Chapter

Introduction to Logic Circuit
Analysis and Design

Chapter Outline

3.1 Introduction 67
3.2 Integrated Circuit Devices 67
3.3 Analyzing and Designing Logic Circuits 69
3.4 Generating Detailed Schematics 74
3.5 Designing Circuits in NAND/NAND and NOR/NOR Form 76
3.6 Propagation Delay Time 78
3.7 Decoders 79
3.8 Multiplexers 85
3.9 Hazards 88
Problems 91

3.1 INTRODUCTION

In this chapter, you will learn about integrated circuit devices, how to analyze and design logic
circuits, and how to generate detailed schematic diagrams. You will learn how to manually
design circuits in AND/OR form, OR/AND form, NAND/NAND form, and NOR/NOR form.
All logic circuits have a delay time, so we will discuss how to determine the worst-case delay
time through a circuit. Two very important logic devices—decoders and multiplexers—are
introduced. Simple procedures are presented for manually designing digital circuits with decod-
ers and also with multiplexers. Function hazards and logic hazards that generate glitches that
can cause circuits to fail are covered. The design of most of the circuits is followed by a listing
that shows the complete VHDL design of the circuits using Boolean equations.

3.2 INTEGRATED CIRCUIT DEVICES

There are many manufacturers that provide physical hardware devices called integrated cir-
cuits (ICs) that are capable of carrying out two-valued Boolean functions. These devices can
contain tens to literally millions of transistors on a small silicon semiconductor crystal called a
die or chip. Because the circuitry contains mainly transistors, diodes, and resistors, which are
all interconnected inside the chip, power consumption can be quite low and reliability quite
high. The die is constructed and then welded to a frame as illustrated in Figure 3.1. Its input

| S|
A R B A48
AEHIAE -

(E=3E4

AT R
FEL % 2 1 1) e 2
fa LL K S Ff Bf 4%
772 -

67

68 Chapter 3 Introduction to Logic Gircuit Analysis and Design

and output leads are connected by thin gold wires to the package’s leads or pins. The unit is
encapsulated using glass, ceramic, or plastic. Finally, the unit is hermetically sealed. ICs that are
hermetically sealed guard against die contamination in many different environments.

FIGURE 3.1 Cutaway view of an IC Cutaway view
package showing the die or chip,
the die frame, the gold wire, the lead
frame, the package’s leads or pins,
and the pin numbers or pin outs

Thin gold wire

Metal die frame
upon which die
is mounted

Metal
lead frame
Die or chip

Package’s leads
or pins

FIGURE 3.2 Packages

for integrated circuits:

(a) dual-in-line package;

(b) flat package; (c) surface
mounting package; (d) plastic
leaded chip carrier package;
(e) pin grid array package

(d) (e)

SR, The package shown in Figure 3.2a is the common dual-in-line (DIP) package. The pack-

Integrated Circuft(Ic), ages' shown in Figures 2b and c are the flat package (flgt pack) an.d the. surfgce mount (small

T T T outline) package. These packag?s are generally used in applications in whlch real e§tate on

e s : a printed circuit board (PCB) is critical and/or a lower cost must be achieved for high vol-

iy Ay A B A ume application. The packages shown in Figures 2d and e are the plastic leaded chip carrier
(PLCC) package and the pin grid array (PGA) package, respectively, which are used for very
large IC designs especially when the pin count—that is, the package inputs and outputs—for
the designs become very large. Note the location of pin 1 for each package type. The integrated
circuit packages shown in Figure 3.2 are only a few among many different types of packages
available. For very large integrated circuit devices, a newer package is available called a ball
grid array (BGA) package (the BGA package is not shown in Figure 3.2). The BGA has balls
of solder on its pins that are soldered directly to a PC board. Manufacturers have a website that
provides the data sheets for their parts. The data sheets provide a list of IC packages available,
so engineers can choose the ones they prefer to use.

3.3 Analyzing and Designing Logic Circuits 69

3.3 ANALYZING AND DESIGNING LOGIC CIRCUITS

We call circuit analysis the process of obtaining a Boolean function for a schematic or a circuit
diagram. We call circuit design or synthesis the process of obtaining a schematic or a circuit
diagram for a Boolean function. Keep in mind that the schematics or circuit diagrams we will
cover are combinational or combinatorial logic circuits; that is, the outputs of these circuits
depend only on the external inputs applied to the circuits. Combinational logic circuits do not
have feedback (the outputs are never fed back as inputs), and they do not have memory capability.

