CHAPTER

Conductors and
Dielectrics

with which an engineer must work. In the first part of the chapter, we consider

conducting materials by describing the parameters that relate current to an applied
electric field. This leads to a general definition of Ohm's law. We then develop methods
of evaluating resistances of conductors in a few simple geometric forms. Conditions
that must be met at a conducting boundary are obtained next, and this knowledge
leads to a discussion of the method of images. The properties of semiconductors are
described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.
Such materials differ from conductors in that ideally, there is no free charge that can be
transported within them to produce conduction current. Instead, all charge is confined
to molecular or lattice sites by coulomb forces. An applied electric field has the effect
of displacing the charges slightly, leading to the formation of ensembles of electric
dipoles. The extent to which this occurs is measured by the relative permittivity, or
dielectric constant. Polarization of the medium may modify the electric field, whose
magnitude and direction may differ from the values it would have in a different
medium or in free space. Boundary conditions for the fields at interfaces between
dielectrics are developed to evaluate these differences.

It should be noted that most materials will possess both dielectric and conductive
properties; that is, a material considered a dielectric may be slightly conductive, and
a material that is mostly conductive may be slightly polarizable. These departures
from the ideal cases lead to some interesting behavior, particularly as to the effects
on electromagnetic wave propagation, as we will see later. l

I n this chapter, we apply the methods we have learned to some of the materials
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CHAPTER 5 Conductors and Dielectrics

5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a current. The unit of current is the ampere (A),
defined as a rate of movement of charge passing a given reference point (or crossing
a given reference plane) of one coulomb per second. Current is symbolized by [, and
therefore

dQ
dt

Current is thus defined as the motion of positive charges, even though conduction in
metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather
than within a large region. and we find the concept of current density, measured in
amperes per square meter (A/m?), more useful. Current density is a vector' represented
by J.

The increment of current A/ crossing an incremental surface AS normal to the
current density is

Al = JyAS
and in the case where the current density is not perpendicular to the surface,
Al =J- AS

Total current is obtained by integrating,

!:f.l-ds (2)
s

Current density may be related to the velocity of volume charge density at a point.
Consider the element of charge AQ = p,Av = p, AS AL, as shown in Figure 5.1a.
To simplify the explanation, assume that the charge element is oriented with its edges
parallel to the coordinate axes and that it has only an x component of velocity. In
the time interval Ar, the element of charge has moved a distance A.x, as indicated in
Figure 5.1b. We have therefore moved a charge A Q = p, AS Ax through a reference
plane perpendicular to the direction of motion in a time increment At, and the resulting
current is

AQ Ax
Al =— =p, AS—
At At
As we take the limit with respect to time, we have

Al =p, AS v,

! Current is not a vector, for it is easy to visualize a problem in which a total current / in a conductor of
nonuniform cross section (such as a sphere) may have a different direction at each point of a given
cross section. Current in an exceedingly fine wire. or a filamentary current. is occasionally defined as a
vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to
the current.
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Figure 5.1 An increment of charge, AQ = p,AS AL, which moves a distance Ax in
a time At, produces a component of current density in the limit of J, = p, .

where v, represents the x component of the velocity v.” In terms of current density,
we find

j.r = Pu Vy
and in general

J=pv 3)

This last result shows clearly that charge in motion constitutes a current. We
call this type of current a convection current, and J or p,v is the convection current
density. Note that the convection current density is related linearly to charge density
as well as to velocity. The mass rate of flow of cars (cars per square foot per second)
in the Holland Tunnel could be increased either by raising the density of cars per
cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10pza, — 4p cos” ¢ a, mA/m?:
(a) find the current density at P(p = 3, ¢ = 30°, z = 2): (b) determine the
total current flowing outward through the circular band p = 3,0 < ¢ < 2m,
2<z<2.8.

Ans. 180a, — 9a; mA/m*; 3.26 A

5.2 CONTINUITY OF CURRENT

The introduction of the concept of current is logically followed by a discussion of the
conservation of charge and the continuity equation. The principle of conservation of
charge states simply that charges can be neither created nor destroyed, although equal

*The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as
a veclor v, a component vy, or a magnitude |v|, whereas volume appears only in differential form as dv
or Av,



CHAPTER 5 Conductors and Dielectrics

amounts of positive and negative charge may be simultaneously created, obtained by
separation, or lost by recombination.

The continuity equation follows from this principle when we consider any region
bounded by a closed surface. The current through the closed surface is

l:%.l'ds
S

and this outward flow of positive charge must be balanced by a decrease of positive
charge (or perhaps an increase of negative charge) within the closed surface. If the
charge inside the closed surface is denoted by Q;, then the rate of decrease is —d Q; /dt
and the principle of conservation of charge requires

in

f:ﬁ.]-ds=—? (4)

It might be well to answer here an often-asked question. “Isn’t there a sign error?
[ thought I = dQ/dt.” The presence or absence of a negative sign depends on what
current and charge we consider. In circuit theory we usually associate the current flow
into one terminal of a capacitor with the time rate of increase of charge on that plate.
The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation; the differential, or
point. form is obtained by using the divergence theorem to change the surface integral
into a volume integral:

fﬁJ-dSz (V-Ddv
s

vol

We next represent the enclosed charge @, by the volume integral of the charge density,

f (V- Jdv = —i pudv
vol dt vol

If we agree to keep the surface constant, the derivative becomes a partial derivative
and may appear within the integral,

dp,
f (V- Ddv :f —ﬁdv
vol vol at

from which we have our point form of the continuity equation,

dp,
| . (5)
at

Remembering the physical interpretation of divergence, this equation indicates
that the current, or charge per second, diverging from a small volume per unit volume
is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-
tions, let us consider a current density that is directed radially outward and decreases
exponentially with time,

1 5
J=—-¢""a, A/lm”
>
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Selecting an instant of time r = | s, we may calculate the total outward current at
r=5im

I=J,8=(ic")4n5")=23.1A
At the same instant, but for a slightly larger radius, » = 6 m, we have

I1=1J.S=(te")(4n6?) =277 A

Thus, the total current is larger at » = 6 than itis at r = 5.
To see why this happens, we need to look at the volume charge density and the
velocity. We use the continuity equation first:

ap, 1 i &[5l I
———L =V.J=V.:|[-¢'a ) =——|ri-e’']=—=e"
at (r ' r2ar\ r r?

We next seek the volume charge density by integrating with respect to r. Because p,
is given by a partial derivative with respect to time, the “constant” of integration may
be a function of r:

1 1
Pv = —f—,e_’ dt + K(r)y= —<e™ " + K(r)
{ =
If we assume that p, — 0 ast — oc, then K(r) = 0, and

1
py = e ' Cm’
r?

We may now use J = p, v to find the velocity.,
b 7

V=—= =rm/s
ot 2 aei

The velocity is greater at r = 6 than it is at r = 5, and we see that some (unspecified)
force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r, a charge
density that is inversely proportional to r>, and a velocity and total current that are

proportional to r. All quantities vary as e ",

D5.2. Current density is given in cylindrical coordinates as J = —10°z'a.
A/m? in the region 0 < p < 20 um; for p > 20 um, J = 0. (a) Find the total
current crossing the surface z = 0.1 m in the a. direction. (b) If the charge
velocity is 2 x 10° m/s at z = 0.1 m, find p, there. (¢) If the volume charge
density at z = 0.15 m is —2000 C/m°, find the charge velocity there.

