向。
- △王【变形距离】: 指定变形的距离(即点位移)。
- •【显示预览】: 使用线框视图或者上色视图预览结果。

- (2)【变形区域】选项组
- 【变形半径】:更改通过变形点的球状半径数值,变形区域的选择不会影响变形半径的数值。
- ●【变形区域】:选择此选项,可以激活
 ◎【固定曲线/边线/面】和 □【要变形的 其他面】选项,如图 5-46 所示。

▲变形 ?
× ×
枣形类型(D) ☆
 点(p)
○ 曲线到曲线(⊆)
○ 曲面推进(E)

×.
∩⊈ 10.00mm •
☑ 显示预覧(5)
<u> </u> 表形区域(<u>R</u>)
10.00mm
□ 变形区域(D)
形状选项(0) ☆

图 5-45 单击【点】单选按钮后的属性设置

- □【要变形的实体】: 在使用空间中的点时,允许 选择多个实体或者1个实体。
- (3)【形状选项】选项组
- 【变形轴】:通过生成平行于1条线性边线或者 草图直线、垂直于1个平面或者基准面、沿着两个点 或者顶点的折弯轴以控制变形形状。
- △、 △、 △ 【 刚度】: 控制变形过程中变形形状 的刚性。
- 🐟 【形状精度】: 控制曲面品质。
- 2. 曲线到曲线

单击选择【插入】 | 【特征】 | 【变形】菜单命令,在 【属性管理器】中弹出【变形】的属性设置。在【变形类型】 选项组中,单击【曲线到曲线】单选按钮,其属性设置如 图 5-47 所示。

(1)【变形曲线】选项组

• 😼 【初始曲线】:设置变形特征的初始曲线。

麦 形	区域(<u>R</u>)	1
≙	10.00mm •	1
	▼ 変形区域(D)	
Ë		

图 5-46 选择【变形区域】选项

图 5-47 选择【曲线到曲线】 单选按钮后的属性设置

- 少【目标曲线】:设置变形特征的目标曲线。
- ●【组[n]】:允许添加、删除以及循环选择组以进行修改。
- ●【显示预览】: 使用线框视图或者上色视图预览结果。
- (2)【变形区域】选项组
- •【固定的边线】:防止所选曲线、边线或者面被移动。
- ●【统一】: 在变形操作过程中保持原始形状的特性。
- 碜【固定曲线/边线/面】: 防止所选曲线、边线或者面被变形和移动。

如果今【初始曲线】位于闭合轮廓内,则变形将受此轮廓约束。

如果今【初始曲线】位于闭合轮廓外,则轮廓内的点将不会变形。

- [1]【要变形的其他面】:允许添加要变形的特定面,如果未选择任何面,则整个 实体将会受影响。
- (3)【形状选项】选项组
- 🔼、 🖾、 🖾 【 刚度 】: 控制变形过程中变形形状的刚性。
- 🗇 【形状精度】: 控制曲面品质。
- 並【重量】:控制下面两个的影响系数。
 对在 び【固定曲线/边线/面】中指定的实体衡量变形。
 对在【变形曲线】选项组中指定为 【初始曲线】和
 【目标曲线】的边线和曲
 线衡量变形。
- •【保持边界】:确保所选边界是固定的。
- ●【匹配】: 允许应用这些条件,将变形曲面或者面匹配到目标曲面或者面边线。 【无】: 不应用匹配条件。

【曲面相切】: 使用平滑过渡匹配面和曲面的目标边线。

【曲线方向】: 使用 🕢 【目标曲线】的法线形成变形。

3. 曲面推进

与点变形相比,曲面推进变形可以对变形形状提供更有效的控制,同时还是基于工具 实体形状生成特定特征的可预测的方法。使用曲面推进变形,可以设计自由形状的曲面、 模具、塑料、软包装、钣金等,这对合并工具实体的特性到现有设计中很有帮助。

单击选择【插入】 | 【特征】 | 【变形】菜单命令,在【属性管理器】中弹出【变形】 的属性设置。在【变形类型】选项组中,单击【曲面推进】单选按钮,其属性设置如图 5-48 所示。