3.3.1 Analyzing and Designing Relay Logic Circuits

Before we introduce the analysis/design process using IC logic circuits, let’s first analyze a
logic switching circuit that uses relays. Switching circuits of this type are used in heavy power
equipment. Figure 3.3a shows a physical representation for relay contacts that are normally
closed (n.c.) and its corresponding symbol. Figure 3.3b shows a physical representation for relay
contacts that are normally open (n.0.) and its corresponding symbol.

Spring n.o

. E n.c. .0.
Spring contacts contacts
L]

Nb . [N .
Coil Coil
e I

Current Current
(when current flows {(when current flows
the relay opens) the relay closes)

-

Common symbol for

¥

+=<1
+=<

Common symbol for

n.c. relay contacts n.0. relay contacts

Physical representation Physical representation

for relay contacts that for relay contacts that
are normally closed (n.c.) are normally open (n.o.)

(@) ®

A logic switching circuit that uses relays connected up to a drive a motor is shown in Fig-

ure 3.4.

+ - + -
A B c A —[>o— A B
H— — @ B —— H— —
8, DC motor F ﬂ, DC motor
A1 D At
A B C
<>
o —H— -
(—)

F
(a) (b) (©)

Logic switching circuits used in power applications are generally referred to as ladder logic
circuits. This term is used because it refers to the physical layout of the circuit (it looks like a ladder
that may be climbed). In the switching circuit in Figure 3.4a, when F is 1, the motor M is turned
on. Otherwise, the motor is turned off—that is, /' = 0. To analyze relay logic circuits, one must
remember that relays or switches connected in series provide an AND operation, while relays or
switches connected in parallel provide an OR operation. The same series and parallel principles
apply to transistor circuits, which you will study in a later course—that is, transistors connected in
series provide an AND operation while transistors connected in parallel provide an OR operation.

Analyzing the circuit in Figure 3.4a, we obtain the following Boolean equation for the cir-
cuits: F = A-B-C + D + A-B-C. The expression A -B-C indicates that signal A must be 0 AND
signal B must be 1 AND signal C must be 1, s0 F = 1 to turn the motor on; OR the expression D

| F1E|

ATE DT
R4k LSS &
EHHEE . KD
PR it Ted A
B LR o

FIGURE 3.3 Relay contacts:
(a) physical representation
and common symbol for
normally closed (n.c.) relay
contacts and (b) physical
representation and common
symbol for normally open
(n.0.) relay contacts

FIGURE 3.4

Relay logic switching
circuits: (a) original
relay circuit; (b) mini-
mized symbolic logic
circuit; (c) minimized
relay circuit

70 Chapter 3

FLEE AT :

Circuit Analysis, B
AR Ak
BA R BB,

FIGURE 3.5 Circuits
to be analyzed to
obtain their Boolean
functions

Introduction to Logic Circuit Analysis and Design

indicates that the signal D must be 0, so F = 1 to turn the motor on; OR the expression A-B-C
indicates that the signal A must be 0 AND the signal B must be 1 AND the signal C must be 0,
so F =1 to turn the motor on.

Applying Boolean algebra or using a K-map, the function F can be reduced to the following
minimum form: F = A-B + D. Using the minimum form of the function, we can design the
circuit in symbolic form as shown in Figure 3.4b. The relay logic circuit drawn for the minimum
form of the function is shown in Figure 3.4c. In general, logic circuits that use ICs may not be
hefty enough to drive high-powered motors or electric light bulbs; however, logic circuits that
use relays can be used for these applications.

To manually design a logic circuit using relays as illustrated in the last example, first obtain
a minimum Boolean equation for the function. Next, substitute the appropriate relay type (either
normally open or normally closed) for each input, and connect each relay either in series or in
parallel depending on the form of the function. Connect the resulting relay circuit in series with
an output device such as a motor, a lamp, or a control relay (CR). A control relay is represented
by CR with a circle around it and signifies the coil of a relay. When a control relay is energized,
its associated contacts close, thus allowing the CR to control another circuit. The voltage for a
ladder logic circuit is applied across the vertical lines labeled + and —.

3.3.2 Analyzing IC Logic Circuits

Now let’s analyze the symbolic logic circuits shown in Figure 3.5.