Ans. —39.7 uA: —15.8 mC/m?; 29.0 m/s
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5.3 METALLIC CONDUCTORS

Physicists describe the behavior of the electrons surrounding the positive atomic
nucleus in terms of the total energy of the electron with respect to a zero reference
level for an electron at an infinite distance from the nucleus. The total energy is the
sum of the kinetic and potential energies, and because energy must be given to an
electron to pull it away from the nucleus, the energy of every electron in the atom is
a negative quantity. Even though this picture has some limitations, it is convenient to
associate these energy values with orbits surrounding the nucleus, the more negative
energies corresponding to orbits of smaller radius. According to the quantum theory,
only certain discrete energy levels, or energy states, are permissible in a given atom,
and an electron must therefore absorb or emit discrete amounts of energy, or quanta,
in passing from one level to another. A normal atom at absolute zero temperature has
an electron occupying every one of the lower energy shells, starting outward from the
nucleus and continuing until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely
together, many more electrons are present, and many more permissible energy levels
are available because of the interaction forces between adjacent atoms. We find that
the allowed energies of electrons are grouped into broad ranges, or “bands.” each band
consisting of very numerous, closely spaced, discrete levels. At a temperature of abso-
lute zero, the normal solid also has every level occupied, starting with the lowest and
proceeding in order until all the electrons are located. The electrons with the highest
(least negative) energy levels, the valence electrons, are located in the valence band. If
there are permissible higher-energy levels in the valence band, or if the valence band
merges smoothly into a conduction band, then additional kinetic energy may be given
to the valence electrons by an external field, resulting in an electron flow. The solid is
called a metallic conductor. The filled valence band and the unfilled conduction band
foraconductor at absolute zero temperature are suggested by the sketch in Figure 5.2a.

If, however, the electron with the greatest energy occupies the top level in the
valence band and a gap exists between the valence band and the conduction band, then

_ : o -

Energy Energy gap
Filled Filled Filled
valence valence valence
band band band
Conductor Insulator Semiconductor
(a) (b) (c)

Figure 5.2 The energy-band structure in three different types of materials
at 0 K. (a) The conductor exhibits no energy gap between the valence and
conduction bands. (b) The insulator shows a large energy gap. (c) The
semiconductor has only a small energy gap.
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the electron cannot accept additional energy in small amounts, and the material is an
insulator. This band structure is indicated in Figure 5.2b. Note that if a relatively large
amount of energy can be transferred to the electron, it may be sufficiently excited to
jump the gap into the next band where conduction can occur easily. Here the insulator
breaks down.

An intermediate condition occurs when only a small “forbidden region™ separates
the two bands, as illustrated by Figure 5.2¢. Small amounts of energy in the form of
heat, light, or an electric field may raise the energy of the electrons at the top of the
filled band and provide the basis for conduction. These materials are insulators which
display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction,
or free, electrons, move under the influence of an electric field. With a field E, an
electron having a charge Q = —e will experience a force

F=—¢cE

In free space, the electron would accelerate and continuously increase its velocity
(and energy): in the crystalline material. the progress of the electron is impeded
by continual collisions with the thermally excited crystalline lattice structure, and a
constant average velocity is soon attained. This velocity v, is termed the drift velocity,
and it is linearly related to the electric field intensity by the mobility of the electron
in the given material. We designate mobility by the symbol & (mu), so that

Va = _pu'fE (6}

where 1, is the mobility of an electron and is positive by definition. Note that the
electron velocity is in a direction opposite to the direction of E. Equation (6) also
shows that mobility is measured in the units of square meters per volt-second; typical
values® are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is
sufficient to produce a noticeable temperature rise and can cause the wire to melt if
the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into Eq. (3) of Section 5.1, we obtain

J=—pucE| %)

where p, is the free-electron charge density, a negative value. The total charge density
P, is zero because equal positive and negative charges are present in the neutral
material. The negative value of p, and the minus sign lead to a current density J that
is in the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also
specified by the conductivity o (sigma),

J=0E (8)

3 Wert and Thomson, p- 238, listed in the References at the end of this chapter.
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where o is measured is siemens* per meter (S/m). One siemens (1 S) is the basic
unit of conductance in the SI system and is defined as one ampere per volt. Formerly,
the unit of conductance was called the mho and was symbolized by an inverted 2.
Just as the siemens honors the Siemens brothers, the reciprocal unit of resistance that
we call the ohm (1 €2 is one volt per ampere) honors Georg Simon Ohm, a German
physicist who first described the current-voltage relationship implied by Eq. (8). We
call this equation the point form of Ohm’'s law; we will look at the more common
form of Ohm’s law shortly.

First, however, it is informative to note the conductivity of several metallic con-
ductors; typical values (in siemens per meter) are 3.82 x 107 for aluminum, 5.80 x 107
for copper, and 6.17 x 107 for silver. Data for other conductors may be found in
Appendix C. On seeing data such as these, it is only natural to assume that we are be-
ing presented with constant values; this is essentially true. Metallic conductors obey
Ohm’s law quite faithfully, and it is a linear relationship; the conductivity is constant
over wide ranges of current density and electric field intensity. Ohm’s law and the
metallic conductors are also described as isofropic, or having the same properties in
every direction. A material which is not isotropic is called anisotropic, and we shall
mention such a material in Chapter 6.

The conductivity is a function of temperature, however. The resistivity, which
is the reciprocal of the conductivity, varies almost linearly with temperature in the
region of room temperature, and for aluminum, copper, and silver it increases about
0.4 percent for a 1-K rise in temperature.” For several metals the resistivity drops
abruptly to zero at a temperature of a few kelvin; this property is termed super-
conductivity. Copper and silver are not superconductors, although aluminum is (for
temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressed in terms
of the charge density and the electron mobility,

O = —pPelle (9)

From the definition of mobility (6), it is now satisfying to note that a higher temperature
infers a greater crystalline lattice vibration, more impeded electron progress fora given
electric field strength, lower drift velocity, lower mobility, lower conductivity from
Eq. (9). and higher resistivity as stated.

The application of Ohm'’s law in point form to a macroscopic (visible to the naked
eye) region leads to a more familiar form. Initially, assume that J and E are uniform,
as they are in the cylindrical region shown in Figure 5.3. Because they are uniform,

lsz-dS:JS (10)
s

# This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who
were famous engineer-inventors in the nineteenth century. Karl became a British subject and was
knighted, becoming Sir William Siemens.

3 Copious temperature data for conducting materials are available in the Standard Handbook for
Electrical Engineers, listed among the References at the end of this chapter.
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Conductivity o
—_—
Arca=S§
I=Js
—_—
I L |
Figure 5.3 Uniform current density J and electric field

intensity £ in a cylindrical region of length L and cross-
sectional area S. Here V = IR, where R= L /o S.

and
i a
v"b:_f E-sz—E-f dL = —E - Ly,
b b
=E-Ly (11)
or
V=EL
Thus
!
.)'=—=c:fE=cIE
S L
or
L
V=—
al

The ratio of the potential difference between the two ends of the cylinder to
the current entering the more positive end, however, is recognized from elementary
circuit theory as the resistance of the cylinder, and therefore

V=IR (12)

where

R = (13)

L
al

Equation (12) is, of course, known as Ohm’s law, and Eq. (13) enables us to compute
the resistance R, measured in ohms (abbreviated as €2), of conducting objects which
possess uniform fields. If the fields are not uniform, the resistance may still be defined
as the ratio of V to I, where V is the potential difference between two specified
equipotential surfaces in the material and / is the total current crossing the more
positive surface into the material. From the general integral relationships in Egs. (10)
and (11), and from Ohm’s law (8), we may write this general expression for resistance



CHAPTER 5 Conductors and Dielectrics 123

when the fields are nonuniform,

,  —J'E-dL
p-t_ cleBrdl (14
I~ J[;oE-dS

The line integral is taken between two equipotential surfaces in the conductor, and
the surface integral is evaluated over the more positive of these two equipotentials.
We cannot solve these nonuniform problems at this time, but we should be able to
solve several of them after reading Chapter 6.