(1)【推进方向】选项组

- •【变形方向】:设置推进变形的方向。
- •【显示预览】: 使用线框视图或者上色视图预览结果。
- (2)【变形区域】选项组
- 同 【要变形的其他面】: 允许添加要变形的特定面, 仅变形所选面。
- 同 【要变形的实体】:即目标实体,决定要被工具实体变形的实体。

● ि 【要推进的工具实体】:设置对 □ 【要变形的实体】进行变形的工具实体。

• 🗛 【变形误差】:为工具实体与目标面或者实体的相交处指定圆角半径数值。

(3)【工具实体位置】选项组

以下选项允许通过输入正确的数值重新 定位工具实体。此方法比使用三重轴更精确。

- Delta X、Delta Y、Delta Z:沿X、Y、 Z 轴移动工具实体的距离。
- 【X 旋转角度】、【Y 旋转角度】、
 【Z 旋转角度】: 围绕 X、Y、Z 轴以
 及旋转原点旋转工具实体的旋转角度。
- 《【X 旋转原点】、《【Y 旋转原点】、
 《【Z 旋转原点】:定位由图形区域
 中三重轴表示的旋转中心。

5.6.2 生成变形特征的操作步骤

▲ 变形	
✓ ×	
夜形类型(D)	ļ
○ 点(P)	
○ 曲线到曲线(C)	
☞ 曲面推进(E)	
推进方向 ☆	工具实体位置(I) ☆
N _k	∆X 0.00mm .
	∆Y 0.00mm .
☑ 显示预覧(5)	ΔZ 0.00mm ·
变形区域(R)	11 0.00度
	1 0.00度
	1 0.00度
	(.00mm ·
	(0.00mm
	(_z 0.00mm •
	形状选项(□) ☆
10.00mm •	«» J
(a)	(b)

图 5-48 单击【曲面推进】单选按钮后的属性设置

(1)单击选择【插入】 | 【特征】 | 【变 形】菜单命令,在【属性管理器】中弹出【变形】的属性设置。在【变形类型】选项组中,单击【点】单选按钮;在【变形点】选项组中,单击 【 变形点】选择框,在图形区域 中选择模型的右上角端点,设置 ▲ 【 变形距离】为 20.00mm;在【变形区域】选项组中, 设置 ▲ 【变形半径】为 80.00mm,如图 5-49 所示;在【形状选项】选项组中,单击 ▲ 【刚 度-最小】按钮,单击 ▲ 【确定】按钮,生成最小刚度变形特征,如图 5-50 所示。

F	PropertyManager	T -12
企变	形1	?
I >	6	
变形3	< 	*
	● 点(P)	
	◎曲线到曲线(C)	
(○ 曲面推进(E)	
变形:	5(P)	*
	点@顶点<1>	
×.		
∩₹	20.00mm	
	☑ 显示预览(<u>s</u>)	
支形 [< <u> 域(R</u>)	*
	80.00mm	
1	□ 变形区域(D)	
形状道	些項(<u>0)</u>	*
(B) (B))	_

图 5-49 【变形】的属性设置

图 5-50 生成最小刚度变形特征

(2) 在【形状选项】选项组中,单击 ▲【刚度-中等】按钮,单击 ✔【确定】按钮, 生成中等刚度变形特征,如图 5-51 所示。

(3) 在【形状选项】选项组中,单击 【刚度-最大】按钮,单击 ✔【确定】按钮, 生成最大刚度变形特征,如图 5-52 所示。

图 5-52 生成最大刚度变形特征

5.7 拔模特征

拔模特征是用指定的角度斜削模型中所选的面,使型腔零件更容易脱出模具,可以在 现有的零件中插入拔模,或者在进行拉伸特征时拔模,也可以将拔模应用到实体或者曲面 模型中。

5.7.1 拔模特征的属性设置

在【手工】模式中,可以指定拔模类型,包括【中性面】【分型线】和【阶梯拔模】。

1. 中性面

单击选择【插入】 | 【特征】 | 【拔模】菜单命令,在【属性管理器】中弹出【拔模】 的属性设置。在【拔模类型】选项组中,单击【中性面】单选按钮,如图 5-53 所示。