IC1
(6 NOT gates)

;_ 12
IC1 (4 AND gates) Fl (4 OR gates)
(6 NOT gales) F2
c —DO— 1C3 X
B j_ (4 OR gates) 7 Ic3
E— (4 AND gates)

() b)

The circuit in Figure 3.5a is drawn in AND/OR form because AND gates are feeding into
an OR gate. The circuit in Figure 3.5b is drawn in OR/AND form because OR gates are feeding
into an AND gate. To analyze these circuits, we need to obtain the Boolean functions for F1
and F2. These circuits could represent relay logic circuits, or they could represent logic circuits
constructed with ICs. In this section, we will assume that the circuits are constructed with ICs.

In Figure 3.5a, the function F1 is written by obtaining the outputs of IC2 (an AND gate
with output A-B) and IC2 (another AND gate with output C-B) and then obtaining the output
of IC3 (an OR gate with output F1 = A-B + C-B or FI = (A + B)-(C + B) via DeMor-
gan’s Theorem). The function F1 = AB + C-B is written in SOP form, while the function
Fl = (A + B)-(C + B) is written in POS form.

In Figure 3.5b, the function F2 is written by obtaining the outputs of IC2 (an OR gate with
output X + Y) and IC2 (another OR gate with output X + Z) and then obtaining the output of
IC3 (an AND gate with output 2 = (X + Y)(X + Z) or F2 = XY + X-Z via DeMorgan’s
Theorem). The function F2 = (X + Y)-(X + Z) is written in POS (product of sums) form,
while the function F2 = X-Y + X-Z is written in SOP (sum of products) form.

As you can see from these examples, the analysis of small IC (or relay) logic circuits is fairly
simple. All one needs to do is to write the output function of the circuit in terms of the input
variables.

3.3 Analyzing and Designing Logic Circuits 71

In practice, an IC number is assigned to each IC package on a printed circuit board (PCB).
An IC package can contain more than one gate, as shown in Figure 3.5. Small-scale integration
(SSI) packages are ICs packages that contain only a few gates. For example, each package may
contain six Inverters or NOT gates, four 2-input OR gates, and four 2-input AND gates, respec-
tively. An IC number is also assigned to large-scale integration packages such as a complex
programmable logic device (CPLD) or a field programmable gate array (FPGA). CPLDs
contain hundreds to thousands of gates, while FPGAs contain thousands to millions of gates.

3.3.3 Designing IC Logic Circuits

When you manually design a circuit for a Boolean function, it is a good idea to first reduce the
Boolean function. The easiest way to manually design an IC logic circuit is write the Boolean
function in reduced SOP form and then draw the circuit in AND/OR form, or to write the Bool-
ean function in reduced POS form and then draw the circuit in OR/AND form. The following
four steps may help you draw the circuit:

Step 1: Draw the AND and OR gates for the reduced Boolean function.
Step 2: Show all signals as noncomplemented signal names.

Step 3: Interconnect the gates, including NOT gates where necessary.
Step 4: Cleanup or reduce the number of NOT gates.

Figure 3.6 shows the manual design of an IC logic circuit for the reduced SOP function

Fl =ABC+B-C+ AB.

3-input AND gate 3-input AND gate

O

BEEITHES:
Circuit Design or Sy-
nthesis, A #i /R & %
AR R I8 E A
F &y,

- > ¢ I T

2-input AND gate 3-input OR gate 2-input AND gate 3-input OR gate
— A —
— B —]
2-input AND gate 2-input AND gate
Step 1 Step 2

A —>o— A —o——~
¢ o { To—1
3-input AND gate 3-input AND gate

!

‘ Fl B
c— | c

i

Fl

2-input AND gate 3-input OR gate 2-input AND gate 3-input OR gate

A ——— A
B S
2-input AND gate 2-input AND gate
Step 3 Step 4

T

FIGURE 3.6 Manual design of an IC logic circuit for a reduced SOP function

72 Chapter 3

HEBIEERK:

Combinational Logic
Circuit,ix £ o B d
AR TR
L AP NS
EHBERBELFER
G R A
1B K # 0, 1 H E A
G R

AABBCC ilz%ilz

Introduction to Logic Circuit Analysis and Design

Step 1: The AND and OR gates are drawn for the reduced function.

Step 2: All the input and output signals are shown as noncomplemented signal names.
Step 3: The gates are interconnected, including NOT gates where they were necessary.
Step 4: Cleanup was performed to remove one NOT gate.