As an example of the determination of the resistance of a cylinder, we find the resis-
tance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. The diameter of the wire is 0.0508 x 0.0254 = 1.291 x 10~ m, the area of
the cross sectionis w(1.291 x 107%/2)> = 1.308 x 107% m?, and the length is 1609 m.
Using a conductivity of 5.80 x 107 S/m, the resistance of the wire is, therefore,

1609

R = =212
(5.80 x 107)(1.308 x 10-9)

This wire can safely carry about 10 A dc, corresponding to a current density of
10/(1.308 x 107%) = 7.65x 10° A/m?, or 7.65 A/mm?. With this current, the potential
difference between the two ends of the wire is 212 V, the electric field intensity is
0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one furlong a week,
and the free-electron charge density is —1.81 x 10'" C/m?, or about one electron
within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for
which o = 6.17 x 107 S/m and px, = 0.0056 m*/V -s if (@) the drift velocity
is 1.5 um/s ; (b) the electric field intensity is 1 mV/m; (¢) the sample is a cube
2.5 mm on a side having a voltage of 0.4 mV between opposite faces: (d) the
sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

Ans. 16.5 kA/m?; 61.7 kA/m?; 9.9 MA/m?: 80.0 kA/m?

D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long.
Assume that it carries a total dc current of 50 A. (a) Find the total resistance of
the conductor. (b) What current density exists in it? (¢) What is the dc voltage
between the conductor ends? (¢) How much power is dissipated in the wire?

Ans. 0.035 Q:2.74 x 105 A/m?; 1.73 V; 86.4 W
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5.4 CONDUCTOR PROPERTIES
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let
time vary for a few microseconds to see what happens when the charge distribution is
suddenly unbalanced within a conducting material. Suppose. for the sake of argument,
that there suddenly appear a number of electrons in the interior of a conductor. The
electric fields set up by these electrons are not counteracted by any positive charges,
and the electrons therefore begin to accelerate away from each other. This continues
until the electrons reach the surface of the conductor or until a number of electrons
equal to the number injected have reached the surface.

Here, the outward progress of the electrons is stopped, for the material surround-
ing the conductor is an insulator not possessing a convenient conduction band. No
charge may remain within the conductor. If it did, the resulting electric field would
force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface
charge density resides on the exterior surface. This is one of the two characteristics
of a good conductor,

The other characteristic, stated for static conditions in which no current may flow,
follows directly from Ohm’s law: the electric field intensity within the conductor is
zero. Physically, we see that if an electric field were present, the conduction electrons
would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics. no charge and no electric field may exist at any
point within a conducting material. Charge may, however, appear on the surface as a
surface charge density, and our next investigation concerns the fields external to the
conductor.

We wish to relate these external fields to the charge on the surface of the conductor.
The problem is a simple one, and we may first talk our way to the solution with a
little mathematics.

If the external electric field intensity is decomposed into two components, one
tangential and one normal to the conductor surface, the tangential component is seen
to be zero. If it were not zero, a tangential force would be applied to the elements of
the surface charge, resulting in their motion and nonstatic conditions. Because static
conditions are assumed, the tangential electric field intensity and electric flux density
are zero.

Gauss'’s law answers our questions concerning the normal component. The elec-
tric flux leaving a small increment of surface must be equal to the charge residing on
that incremental surface. The flux cannot penetrate into the conductor, for the total
field there is zero. It must then leave the surface normally. Quantitatively, we may
say that the electric flux density in coulombs per square meter leaving the surface
normally is equal to the surface charge density in coulombs per square meter, or
Dy = ps.

If we use some of our previously derived results in making a more careful analysis
(and incidentally introducing a general method which we must use later), we should set
up a boundary between a conductor and free space (Figure 5.4) showing tangential
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Free space

Figure 5.4 An appropriate closed path and gaussian surface are used to
determine boundary conditions at a boundary between a conductor and free
space; £, =0and Dy = ps.

and normal components of D and E on the free-space side of the boundary. Both
fields are zero in the conductor. The tangential field may be determined by applying

Section 4.5, Eq. (21).
%E -dL =0

around the small closed path abcda. The integral must be broken up into four parts

b IS d a
[ofof o[-
a b [ d

Remembering that E = 0 within the conductor, we let the length from a to b or ¢ to
d be Aw and from b to ¢ or d to a be Ah, and obtain

EFAW = EN,alb%Ah -+ E;’\-’.ul;‘!%Ah =0

As we allow Ah to approach zero, keeping Aw small but finite, it makes no
difference whether or not the normal fields are equal at a and b, for Ah causes these
products to become negligibly small. Hence, E; Aw = 0 and, therefore, E, = 0.

The condition on the normal field is found most readily by considering Dy rather
than Ey and choosing a small cylinder as the gaussian surface. Let the height be Ah
and the area of the top and bottom faces be AS. Again, we let Ah approach zero.
Using Gauss’s law,

3£D-ds=Q
s

we integrate over the three distinct surfaces

[offo-e
top hotlom sides

and find that the last two are zero (for different reasons). Then

DyAS = Q = pgAS
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or

Dy = ps

These are the desired boundary conditions for the conductor-to-free-space bound-
ary in electrostatics,

Di=E =0 (15)

Dy =€eEy = ps (16)

The electric flux leaves the conductor in a direction normal to the surface, and the
value of the electric flux density is numerically equal to the surface charge density.
Equations (15) and (16) can be more formally expressed using the vector fields

Exn| =0 (17)

5

D-n|l¥ = p, (18)

where n is the unit normal vector at the surface that points away from the conductor,
as shown in Figure 5.4, and where both operations are evaluated at the conductor
surface, 5. Taking the cross product or the dot product of either field quantity with n
gives the tangential or the normal component of the field, respectively.

An immediate and important consequence of a zero tangential electric field in-
tensity is the fact that a conductor surface is an equipotential surface. The evaluation
of the potential difference between any two points on the surface by the line integral
leads to a zero result, because the path may be chosen on the surface itself where
E-dL=0.

To summarize the principles which apply to conductors in electrostatic fields, we
may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be calcu-
lated at a conductor boundary, given a knowledge of the potential field.

Given the potential,
V = 100(x* — »?)

and a point P(2, —1, 3) that is stipulated to lie on a conductor-to-free-space boundary,
find V, E, D, and ps at P, and also the equation of the conductor surface.

Solution. The potential at point P is
Vp = 100[2> — (—1)*] =300 V
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Figure 5.5 Given point P(2. —1, 3) and the
potential field, V = 100(x? — y?), we find the
equipotential surface through P is x? — y° = 3,
and the streamline through P is xy = —2.

Because the conductor is an equipotential surface, the potential at the entire sur-
face must be 300 V. Moreover, if the conductor is a solid object, then the potential
everywhere in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300 V is

300 = 100(x* — y%)
or
x* = _\12 =3

This is therefore the equation of the conductor surface: it happens to be a hyperbolic
cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor
lies above and to the right of the equipotential surface at point P, whereas free space
is down and to the left.