(1)【拔模角度】选项组

- 【拔模角度】: 垂直于中性面进行测量的角度。
- (2)【中性面】选项组
- ●【中性面】:选择1个面或者基准面。

(3)【拔模面】选项组

- □【拔模面】: 在图形区域中选择要拔模的面。
- •【拔模沿面延伸】:可以将拔模延伸到额外的面,其选项如图 5-54 所示。

【无】: 只在所选的面上进行拔模。

【沿切面】:将拔模延伸到所有与所选面相切的面。

【所有面】: 将拔模延伸到所有从中性面拉伸的面。

【内部的面】: 将拔模延伸到所有从中性面拉伸的内部面。

【外部的面】: 将拔模延伸到所有在中性面旁边的外部面。

₲拔模	?
I 🗙 🗐 60	r
手工	DraftXpert
拔模类型(I)	\$
● 中性面(E)	
○ 分型线(<u>I</u>)	
○ 阶梯拔模(D)	
廿酒各府/□	
波侯用侯(5)	^
[1.00度	<u>.</u>
中性面(N)	\$
拔模面(F)	\$
拔模沿面延	(申(A);
九	_

图 5-53 选择【中性面】选项后的属性设置

图 5-54 【拔模沿面延伸】选项

2. 分型线

单击【分型线】单选按钮,可以对分型线周围的曲面进行拔模。

单击选择【插入】 | 【特征】 | 【拔模】菜单命令,在【属性管理器】中弹出【拔模】 的属性设置。在【拔模类型】选项组中,单击【分型线】单选按钮,如图 5-55 所示。

- (1)【拔模方向】选项组
- ●【拔模方向】: 在图形区域中选择1条边线或者1个面指示拔模的方向。
- (2)【分型线】选项组
- ──【分型线】: 在图形区域中选择分型线。
- •【拔模沿面延伸】:可以将拔模延伸到额外的面,其选项如图 5-56 所示。

图 5-55 选择【分型线】选项后的属性设置

图 5-56 【拔模沿面延伸】选项

【无】:只在所选的面上进行拔模。

【沿切面】: 将拔模延伸到所有与所选面相切的面。

3. 阶梯拔模

阶梯拔模为分型线拔模的变体,阶梯拔模围绕拔模方向的 基准面旋转而生成1个面。

单击选择【插入】 | 【特征】 | 【拔模】菜单命令,在【属 性管理器】中弹出【拔模】的属性设置。在【拔模类型】选项组 中,单击【阶梯拔模】单选按钮,如图 5-57 所示。

【阶梯拔模】的属性设置与【分型线】基本相同,在此不做 赘述。

5.7.2 生成拔模特征的操作步骤

(1)单击选择【插入】 | 【特征】 | 【拔模】菜单命令,在 【属性管理器】中弹出【拔模】的属性设置。

(2) 在【拔模类型】选项组中,单击【中性面】单选按钮; 在【拔模角度】选项组中,设置 📉 【拔模角度】为 15.00 度;

在【中性面】选项组中,单击【中性面】选择框,选择模型小圆柱体的上表面。

(3) 在【拔模面】选项组中,单击 🔽 【拔模面】选择框,选择模型外表面,如图 5-58 所示,单击 🗸 【确定】按钮,生成拔模特征,如图 5-59 所示。

图 5-58 【拔模】的属性设置

- 	ŕ
 , ₹ĭ	DraftXpert
拔模类型(I)	*
○ 中性面(E)	
○ 分型线(I)	
● 阶梯拔模(D)	
 锥形阶标 	悌(<u>R</u>)
○ 垂直阶柱	悌(<u>C</u>)
拔模角度(G)	*
1.00度	
[]]	•
拔模方向	*
×.	
分型线(P)	*
0	
其它面	
拔模沿面翅	(申(<u>A</u>):
无	•

◎ 坊樽 ?