Each IC for a particular logic family such as TTL (transistor transistor logic) and CMOS
(complementary metal-oxide semiconductor) has a fan-out. The fan-out is the maximum num-
ber of inputs to which the IC output can be connected without electrically loading down the
output. As long as the fan-out is not exceeded, the IC will function properly. The fan-out for the
low-power Schottky (LS) TTL family is 20 (or 20 inputs). The original or standard TTL family
has a fan-out of only 10 (or 10 inputs). Another name you should know is fan-in. Fan-in is the
name used to describe the number of gate inputs—that is, the number of inputs that a gate has.

A signal line is a line drawn to an input line of a gate symbol, or a line drawn from an
output line of a gate symbol. A net is the name used to describe signal lines that are connected
together to carry the same signal. In Figure 3.6, signal lines with the same signal names are
considered to be connected—that is, they belong to the same net. Be careful to label each signal
line with only one name. If you were to wire up the circuit in Figure 3.6 in the laboratory, you
would need to connect all signal lines together that have the same name.

In Figure 3.7, we show two alternate solutions for function F1 = AB-C+ BC+ AB.
Both solutions use a connection scheme for the input signal lines called a vertical-input scheme.
Circuits drawn using a vertical-input scheme are usually more organized. With this scheme, one
can draw large circuit designs in AND/OR form or OR/AND form quite rapidly. The vertical-
input scheme eliminates Step 4 (cleanup) to reduce the number of NOT gates.

A B C

[)
|

.

3-input AND gate 3-input AND gate
OR N

Ba—Dar 0 "
2-input AND gate 3-input OR gate 3-input AND gate 3-input OR gate

D_ IC package count = 4 \ [~ IC package count = 3

|_ / P (due to fan-in reductions)
2-input AND gate 3-input AND gate
(@) (b)

FIGURE 3.7 IC logic circuit designs for a minimum SOP form of a function using a vertical-input scheme

Notice in Figure 3.7a that the IC package count is four, but in Figure 3.7b the IC package
count is only three, because a single IC package of three 3-input AND gates is used in the same
package. After obtaining a circuit design for a minimum function, it is sometimes possible to
build a smaller implementation of the circuit by using fewer ICs. This is done by connecting
unused gate inputs to used gate inputs to reduce the fan-in of a gate, as shown in Figure 3.7b.
This technique may be referred to as fan-in reduction. By using fan-in reduction, the 2-input
AND gate IC package is not required.

Manually designing logic circuits is somewhat tedious. Using a hardware description lan-
guage such as VHDL is a more efficient way to design logic circuits. Listing 3.1 shows a com-
plete VHDL design for the function F1 = A-B-C + B-C + A-B.

3.3 Analyzing and Designing Logic Circuits 73

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity combl is port (
A, B, C : in std logic;
F1 : out std logic
)8

end combl;

architecture Boolean function of combl is
begin

F1 <= (not A and B and not C) or (not B and C) or (A and not B);
end Boolean function;

LISTING 3.1 Complete VHDL design for the function F1 = A-B-C + B-C + A-B (project: comb?)

For manual designs, OR gates with more than two inputs for some off-the-shelf logic fami-
lies (such as TTL) are not available in ICs. This may pose a problem with the circuit designs
in Figure 3.6 and Figure 3.7, which required a 3-input OR gate. Connecting (cascading) two
2-input OR gates in series to obtain a 3-input OR gate easily solves this problem as shown in
Figure 3.8a.

FIGURE 3.8 Cascading IC gates
E__D— = 3)— = §:>— (a) 3-input OR gate (b) 4-input OR
(@) (b

gate

Connecting three 2-input OR gates in series provides us with a 4-input OR gate as shown in
Figure 3.8b. This solution also has a problem. The resulting cascaded circuit provides an output
that responds more slowly to input changes as the number of cascaded stages is increased. We
will consider this phenomenon a little later.

Consider the function F2 written in a minimum POS form as F2 = (X + Y)-
(X +Y)-(X + Z). A circuit design for this function is shown in Figure 3.9 using a vertical-
input scheme.

YXYT 27 FIGURE 3.9 IC logic circuit
design for a minimum POS form

of a function using a vertical-input
B D; scheme
| %

X
Y

2-input OR gate
;

D=

2-input OR gate 3-input AND gate

D

2-input OR gate

The main difference between the design of an SOP form (AND/OR form) of circuit and
a POS form (OR/AND form) of circuit is the placement of the AND and the OR gates. For an
SOP form of circuit, the AND gates feed into an OR gate—hence the name AND/OR form. For
a POS form of circuit, the OR gates feed into an AND gate—hence the name OR/AND form.