Next, we find E by the gradient operation,

E = —100V(x? — y*) = —200xa, + 200ya,
At point P,
E, = —400a, — 200a, V/m
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Because D = ¢yE, we have
Dy =8.854 x 107"°Ep = —3.54a, — 1.771a, nC/m’

The field is directed downward and to the left at P; it is normal to the equipotential
surface. Therefore,

Dy = |Dp| = 3.96 nC/m’
Thus, the surface charge density at P is
psp = Dy = 3.96 nC/m’

Note that if we had taken the region to the left of the equipotential surface as the
conductor, the E field would rerminate on the surface charge and we would let
ps = —3.96 nC/m2.

Finally, let us determine the equation of the streamline passing through P.

Solution. We see that

E, 200y y dy
E, —200x x dx
Thus,
Iy 1x
B 8% g
y X
and
Iny+Inx =C,
Therefore,
xy =0
The line (or surface) through P is obtained when C; = (2)(—1) = —2. Thus, the
streamline is the trace of another hyperbolic cylinder,
xy=-2

This is also shown on Figure 5.5.

D5.5. Given the potential field in free space, V = 100sinh 5x sin5y V, and
a point P(0.1,0.2,0.3), find at P: (a) V: (b) E: (¢) |E|; (d) | ps| if it is known
that P lies on a conductor surface.

Ans. 43.8 V: —474a, — 140.8a, V/m: 495 V/m; 4.38 nC/m?
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5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in Chapter 4 is
the infinite plane at zero potential that exists midway between the two charges. Such
a plane may be represented by a vanishingly thin conducting plane that is infinite
in extent. The conductor is an equipotential surface at a potential V = 0, and the
electric field intensity is therefore normal to the surface. Thus, if we replace the
dipole configuration shown in Figure 5.6a with the single charge and conducting
plane shown in Figure 5.6b, the fields in the upper half of each figure are the same.
Below the conducting plane. all fields are zero, as we have not provided any charges
in that region. Of course, we might also substitute a single negative charge below a
conducting plane for the dipole arrangement and obtain equivalence for the fields in
the lower half of each region.

If we approach this equivalence from the opposite point of view, we begin with a
single charge above a perfectly conducting plane and then see that we may maintain
the same fields above the plane by removing the plane and locating a negative charge
at a symmetrical location below the plane. This charge is called the image of the
original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus any
charge configuration above an infinite ground plane may be replaced by an arrange-
ment composed of the given charge configuration, its image, and no conducting plane.
This is suggested by the two illustrations of Figure 5.7. In many cases, the potential
field of the new system is much easier to find since it does not contain the conducting
plane with its unknown surface charge distribution.

As an example of the use of images, let us find the surface charge density at
P(2.5.0) on the conducting plane z = 0 if there is a line charge of 30 nC/m located
at x = 0, z = 3, as shown in Figure 5.84. We remove the plane and install an
image line charge of —30 nC/m at x = 0, z = —3, as illustrated in Figure 5.85.
The field at P may now be obtained by superposition of the known fields of the line

04 0.,
o°*
Qe +0 ®
Equipotential surface, V'=10 Conducting plane, V=0
=y Q .
(a) (b)

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge
and a conducting plane without affecting the fields above the V' = 0 surface.
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_4.
+1e

-

Conducting plane, V=0

44
41

-

Equipotential surface, =10

+4e
(@) (h)

Figure 5.7 (a) A given charge configuration above an infinite conducting plane may
be replaced by (b) the given charge configuration plus the image configuration, without
the conducting plane.

charges. The radial vector from the positive line charge to P is Ry = 2a, — 3a_,
while R_ = 2a, + 3a_.. Thus, the individual fields are

pL 30 x 107 2a, — 3a.
— a =
2meg Ry o 2rep/13 /13

E,

and
30 x 10~ 2a, + 3a.

&= /B I3
Adding these results, we have
_ —180 x 10~a;
- 2men(13)

This then is the field at (or just above) P in both the configurations of Figure 5.8, and
it is certainly satisfying to note that the field is normal to the conducting plane, as it
must be. Thus, D = ¢gE = —2.20a. nC/m?, and because this is directed toward the
conducting plane, ps is negative and has a value of —2.20 nC/m? at P.

= —249a. V/m

30 nC/m 30 nC/m

Conducting plane

! P

i
o

) LR

(a) ) (b)

Figure 5.8 (a) A line charge above a conducting plane. (b) The conductor is
removed, and the image of the line charge is added.
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D5.6. A perfectly conducting plane is located in free space at x = 4, and
a uniform infinite line charge of 40 nC/m lies along the line x = 6, y = 3. Let
V = 0 at the conducting plane. At P(7, —1,5) find: (a) V; (b) E.

Ans. 317V: —453a, — 99.2a, V/m

5.6 SEMICONDUCTORS

If we now turn our attention to an intrinsic semiconductor material, such as pure
germanium or silicon, two types of current carriers are present, electrons and holes.
The electrons are those from the top of the filled valence band that have received
sufficient energy (usually thermal) to cross the relatively small forbidden band into
the conduction band. The forbidden-band energy gap in typical semiconductors is of
the order of one electronvolt. The vacancies left by these electrons represent unfilled
energy states in the valence band which may also move from atom to atom in the
crystal. The vacancy is called a hole, and many semiconductor properties may be
described by treating the hole as if it had a positive charge of e, a mobility, u,, and
an effective mass comparable to that of the electron. Both carriers move in an electric
field, and they move in opposite directions; hence each contributes a component of
the total current which is in the same direction as that provided by the other. The
conductivity is therefore a function of both hole and electron concentrations and
mobilities,

T = —Pelle + P “9)

For pure, or intrinsic, silicon, the electron and hole mobilities are 0.12 and 0.025,
respectively, whereas for germanium, the mobilities are, respectively, 0.36 and 0.17.
These values are given in square meters per volt-second and range from 10 to 100
times as large as those for aluminum, copper, silver, and other metallic conductors.®
These mobilities are given for a temperature of 300 K.

The electron and hole concentrations depend strongly on temperature. At 300 K
the electron and hole volume charge densities are both 0.0024 C/m?in magnitude in
intrinsic silicon and 3.0 C/m? in intrinsic germanium. These values lead to conductiv-
ities of 0.000 35 S/m in silicon and 1.6 S/m in germanium. As temperature increases,
the mobilities decrease, but the charge densities increase very rapidly. As a result, the
conductivity of silicon increases by a factor of 10 as the temperature increases from
300 to about 330 K and decreases by a factor of 10 as the temperature drops from 300
to about 275 K. Note that the conductivity of the intrinsic semiconductor increases
with temperature, whereas that of a metallic conductor decreases with temperature;
this is one of the characteristic differences between the metallic conductors and the
intrinsic semiconductors.

& Mobility values for semiconductors are given in References 2, 3, and 5 listed at the end of this chapter.
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Intrinsic semiconductors also satisfy the point form of Ohm’s law; that is, the
conductivity is reasonably constant with current density and with the direction of the
current density.

The number of charge carriers and the conductivity may both be increased dramat-
ically by adding very small amounts of impurities. Donor materials provide additional
electrons and form n-rype semiconductors, whereas acceptors furnish extra holes and
form p-type materials. The process is known as doping, and a donor concentration in
silicon as low as one part in 107 causes an increase in conductivity by a factor of 10°.