图 5-57 选择【阶梯拔 模】选项后的属性设置

图 5-59 生成拔模特征

5.8 圆顶特征

圆顶特征可以在同一模型上同时生成1个或者多个圆顶。

5.8.1 圆顶特征的属性设置

单击选择【插入】 | 【特征】 | 【圆顶】菜单命令,在【属性管理器】中弹出【圆顶】 的属性设置,如图 5-60 所示。

- □【到圆顶的面】:选择1个或者多个平面或者非平面。
- ●【距离】:设置圆顶扩展的距离。
- 🔨 【反向】: 单击该按钮,可以生成凹陷圆顶(默认为凸起)。
- ジ【约束点或草图】:选择1个点或者草图,通过对其形状进行约束以控制圆顶。
- ▲【方向】: 从图形区域选择方向向量,以垂直于面以外的方向拉伸圆顶,可以 使用线性边线或者由两个草图点所生成的向量作为方向向量。

PropertyManager	
) 圆顶1	?
2 X	
診教	*
50.00mm	
0°0	
1	
▼ 最示预防(5)	

图 5-60 【圆顶】的属性设置

图 5-61 生成圆顶特征

(**b**)

5.8.2 生成圆顶特征的操作步骤

单击选择【插入】|【特征】|【圆顶】菜单命令,在【属性管理器】中弹出【圆顶】 的属性设置。在【参数】选项组中,单击 🔽 【到圆顶的面】选择框,在图形区域中选择 模型的上表面,设置【距离】为 50.00mm,单击 ✔ 【确定】按钮,生成圆顶特征,如图 5-61 所示。

5.9 范 例

下面应用本章所讲解的知识完成1个三维模型的范例,最终效果如图 5-62 所示。 主要步骤如下:

1. 生成基体部分。

- 2. 生成扫描部分。
- 3. 生成其他部分。

5.9.1 生成基体部分

(1)单击【特征管理器设计树】中的【上视基准面】图标,使其成为草图绘制平面。
单击【标准视图】工具栏中的↓【正视于】按钮,并单击【草图】工具栏中的仑【草图绘制】按钮,进入草图绘制状态。使用【草图】工具栏中的 ♀【圆弧】和◇ 【智能尺寸】
工具,绘制如图 5-63 所示的草图。单击 ♀【退出草图】按钮,退出草图绘制状态。

(2)单击【特征】工具栏中的 💽 【拉伸凸台/基体】按钮,在【属性管理器】中弹出 【拉伸】属性设置。在【方向1】选项组中,设置 🕢 【终止条件】为【给定深度】, 🗟 【深 度】为 3.000mm, 💽 【拔模角度】设置为 3.00 度,单击 🖉 【确定】按钮,生成拉伸特征, 如图 5-64 所示。

图 5-64 拉伸特征

(3)单击【参考几何体】工具栏中的 ◎【基准面】按钮,在【属性管理器】中弹出【基 准面 2】的属性设置。在【第一参考】中,在图形区域中选择模型的上表面,单击 □【距 离】按钮,在文本栏中输入 13.000mm,如图 5-65 所示,在图形区域中显示出新建基准面 的预览,单击 ✔ 【确定】按钮,生成基准面。

图 5-65 生成基准面

(4)单击模型的上表面,使其成为草图绘制平面。单击【标准视图】工具栏中的↓【正视于】按钮,并单击【草图】工具栏中的 【草图绘制】按钮,进入草图绘制状态。使用 【草图】工具栏中的 【多边形】和 《【智能尺寸】工具,绘制如图 5-66 所示的草图。 单击 《【退出草图】按钮,退出草图绘制状态。

(5)单击【特征管理器设计树】中的【基准面】图标,使其成为草图绘制平面。单击 【标准视图】工具栏中的↓【正视于】按钮,并单击【草图】工具栏中的≥【草图绘制】 按钮,进入草图绘制状态。使用【草图】工具栏中的 ④【多边形】和 ◇【智能尺寸】工 具,绘制如图 5-67 所示的草图。单击 ≥【退出草图】按钮,退出草图绘制状态。