74 Chapter 3

Introduction to Logic Circuit Analysis and Design

Here is a more efficient way to design a logic circuit for function F2. Listing 3.2 shows a
complete VHDL design for the function 2 = (X + YV)-(X + Y)-(X + Z).

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comb2 is port (
X, Y, Z : in std logic;
F2 : out std logic
D5

end comb2;

architecture Boolean function of comb2 is
begin

F2 <= (not X or Y) and (X or not Y) and (X or not Z7);
end Boolean function;

LISTING 3.2 Complete VHDL design for the function F2 = (X + Y)(X + Y)}(X + Z) (project: comb2)

3.4 GENERATING DETAILED SCHEMATICS

|5z
AT A B W
A VR YH Y R PR
o IRIFILE H R
¥ FI=A-B+CB
fl F2=A®B 15
VHDL % it DL K
BRI -

FIGURE 3.10
Detailed sche-
matics: (a) circuit
using multiple IC
devices; (b) circuit
using a single gate
in an IC device

All the circuits that we have drawn up to now are functional logic diagrams; that is, they are
functionally correct but lack the details necessary to show the actual IC connections (or wir-
ing) required to build a circuit on a PC board or in the lab. The circuit shown in Figure 3.10a
is an example of a detailed schematic for the function F1 = A-B + C-B using off-the-shelf
advanced CMOS (complementary metal-oxide semiconductor) devices. The circuit shown in
Figure 3.10a is in NAND/NAND form, which will be covered in the next section. Datasheets
for Texas Instruments logic devices are available online at http://ti.com. When the ti window
opens, select Logic, User Guides, GO; then click on Logic. Choose a logic family such as AC
(Advanced CMOS); and select GO. When all the devices for that family appear, click on the
device you want, then click on the Datasheet Icon. The datasheet provides the input pins, output
pins, and power pins (V¢ and GND) for the package.

Input ping Four 2-input NAND gates

per IC package
Reference | Part value | Pin number
designator V.| GND

10 ;.
8
1C2b 9 Fl 1C1 CDT74AC04]| 14 7
c 4 1C2 CD74AC00| 14 7
—————————— 6 - -
N3 Fl=AB+ CB 1 sy
s —o X /

/ IC1b Output pins

Six NOT gates
per IC package (@

Four 2-input XOR gates
per IC package

ICla
1 Reference Part value Pin number
2 2 3 1) designator V..* | GND
2= A_'B + A'E —A®B IC1 CD74AC86 14 7
* + 5V

(b)

3.4 Generating Detailed Schematics

In Figure 3.10b, we show a detailed schematic for the function F2 = A-B + A-B = ADB.
This IC has four XOR gates in the same package, and we are only using one. The following
important items are necessary when drawing a detailed schematic:

1. Identify the part number for each IC in the circuit.
2. Show the pin numbers (also referred to as pin assignments) for all ICs in the circuit.
3. Show the power connections (V¢ and GND) for all the ICs in the circuit.

Many companies require their designers to provide detailed schematics so that an accurate
record can be kept for each design. In addition, they require a written record to explain how the
circuit works. This information is archived by companies so that they can keep complete and
accurate records of their designs.

Listing 3.3 shows a complete VHDL design for the functions F1 = A-B + C-B and
F2 = AGB.

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comb3 is port (
A, B, C : in std logic;
Fl, F2 : out std logic
¥

end comb3;

architecture Boolean funtions of comb3 is
begin
F1 <= (not A and B) or (C and not B);
F2 <<= A xor B;
end Boolean funtions;

LISTING 3.3 Complete VHDL design for the functions F1 = A-B + C-B and F2 = A®B (project:
comb3)

Waveform 3.1 shows waveform diagrams for the VHDL design for the Boolean functions
Fl =A'B+ C-Band F2 = ADB.

WAVEFORM 3.1 waveform
diagrams for the VHDL
design for the Boolean

| | I
[| functions F1 = A-B + C'B
| | | | | | | | and F2 = ADB
| | | |
1 |

0 ns 200 400
Name Value |,, ,,,I.TS. .|.TS.

B a
% b
B c
18 1
1§ f2

Note that function F1is 1 whenAisOand Bis 1, Flisalso 1 when Cis 1 and Bis 0, and F1
is 0 for all other combinations of A, B, and C. Note that the function F2 is only 1 when A is not
equal to B otherwise F2 is 0. The simulation shows that the VHDL design functions correctly.