The range of value of the conductivity is extreme as we go from the best insulating
materials to semiconductors and the finest conductors. In siemens per meter, o ranges
from 10" for fused quartz, 10~ for poor plastic insulators, and roughly unity for
semiconductors to almost 10® for metallic conductors at room temperature. These
values cover the remarkably large range of some 25 orders of magnitude.

D5.7. Using the values given in this section for the electron and hole mo-
bilities in silicon at 300 K, and assuming hole and electron charge densities
are 0.0029 C/m* and —0.0029 C/m?, respectively, find: (@) the component of
the conductivity due to holes: (b) the component of the conductivity due to
electrons; (¢) the conductivity.

Ans. 72.5 1S/m; 348 1S/m; 421 uS/m

5.7 THE NATURE OF DIELECTRIC
MATERIALS

A dielectric in an electric field can be viewed as a free-space arrangement of mi-
croscopic electric dipoles, each of which is composed of a positive and a negative
charge whose centers do not quite coincide.These are not free charges, and they cannot
contribute to the conduction process. Rather, they are bound in place by atomic and
molecular forces and can only shift positions slightly in response to external fields.
They are called bound charges, in contrast to the free charges that determine conduc-
tivity. The bound charges can be treated as any other sources of the electrostatic field.
Therefore, we would not need to introduce the dielectric constant as a new parameter
or to deal with permittivities different from the permittivity of free space; however,
the alternative would be to consider every charge within a piece of dielectric material.
This is too great a price to pay for using all our previous equations in an unmodified
form, and we shall therefore spend some time theorizing about dielectrics in a quali-
tative way: introducing polarization P, permittivity €, and relative permittivity €,: and
developing some quantitative relationships involving these new parameters.

The characteristic that all dielectric materials have in common, whether they are
solid, liquid, or gas, and whether or not they are crystalline in nature, is their ability
to store electric energy. This storage takes place by means of a shift in the relative
positions of the internal, bound positive and negative charges against the normal
molecular and atomic forces.
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This displacement against a restraining force is analogous to lifting a weight
or stretching a spring and represents potential energy. The source of the energy is
the external field, the motion of the shifting charges resulting perhaps in a transient
current through a battery that is producing the field.

The actual mechanism of the charge displacement differs in the various dielectric
materials. Some molecules, termed polar molecules, have a permanent displacement
existing between the centers of “gravity” of the positive and negative charges, and
each pair of charges acts as a dipole. Normally the dipoles are oriented in a random
way throughout the interior of the material, and the action of the external field is to
align these molecules, to some extent, in the same direction. A sufficiently strong
field may even produce an additional displacement between the positive and negative
charges.

A nonpolar molecule does not have this dipole arrangement until after a field is
applied. The negative and positive charges shift in opposite directions against their
mutual attraction and produce a dipole that is aligned with the electric field.

Either type of dipole may be described by its dipole moment p, as developed in
Section 4.7, Eq. (36),

p=0d (20)

where Q is the positive one of the two bound charges composing the dipole, and d is
the vector from the negative to the positive charge. We note again that the units of p
are coulomb-meters.
If there are n dipoles per unit volume and we deal with a volume Av, then there
are n Av dipoles, and the total dipole moment is obtained by the vector sum,
nAv
Protal = Z Pi
i=l
If the dipoles are aligned in the same general direction, py, may have a significant
value. However. a random orientation may cause pi to be essentially zero.
We now define the polarization P as the dipole moment per unit volume,

n Ay

P= ]ilm —Zp,- (21)

with units of coulombs per square meter. We will treat P as a typical continuous field,
even though it is obvious that it is essentially undefined at points within an atom
or molecule. Instead, we should think of its value at any point as an average value
taken over a sample volume Av—Ilarge enough to contain many molecules (n Av in
number), but yet sufficiently small to be considered incremental in concept.

Our immediate goal is to show that the bound-volume charge density acts like
the free-volume charge density in producing an external field; we will obtain a result
similar to Gauss’s law.

To be specific, assume that we have a dielectric containing nonpolar molecules.
No molecule has a dipole moment, and P = 0 throughout the material. Somewhere in
the interior of the dielectric we select an incremental surface element AS, as shown
in Figure 5.9a. and apply an electric field E. The electric field produces a moment
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Dielectric
material

Figure 5.9 (a) An incremental surface element ASis shown in the interior of a
dielectric in which an electric field E is present. (b) The nonpolar molecules form dipole
moments p and a polarization P. There is a net transfer of bound charge across AS.

p = Od in each molecule, such that p and d make an angle # with AS, as indicated
in Figure 5.9b.

The bound charges will now move across AS. Each of the charges associated
with the creation of a dipole must have moved a distance 1d cos@ in the direction
perpendicular to AS. Thus, any positive charges initially lying below the surface AS
and within the distance 1d cos ¢ of the surface must have crossed AS going upward.
Also, any negative charges initially lying above the surface and within that distance
(%d cos f) from AS must have crossed AS going downward. Therefore, because there
are n molecules/m?, the net total charge that crosses the elemental surface in an upward
direction is equal to n Qd cos 6 AS, or

AQ, =nQd- AS

where the subscript on Q) reminds us that we are dealing with a bound charge and
not a free charge. In terms of the polarization, we have

AQ,=P-AS

If we interpret AS as an element of a closed surface inside the dielectric material,
then the direction of AS is outward. and the net increase in the bound charge within
the closed surface is obtained through the integral

Oy = —%P'ds (22)
s
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This last relationship has some resemblance to Gauss’s law, and we may now gener-
alize our definition of electric flux density so that it applies to media other than free
space. We first write Gauss’s law in terms of €E and Q7. the total enclosed charge,
bound plus free:

Qr = % eE-dS (23)
s
where

Or=0,+0Q

and Q is the total free charge enclosed by the surface S. Note that the free charge
appears without a subscript because it is the most important type of charge and will
appear in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free charge
enclosed,

Q=0r—0p= jﬁ(éuE +P)-dS (24)
s

D is now defined in more general terms than was done in Chapter 3,

D= E(}E +P [25}

There is thus an added term to D that appears when polarizable material is present.
Thus,

Q=?§D-dS (26)
5

where Q is the free charge enclosed.
Utilizing the several volume charge densities, we have

Qh :‘fﬂ’hdv
Q=[mw
QOr = fp'r dv

With the help of the divergence theorem, we may therefore transform Eqs. (22), (23),
and (26) into the equivalent divergence relationships,

V'P:—,C-‘;,
V-&E = pr
vV.D=p, 27

We will emphasize only Eq. (26) and (27), the two expressions involving the free
charge. in the work that follows.
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In order to make any real use of these new concepts, it is necessary to know the
relationship between the electric field intensity E and the polarization P that results.
This relationship will, of course, be a function of the type of material, and we will
essentially limit our discussion to those isotropic materials for which E and P are
linearly related. In an isotropic material, the vectors E and P are always parallel,
regardless of the orientation of the field. Although most engineering dielectrics are
linear for moderate-to-large field strengths and are also isotropic, single crystals may
be anisotropic. The periodic nature of crystalline materials causes dipole moments to
be formed most easily along the crystal axes, and not necessarily in the direction of
the applied field.

In ferroelectric materials, the relationship between P and E not only is nonlin-
ear, but also shows hysteresis effects; that is, the polarization produced by a given
electric field intensity depends on the past history of the sample. Important examples
of this type of dielectric are barium titanate, often used in ceramic capacitors, and
Rochelle salt.