图 5-66 绘制草图并标注尺寸

图 5-67 绘制草图并标注尺寸

(6)单击选择【插入】 | 【凸台/基体】 | 【放样】菜单命令,在【属性管理器】中弹出【放样1】的属性设置。在
图,单击
【 確定】按钮,如图 5-68 所示,生成放样特征。

(7)单击选择【插入】 | 【特征】 | 【抽壳】菜单命令,在【属性管理器】中弹出【抽 壳】的属性设置。在【参数】选项组中,设置 【厚度】为1.000mm,在 □【移除的面】 选项中,选择绘图区中模型的底面,单击 ✔ 【确定】按钮,生成抽壳特征,如图 5-69 所示。

图 5-69 生成抽壳特征

5.9.2 生成筋特征

(1)单击【特征管理器设计树】中的【右视基准面】图标,使前视基准面成为草图绘制平面。单击【标准视图】工具栏中的↓【正视于】按钮,并单击【草图】工具栏中的€【草图绘制】按钮,进入草图绘制状态。使用【草图】工具栏中的、【直线】和◇【智能尺寸】工具,绘制如图 5-70 所示的草图。单击€【退出草图】按钮,退出草图绘制状态。

图 5-70 绘制草图并标注尺寸

(2)单击【特征】工具栏中的 【筋】按钮,在【属性管理器】中弹出【筋 2】的属性设置。在【参数】选项组中,设置 < 【筋厚度】为 2.000mm,在【拉伸方向】中单击
 【平行于草图】按钮,单击 < 【确定】按钮,生成筋特征,如图 5-71 所示。

(3)单击【特征管理器设计树】中的【右视基准面】图标,使前视基准面成为草图绘制平面。单击【标准视图】工具栏中的↓【正视于】按钮,并单击【草图】工具栏中的≥【草图绘制】按钮,进入草图绘制状态。使用【草图】工具栏中的 \【直线】、 ↓【圆弧】
②【智能尺寸】工具,绘制如图 5-72 所示的草图。单击 2【退出草图】按钮,退出草图 绘制状态。

图 5-71 生成筋特征

图 5-72 绘制草图并标注尺寸

(4)单击【特征】工具栏中的 ▲【筋】按钮,在【属性管理器】中弹出【筋】的属性 设置。在【参数】选项组中,设置 →【筋厚度】为 2.00mm,在【拉伸方向】中单击 ✓【 重 直于草图】按钮,单击 ✓【 确定】按钮,生成筋特征,如图 5-73 所示。

图 5-73 生成筋特征

5.9.3 生成其他部分

(1)单击选择【插入】|【特征】|【孔】|【向导】菜单命令,打开属性管理器,在【类型】选项卡中,选择柱孔,在【标准】中选择Gb,在【类型】中选择螺纹钻孔,在【大小】

中选择 M4, 如图 5-74 所示。

(2)单击【位置】选项卡,在绘图区中模型的上表面单击两个点,将产生两个异形孔的预览,利用草图工具栏 餐館尺寸】工具对草图进行尺寸标注,如图 5-75 所示,单击【确定】按钮,完成异形孔的创建。

图 5-74 【孔规格】的属性设置

图 5-75 生成异形孔

(3)单击模型中的拉伸特征,使其处于被选择状态。单击选择【插入】 | 【特征】 | 【弯曲】菜单命令,在【属性管理器】中弹出【弯曲】的属性设置。在【弯曲键入】选项组中,单击【伸展】单选按钮,在 【弯曲的实体】选择框中显示出实体的名称,设置 ↓ 【伸展距离】为18mm,单击 √ 【确定】按钮,生成弯曲特征,如图 5-76 所示。

图 5-76 生成弯曲特征

(4)单击模型的上表面,使其处于被选择状态。单击选择【插入】 | 【特征】 | 【圆顶】菜单命令,在【属性管理器】中弹出【圆顶1】的属性设置。在【参数】选项组中的 □ 【到圆顶的面】选择框中显示出模型上表面的名称,设置【距离】为 3.000mm,单击 ✔ 【确 定】按钮,生成圆顶特征,如图 5-77 所示。