One of the nice things about using a hardware description language such as VHDL is that
you do not have to draw detailed schematics to obtain a circuit on a system board such as the
BASYS 2 board or the NEXYS 2 board, because the circuits are connected up internally via
the bit pattern that is generated by the software. Only the external pin connections for each of
the signals in the entity have to be declared. None of the pin connections for power have to be
declared. Just apply power to the system board via the USB connector to the computer.

o O O O O

75

76 Chapter 3

Introduction to Logic Circuit Analysis and Design

3.5 DESIGNING CIRCUITS IN NAND/NAND AND NOR/NOR FORM

| S|

AR 2
DIRET] (HP 5 9E AT
B it SR/
5 AR DA b SR/ B
AR R L -

FIGURE 3.11
Graphical Design
Method for NAND/
NAND form

FIGURE 3.12
Graphical design
method for NOR/NOR
form

In manual designs using discrete (or separate) IC devices, NAND and NOR gates are preferable
to AND and OR gates. There are three reasons this is true: (1) NAND gates are generally faster
than AND gates, and NOR gate are generally faster than OR gates in the same logic family;
(2) NAND gates and NOR gates are available with a larger variety of fan-ins (gate inputs) to
choose from than AND gates and OR gates; and (3) fewer IC packages are required to design
circuits that use NAND gates and NOR gates because they are functionally complete gates, as
discussed in Chapter 1.

A procedure for manually designing a logic circuit in NAND/NAND form is shown in
Figure 3.11. First, design the circuit in AND/OR form, and then convert the circuit into NAND/
NAND form, as shown in Figure 3.11 using the graphical design method for NAND/NAND

form.
Apply
double-
negation
theorem
AND gate AND gate % NAND gate NAND gate
OR gate OR gate NAND gate NAND gate
AND gate = AND gate = NAND gate or NAND gate
Step 1 Step 2 Step 3
(First draw circuit in SOP (Apply DNT) (Use NAND gates)

form, i.e., AND/OR form)

A procedure for manually designing a logic circuit in NOR/NOR form is shown in Figure
3.12. First, design the circuit in OR/AND form, and then convert the circuit into NOR/NOR
form, as shown in Figure 3.12 using the graphical design method for NOR/NOR form.

Apply
double-
negation
theorem
OR gate OR gate % NOR gate NOR gate

AND gate NOR gate

NOR gate

or NOR gate

Step 1 Step 2 Step 3
(First draw circuit in POS (Apply DNT) (Use NOR gates)
form, i.e., OR/AND form)

Consider the manual design of a circuit to implement the reduced Boolean function
Fl = A'B-C + B-C + A-C in NAND/NAND form using the graphical design method. Since
the function is already expressed in SOP form, we just have to draw the circuit in AND/OR form
then convert the circuit to NAND/NAND form as shown in Figure 3.13.

3.5 Designing Circuits in NAND/NAND and NOR/NOR Form

77

4 —>o—] A —{>o—]
5 s § o]
¢ — >0 ¢ — >0
3-input AND gate 3-input NAND gate
B ————— ‘ £l - B = Fl
€ ——— = ¢ —
2-input AND gate | 3-input OR gate 2-input NAND gate | 3-input NAND gate
A —] R
cC —— € —_——

2-input AND gate

(@)
FIGURE 3.13 Converting a circuit from AND/OR form to NAND/NAND form

2-input NAND gate

(b)

The application of the double-negation theorem (DNT) is not shown in Figure 3.13 because
this can be done mentally without drawing all the NOT gate pairs. -
Listing 3.4 shows a complete VHDL design for the function F1 = A-B-C + B-C + A-C.

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comb4 is port (
A, B, C
F1
D5
end comb4;

in std logic;
out std logic

architecture Boolean function of comb4 is
begin
Fl1 <= (not A and not B and not C) or (B and C) or (A and C);

end Boolean function;

LISTING 3.4 Complete VHDL design for the function F1 = A-B-C + B-C + A-C (project: comb4)

Consider the manual design of a circuit to implement the reduced Boolean function
F2=X-Z+ X-Z+ Y in NOR/NOR form using the graphical design method. To follow
the graphical design method, we must first express the function £2 in POS form, which is
F2 = (X + Z)-(X + Z)-Y. Now the circuit must be drawn in OR/AND form and then con-

verted to NOR/NOR form as shown in Figure 3.14.
2-input NOR gate

2-input OR gate

X
V4

X \ X
Po— 2 =
z J Z —0
2-input OR gate 3-input AND gate 2-input NOR gate | 3-inp

g

(a)
FIGURE 3.14 Converting a circuit from OR/AND form to NOR/NOR form

®)

P

ut NOR gate

78 Chapter 3 Introduction to Logic Circuit Analysis and Design

The application of the DNT is not shown in Figure 3.14 because this can be done mentally
without drawing all the NOT gate pairs. o -
Listing 3.5 shows a complete VHDL design for the function F2 = (X + Z)-(X + Z)-Y.