The linear relationship between P and E is

where x,. (chi) is a dimensionless quantity called the electric susceptibility of the
material.
Using this relationship in Eq. (25), we have

D =¢E + X‘.EuE =(Xa+ 1eoE
The expression within the parentheses is now defined as
&= Xe + 1 (29)

This is another dimensionless quantity, and it is known as the relative permittivity, or
dielectric constant of the material. Thus,

D =€y, E = €E (30)

where

€ = €€, (31)

and € is the permittivity. The dielectric constants are given for some representative
materials in Appendix C.

Anisotropic dielectric materials cannot be described in terms of a simple suscep-
tibility or permittivity parameter. Instead. we find that each component of D may be
a function of every component of E, and D = €E becomes a matrix equation where
D and E are each 3 x | column matrices and € is a 3 x 3 square matrix. Expanding
the matrix equation gives

Dy =€ Ei+eyEy+eE;
D, = €yx E, + Eyy E.'.' + & E;
D: =€z E, + €zy E_\' +€:; E:
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Note that the elements of the matrix depend on the selection of the coordinate axes in
the anisotropic material. Certain choices of axis directions lead to simpler matrices.’

D and E (and P) are no longer parallel, and although D = ¢E + P remains
a valid equation for anisotropic materials, we may continue to use D = €E only
by interpreting it as a matrix equation. We will concentrate our attention on linear
isotropic materials and reserve the general case for a more advanced text.

In summary, then, we now have a relationship between D and E that depends on
the dielectric material present,

D =¢E (30)

This electric flux density is still related to the free charge by either the point or integral
form of Gauss’s law:

where

V-D=p, 27)

5£D-dS= 0 (26)
s

Use of the relative permittivity, as indicated by Eq. (31), makes consideration
of the polarization, dipole moments, and bound charge unnecessary. However, when
anisotropic or nonlinear materials must be considered, the relative permilttivity, in the
simple scalar form that we have discussed, is no longer applicable.

We locate a slab of Teflon in the region 0 < x < a, and assume free space where
x < 0 and x > a. Outside the Teflon there is a uniform field E,, = Epa, V/m. We
seek values for D, E, and P everywhere.

Solution. The dielectric constant of the Teflon is 2.1, and thus the electric suscepti-
bility is 1.1.

Outside the slab, we have immediately D,,, = €yEpa,. Also, as there is no
dielectric material there, P, = 0. Now, any of the last four or five equations will
enable us to relate the several fields inside the material to each other. Thus

Di, = 2.1¢Eiy 0<x<a)
Pin — l.lG;}Ei" {0 s G ﬂ'_:l

7 A more complete discussion of this matrix may be found in the Ramo, Whinnery, and Van Duzer
reference listed at the end of this chapter.
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As soon as we establish a value for any of these three fields within the dielectric, the
other two can be found immediately. The difficulty lies in crossing over the boundary
from the known fields external to the dielectric to the unknown ones within it. To do
this we need a boundary condition, and this is the subject of the next section. We will
complete this example then.

In the remainder of this text we will describe polarizable materials in terms of D
and e rather than P and x.. We will limit our discussion to isotropic materials.

D5.8. A slab of dielectric material has a relative dielectric constant of 3.8 and
contains a uniform electric flux density of 8 nC/m?. If the material is lossless,
find: (a) E: (b) P; (c¢) the average number of dipoles per cubic meter if the
average dipole moment is 1072°C - m.

Ans. 238 V/m: 5.89 nC/m?; 5.89 x 1020 m—3

lllustrations

5.8 BOUNDARY CONDITIONS FOR PERFECT
DIELECTRIC MATERIALS

How do we attack a problem in which there are two different dielectrics, or a dielectric
and a conductor? This is another example of a boundary condition, such as the condi-
tion at the surface of a conductor whereby the tangential fields are zero and the normal
electric flux density is equal to the surface charge density on the conductor. Now we
take the first step in solving a two-dielectric problem, or a dielectric-conductor prob-
lem, by determining the behavior of the fields at the dielectric interface.

Let us first consider the interface between two dielectrics having permittivities
€; and €; and occupying regions 1 and 2, as shown in Figure 5.10. We first examine

Region 1
&

‘Ah

Figure 5.10 The boundary between perfect dielectrics of permittivities e,
and ez. The continuity of Dy is shown by the gaussian surface on the right,

and the continuity of Ea, is shown by the line integral about the closed path
at the left.
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the tangential components by using

fE-dL:O

around the small closed path on the left, obtaining
Egni Aw — Eygyr Aw =0

The small contribution to the line integral by the normal component of E along
the sections of length Ah becomes negligible as A/ decreases and the closed path
crowds the surface. Immediately, then,

32

Evidently, Kirchhoff’s voltage law is still applicable to this case. Certainly we have
shown that the potential difference between any two points on the boundary that are
separated by a distance Aw is the same immediately above or below the boundary.

If the tangential electric field intensity is continuous across the boundary, then
tangential D is discontinuous, for

Dmn I Dmn1
—— = Byl = Bunz =
€] €
or
Dun1 €
ol _ €l (33)
Dlunl €2

The boundary conditions on the normal components are found by applying
Gauss’s law to the small “pillbox™ shown at the right in Figure 5.10. The sides are
again very short, and the flux leaving the top and bottom surfaces is the difference

DN]AS — DNg&S = AQ = ,O_gAS

from which

Dy — Dyy = ps (34)

What is this surface charge density? It cannot be a bound surface charge density,
because we are taking the polarization of the dielectric into effect by using a dielectric
constant different from unity; that is, instead of considering bound charges in free
space, we are using an increased permittivity. Also, it is extremely unlikely that any
[free charge is on the interface, for no free charge is available in the perfect dielectrics
we are considering. This charge must then have been placed there deliberately, thus
unbalancing the total charge in and on this dielectric body. Except for this special
case, then, we may assume pg is zero on the interface and
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or the normal component of D is continuous. It follows that
€1Eyy = eEn (36)

and normal E is discontinuous.

Equations (32) and (34) can be written in terms of field vectors in any direction,
along with the unit normal to the surface as shown in Figure 5.10. Formally stated,
the boundary conditions for the electric flux density and the electric field strength at
the surface of a perfect dielectric are

(D —Dy)-n=p, (37)
which is the general statement of Eq. (32), and
(E| —Eg)xll:O [38)

generally states Eq. (34). This construction was used previously in Egs. (17) and (18)
for a conducting surface, in which the normal or tangential components of the fields
are obtained through the dot product or cross product with the normal, respectively.

These conditions may be used to show the change in the vectors D and
E at the surface. Let D, (and E;) make an angle ¢, with a normal to the surface
(Figure 5.11). Because the normal components of D are continuous,

DN] = D| C059| = Dg cos 193 = D,\.'g (39)
The ratio of the tangential components is given by (33) as

Duni  Disin €
Dunz  Dysinéy e

or

EgD] sin 9| = E|D'_1_ Sil’l(}g (40)

Dy>

Dlanz

Figure 5.11 The refraction of D at a

dielectric interface. For the case shown,
€; > e2; Ey and E: are directed along D
and D2, with Dy > Ds and E4 < Es.
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and the division of this equation by (39) gives

tan ¢, €]

= 41
tan 6 € el
In Figure 5.11 we have assumed that €; > €5, and therefore ¢ > 6.
The direction of E on each side of the boundary is identical with the direction of
D, because D = €E.
The magnitude of D in region 2 may be found from Eq. (39) and (40),

' € g 5=
D, = Dl\/lsos2 0, + (—) sin” 6, (42)

€]

and the magnitude of E- is

Py

E;= E|\/sin1 0, + (E) cos? 6, (43)

€2

An inspection of these equations shows that D is larger in the region of larger permit-
tivity (unless #; = 6, = (0° where the magnitude is unchanged) and that E is larger
in the region of smaller permittivity (unless #; = £, = 90°, where its magnitude is
unchanged).