LISTING 3.5 .

Complete VHDL library IEEE;

design for the use IEEE.STD LOGIC 1164 .ALL;
function F2 = entity comb5 is po.5rt (
X+ 20X+ 2)Y X, Y, Z : in std logic;
(project: combs) F2 out std logic

D g

end comb5;

architecture Boolean function of comb5 is
begin
F2 <= not ((X or Z) and (not X or not Z) and not Y);
--POS form for F2
--F2 <= (not X and not Z) or (X and Z) or Y;
--This is an alternate description for F2
--i1.e., an SOP form for F2
end Boolean function;

Reminder: A comment may be placed in VHDL code by using two hyphens in series, that
is, --, as shown in Listing 3.5.

3.6 PROPAGATION DELAY TIME

| 5| Circuit delays are caused by signals passing through the components that make up the circuit.
. Worst-case delay is caused by a signal passing through the slowest delay path in the circuit. Each
KNIt N wire (or connector) and each gate has a propagation delay time, which is the time it takes a
Lt YA TE 19 4% Hi signal applied at its input to travel from the input to the output. The propagation delay time of a
WERS . DA R ZERTHY wire is dependent on its length and its cross-sectional area. It is also dependent on the material
BT S20% that the wire is made out of, such as copper, silver, and gold. Gold has the best conductivity,
IR IER 4% - followed by silver and then copper. In terms of just the physical dimensions, a longer wire has a
longer propagation delay time than a shorter wire, and a wire with a smaller cross-sectional area
has a longer propagation delay time than a wire with a larger cross-sectional area. Remember
that even wires have a propagation delay time that usually cannot be ignored in a circuit, if the

circuit is operated at a very high frequency.

The abbreviation ¢, is used as a relative measure of the time it takes for a signal to propagate
through a gate. Figure 3.15 shows a NOT gate, an AND gate, and an OR gate with their sym-
bols, their Boolean functions, and their propagation delay times. The propagation delay times
are generally different because they are all different circuits. The propagation delay times for
single-gate circuits is in the order of only a few nanoseconds. A nanosecond is one billionth of a
second (or 1077 seconds) and is the time it takes for electricity to travel through a length of wire
approximately 1 foot or about § meter.

P

FIGURE 3.15 ANOT NOT gate AND gate OR gate

gate, an AND gate,

and an OR gate with A — A

their symbols, their A _DO_ Fl 5 — 2 3 g F3
Boolean functions, _

and their propagation Fl1=A F2=AB F3=A+B
delay times Output delay = L Output delay = Ly Output delay = Ly

3.7 Decoders 79

The propagation delay time, ¢, is the average of fp; 5 and fpg;, which are specified in the
data sheets for the ICs. The propagation delay time (high-to-low-level output, or fpz;) is the
delay time through a gate when the output changes from a high (H) value to a low (L) value.
The propagation delay time (low-to-high-level output, or #p;) is the delay time through a gate
when the output changes from a low (L) value to a high (H) value. Waveform 3.2 shows a wave-
form diagram that illustrates both 7, and tp,, for the NOT gate in Figure 3.15.

) ! ™ T gate in Figure 3.15

I ‘ PHI. ’ 1 I ‘ I’I,H’ 1

Fl

Delays add up. For example, three similar NOT gates connected in cascade or in series
(where one output feeds into the next) cause a propagation delay time of three times the propaga-

WAVEFORM 3.2 waveform diagram
illustrating both t5;; and tpy; for the NOT

ERIFFERT
Worst-case delay,® T
EERALBEFRE

qFE B A2 :
tion delay time of one of the NOT gates, or 3z,). Sometimes NOT gates are used to slow down W B AR T 5 BCHS
or delay a signal through a circuit. GEELE
Delays also add up for all gate types, including NOT gates, AND gates, and OR gates as
shown in Figure 3.16 for the function /4 = A-C + A-C + B.
Circuit delay is 7, + 1 | FIGURE 3.16 Worst-case delay time
through the circuit
A)_
¢ —DC Delay 1
Circuit delay is 7, + 1,+ 1 Delay 2
A —| SO
)ﬂ ——o7 F4
C TEHE R :
Propagation delay Time,
Delay 3 BEE-AMMERTH
BN RS