Complete Example 5.4 by Tinding the helds within the leflon (e, = 2.1), given the
uniform external field E,, = Epa, in free space.

Solution. We recall that we had a slab of Teflon extending fromx = Otox = a,
as shown in Figure 5.12, with free space on both sides of it and an external field
E,. = Epa,. We also have D, = ¢p Epa, and P, = 0.

Inside, the continuity of Dy at the boundary allows us to find that Dy, = D, =
eoEoa,. This gives us Ej, = Dy, /e = ¢ Epa, /(€,.€)) = 0.476 Epa,. To get the polar-
ization field in the dielectric, we use D = ¢E + P and obtain

Pi“ = Di“ — GQEi“ = €p Ena_. = U.476E(]Ena_‘- = 0.524601‘2{]3)‘-

Summarizing then gives

Di, = epEpa, O=x=<a)
E;,, = 0.476Eya, 0<x<a)
P, = 0.524¢)Epa, O=x<a)

A practical problem most often does not provide us with a direct knowledge of
the field on either side of the boundary. The boundary conditions must be used to help
us determine the fields on both sides of the boundary from the other information that
is given.
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,‘——\‘-_/-—-\.___‘-v—\
Teflon
& =21
2= 11
E=E; —r o— E=0476E, ——— F=E,
D=¢gyky @—— ——> D=¢,E, ——> D=g,L
P=0e o—> P=0.524¢,E, ® P=0
L— — ~_—
x=0 x=a

Figure 5.12 A knowledge of the electric field external to the dielectric
enables us to find the remaining external fields first and then to use the
continuity of normal D to begin finding the internal fields.

D5.9. Let Region 1 (z < 0) be composed of a uniform dielectric material
for which €, = 3.2, while Region 2 (z > 0) is characterized by €, = 2. Let
D, = —30a, + 50a, + 70a. nC/m? and find: (a) Dyy; (b) Dy1; (¢) Dyy; (d) Dy
(e) 61 (f) Py.

Ans. 70 nC/m?; —30a, + 50a, nC/m?; 58.3 nC/m’; 91.1 nC/m?; 39.8°; —20.6a, +
34.4a, + 48.1a. nC/m’

D5.10. Continue Problem D5.9 by finding: (a) Dy2; (b) Dya: (¢) Da: (d) Pa:
(e) ba.

Ans. 70a, nC/m%; —18.75a, + 31.25a, nC/m?; —18.75a, + 31.25a, + 70a, nC/m?;
—9.38a, + 15.63a, + 35a. nC/m*; 27.5°
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Given the current density J = —10*[sin(2x)e*'a, + cos(2x)e *'a, ] kA/m’
(a) Find the total current crossing the plane y = 1 in the a, direction in the
region 0 < x < 1,0 < z < 2. (b) Find the total current leaving the region

0 <x,y < 1,2 <z <3 byintegrating J - dS over the surface of the cube.
(¢) Repeat part (&), but use the divergence theorem.

Given J = —10~*(va, + xa,) A/m?, find the current crossing the y = 0
plane in the —a, direction between z = 0 and 1, and x = O and 2.

Let J = 400sinf/(r* + 4) a, A/m?. (a) Find the total current flowing
through that portion of the spherical surface r = 0.8, bounded by

0.1r <6 < 0.37.0 < ¢ < 2m. (b) Find the average value of J over the
defined area.

If volume charge density is given as p, = (cos wt)/r? C/m* in spherical
coordinates, find J. It is reasonable to assume that J is not a function of & or ¢.

LetJ = 25/pa, — 20/(p? + 0.01) a. A/m. (a) Find the total current
crossing the plane z = 0.2 in the a. direction for p < 0.4. (b) Calculate
dp,/dt. (c) Find the outward current crossing the closed surface defined by
p=0.0l.p=04,z=0,and z = 0.2. (d) Show that the divergence
theorem is satisified for J and the surface specified in part (c).

In spherical coordinates, a current density J = —k/(r sin)ag A/m? exists in
a conducting medium, where k is a constant. Determine the total current in
the a. direction that crosses a circular disk of radius R, centered on the z axis
and located at (@) z = 0: (b) z = h.

Assuming that there is no transformation of mass to energy or vice versa, it is
possible to write a continuity equation for mass. (a) If we use the continuity
equation for charge as our model, what quantities correspond to J and p,?
(b) Given a cube | cm on a side, experimental data show that the rates at
which mass is leaving each of the six faces are 10.25, —9.85, 1.75, —2.00,
—4.05, and 4.45 mg/s. If we assume that the cube is an incremental volume
element, determine an approximate value for the time rate of change of
density at its center.

A truncated cone has a height of 16 cm. The circular faces on the top and
bottom have radii of 2 mm and 0.1 mm, respectively. If the material from
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which this solid cone is constructed has a conductivity of 2 x 10° S/m, use
some good approximations to determine the resistance between the two
circular faces.

(a) Using data tabulated in Appendix C, calculate the required diameter for a
2-m-long nichrome wire that will dissipate an average power of 450 W when
120 V rms at 60 Hz is applied to it. (b) Calculate the rms current density in
the wire.

5108 A large brass washer has a 2-cm inside diameter, a 5-cm outside diameter,

and is 0.5 cm thick. Its conductivity is & = 1.5 x 107 S/m. The washer is cut
in half along a diameter, and a voltage is applied between the two rectangular
faces of one part. The resultant electric field in the interior of the half-washer
is E = (0.5/p)a, V/m in cylindrical coordinates, where the z axis is the axis
of the washer. (a) What potential difference exists between the two
rectangular faces? (b) What total current is flowing? (¢) What is the
resistance between the two faces?

5111 Two perfectly conducting cylindrical surfaces of length ¢ are located at

p =3 and p = 5 cm. The total current passing radially outward through the
medium between the cylinders is 3 A dc. (a) Find the voltage and resistance
between the cylinders, and E in the region between the cylinders, if a
conducting material having ¢ = 0.05 S/m is present for 3 < p < 5 cm.

(b) Show that integrating the power dissipated per unit volume over the
volume gives the total dissipated power.

5.121 Two identical conducting plates, each having area A, are located at z = 0 and

z = d. The region between plates is filled with a material having z-dependent
conductivity, o(z) = ope~, where oy is a constant. Voltage V is applied to
the plate at z = d: the plate at z = 0 is at zero potential. Find, in terms of the
given parameters, (a) the resistance of the material; (b) the total current
flowing between plates; (c) the electric field intensity E within the material.

5.131 A hollow cylindrical tube with a rectangular cross section has external

dimensions of 0.5 in. by 1 in. and a wall thickness of 0.05 in. Assume that the
material is brass, for which o = 1.5 x 107 S/m. A current of 200 A dc is
flowing down the tube. (a) What voltage drop is present across a 1 m length
of the tube? (b) Find the voltage drop if the interior of the tube is filled with
a conducting material for which o = 1.5 x 10° $/m.

5141 A rectangular conducting plate lies in the xy plane, occupying the region

0 <x <a.0 <y < b. Anidentical conducting plate is positioned directly
above and parallel to the first, at z = d. The region between plates is filled
with material having conductivity o(x) = ape "/, where oy is a constant.
Voltage V, is applied to the plate at z = d: the plate at z = 0 is at zero
potential. Find. in terms of the given parameters, (a) the electric field
intensity E within the material; (b) the total current flowing between plates;
() the resistance of the material.
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5150 Let vV = 10(p 4 1)z> cos ¢ V in free space. (a) Let the equipotential surface
V = 20 V define a conductor surface. Find the equation of the conductor
surface. (b) Find p and E at that point on the conductor surface where ¢ =
0.2 and z = 1.5. (¢) Find | pg| at that point.

5.16 I A coaxial transmission line has inner and outer conductor radii @ and b.
Between conductors (@ < p < b) lies a conductive medium whose
conductivity is o (p) = ay/p. where oy is a constant. The inner conductor is
charged to potential Vp, and the outer conductor is grounded. (a) Assuming
dc radial current 7 per unit length in z, determine the radial current density
field J in A/m”. (b) Determine the electric field intensity E in terms of / and
other parameters, given or known. (¢) By taking an appropriate line integral
of E as found in part (b), find an expression that relates V;, to /. (d) Find an
expression for the conductance of the line per unit length, G.

5.17 Given the potential field V = 100xz/(x? +4) V in free space: (a) Find D at
the surface z = 0. (b) Show that the z = () surface is an equipotential surface.
(c) Assume that the z = 0 surface is a conductor and find the total charge on
that portion of the conductor definedby 0 < x <2, -3 <y < 0.

5.181 Two parallel circular plates of radius a are located at z = 0 and z = d. The
top plate (z = d) is raised to potential Vj: the bottom plate is grounded.
Between the plates is a conducting material having radial-dependent
conductivity, o (p) = ayp. where oy is a constant. (a) Find the p-independent
electric field strength, E, between plates. (£) Find the current density, J
between plates. (¢) Find the total current, /, in the structure. (d) Find the
resistance between plates.

5190 Letv = 20x%yz — 10z* V in free space. (a) Determine the equations of the
equipotential surfaces on which V = 0 and 60 V. (b) Assume these are
conducting surfaces and find the surface charge density at that point on the
V =60V surface where x =2 and z = 1. [tis known that0 < V <60V is
the field-containing region. (¢) Give the unit vector at this point that is
normal to the conducting surface and directed toward the V = 0 surface.

5204 Two point charges of —100x ;C are located at (2. —1. 0) and (2, 1. 0). The
surface x = 0 is a conducting plane. (a) Determine the surface charge
density at the origin. (b) Determine pg at P(0, h, 0).

5.211 Let the surface y = 0 be a perfect conductor in free space. Two uniform
infinite line charges of 30 nC/m each are located at x = 0, y = 1. and
x=0.v=2.(a) Let V = 0 at the plane y = 0, and find V at P(l. 2, 0).
(b) Find E at P.

5.22 1 The line segmentx =0, —1 <y < 1,z = |, carries a linear charge density
pr = 1|yl nC/m. Let z = 0 be a conducting plane and determine the surface
charge density at: (a)(0, 0, 0); (b) (0, 1, 0).
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5231 A dipole with p = 0.1a. uC- m is located at A(1, 0, 0) in free space, and the
x = 0 plane is perfectly conducting. (a) Find V at P(2, 0, 1). (b) Find the
equation of the 200 V equipotential surface in rectangular coordinates.

5.24 1 Ata certain temperature, the electron and hole mobilities in intrinsic
germanium are given as 0.43 and 0.21 m?/V - s, respectively. If the electron
and hole concentrations are both 2.3 x 10" m~>, find the conductivity at this
temperature.

5.251 Electron and hole concentrations increase with temperature. For pure
silicon, suitable expressions are p, = —p, = 62007 37907 C/m?,
The functional dependence of the mobilities on temperature is given by
wp =23 x 100727 m?/V-sand p, = 2.1 x 10°T=2% m*/V -5, where the
temperature, 7', is in degrees Kelvin. Find a at: (a) 0°C; (b) 40°C:; (¢) 80°C.

5.26 1 A semiconductor sample has a rectangular cross section 1.5 by 2.0 mm, and a
length of 11.0 mm. The material has electron and hole densities of 1.8 x 10'®
and 3.0 x 10"® m™3, respectively. If yt, = 0.082 m?/V s and p;, = 0.0021
m?/ V -, find the resistance offered between the end faces of the sample.

527§ Atomic hydrogen contains 5.5 x 10> atoms/m’at a certain temperature and

pressure. When an electric field of 4 kV/m is applied, each dipole formed by
the electron and positive nucleus has an effective length of 7.1 x 107" m.
(a) Find P. (b) Find €,.

5.28 L Find the dielectric constant of a material in which the electric flux density is
four times the polarization.

5.291 A coaxial conductor has radii @ = 0.8 mm and b = 3 mm and a polystyrene
dielectric for which e, = 2.56. If P = (2/p)a,, nC/m? in the dielectric, find
(@) D and E as functions of p; (b) V., and x.. (¢) If there are 4 x 10"
molecules per cubic meter in the dielectric, find p(p).

5.30 1 Consider a composite material made up of two species, having number
densities Ny and Ny molecules/m’, respectively. The two materials are
uniformly mixed, yielding a total number density of N = N| + N,. The
presence of an electric field E induces molecular dipole moments p; and p»
within the individual species, whether mixed or not. Show that the dielectric
constant of the composite material is given by ¢, = fe,1 + (1 — f)€,2, where
[ is the number fraction of species | dipoles in the composite, and where €,
and €,, are the dielectric constants that the unmixed species would have if
each had number density N.

5.31 l The surface x = 0 separates two perfect dielectrics. Forx > 0, lete, =
€1 = 3, while ¢, = 5 where x < 0. If E; = 80a, — 60a, — 30a_ V/m, find
(a) Eyy: (b)) Ery: () Ep; (d) the angle #; between E; and a normal to the
surface: (¢) Dya: (f) Dya: (g) Da: (h) Py (i) the angle 65 between E; and a
normal to the surface.
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5320 Two equal but opposite-sign point charges of 3 £ C are held x meters apart by
a spring that provides a repulsive force given by Fy, = 12(0.5 — x) N.
Without any force of attraction, the spring would be fully extended to 0.5 m.
(a) Determine the charge separation. (») What is the dipole moment?

5331 Two perfect dielectrics have relative permittivities €,; = 2 and €, = 8. The
planar interface between them is the surface x — y 4+ 2z = 5. The origin lies
inregion 1. If E; = 100a, + 200a, — 50a. V/m, find E,.

5341 Region I (x = 0) is a dielectric with €, = 2, while region 2(x < 0) has
€2 =235.Let E; = 20a, — 10a, 4 50a. V/m. (a) Find D». (») Find the energy
density in both regions.

53514 Let the cylindrical surfaces p = 4 cm and p = 9 cm enclose two wedges of
pertect dielectrics, €, = 2for0 < ¢ < w/2and €,; =S form/2 < ¢p < 2m.
If E; = (2000/p)a, V/m, find (a) E;; (b) the total electrostatic energy stored
in a 1 m length of each region.
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