B —| >0
Circuit delay is ¢+ ¢
Pl P3

The worst-case delay time through the circuit in Figure 3.16 is the path from the input to the
output that has the longest delay time—that is, delay 1 in the circuit in Figure 3.16. The delay
times through the wires in the circuit in Figure 3.16 were ignored, but they would increase the
overall delay time through the circuit slightly. So,

Worst-case delay time = t,; + £, + £,3 = Lworeare T Loann gate T Lo0R gare

In general, faster circuits have shorter delay times. Also, faster circuits have the fewest number
of cascaded components from the input to the output of the circuit.

3.7 DECODERS

A g o
L,

Figure 3.17a shows a very useful circuit called a decoder that utilizes NOT gates and AND
gates. A circuit that converts a binary code applied to n input lines to one of 2" different output
lines is called an n-to-2" line decoder. A decoder with n input lines can convert 2" different
binary codes applied to its input lines into 2" mutually exclusive outputs. Each code applied to

80 Chapter 3

{13 R S 8 S S its input is converted to a corresponding single bit on the output. Figure 3.17a shows the circuit
R L B diagram for a 2-line to 4-line decoder, which we will just call a 2-to-4 decoder.

Tt 112428 AT 5 Bl BO

() VHDL % 11 1 {5

H a5 R, U R 3-82% ?Z _XIZ

5% 5 1 VHDL% }— F0 =BI1-B0

it o e AR 2-to-4
s M B AT D— F1 = BI1-B0 decoder O FO
&8 B0 —— 1 Fl
T :)- F2 = B1-B0 Bl —] 5 Fz
FIGURE 3.17 2-to-4 decoder: 3— F3 = BL-BO i

(@) discrete IC circuit diagram;
(b) logic symbol

Introduction to Logic Circuit Analysis and Design

(a)

(b)

n-2"FERNEE
Decoder, ¥ Al Fn4
HN& — A 3 4
S B 204 R R
Bl & s
B

Figure 3.17b shows a logic symbol for a 2-to-4 Decoder. A decoder can also be thought of
as a minterm generator because it generates the minterms at its outputs for each of the binary
values applied to its inputs. For the inputs B1 B0 in Figure 3.17a, observe that the outputs are
FO(B1,B0) = B1-BO = m0, F1(B1,B0) = B1-BO = ml, F2(B1,B0) = B1-BO = m2, and
F3(B1,B0) = B1-B0 = m3. Using this fact, it is very easy to manually design combination logic
circuits for Boolean functions using a decoder with discrete ICs gates, as we will show in the
next section.

In Figure 3.17a, when the binary input B1B0 is 00, output F0 evaluates to 1 and outputs F1,
F2, and F3 evaluate to 0. When the binary input B1B0 is 01, output F1 evaluates to 1 and outputs
FO, F2, and F3 evaluate to 0. When the binary input B1B0 is 10, output F2 evaluates to 1 and
outputs FO, F1, and F3 evaluate to 0. When the binary input B1B0 is 11, output F3 evaluates to
1 and outputs FO, F1, and F2 evaluate to 0. This explanation is represented by the truth table for
the 2-to-4 decoder shown in Table 3.1.

TABLE 3.1 Truth table for the 2-to-4
decoder in Figure 3.17

Select inputs Outputs
Bl BO FO Fl1 F2 F3
0 0 1 0 0 0
0 1 0 | 0 0
1 0 0 0 1 0
1 1 0 0 0 |

Outputs FO through F3 in Table 3.1 are active-high outputs; that is, each decoded input
results in just one 1 on the outputs. If we change the 1s to Os and the Os to 1s for the outputs in
Table 3.1, we obtain a 2-to-4 decoder with active-low outputs; that is, each decoded input results
in just one 0 on the outputs. Larger decoders (3-to-8, 4-to-16, 5-t0-32, etc.) have similar truth
tables that operate in a similar manner. Decoder circuits are available as discrete off-the-shelf
IC devices. Decoders are often used in microprocessor or microcontroller systems as an address
decoder that selects a specific device in the system such as a RAM (random-access memory),
a ROM (read-only memory), or an 1/O (input/output) device via the outputs of the decoder.

Listing 3.6 shows a complete VHDL design for the 2-to-4 decoder.

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity combé is port (
Bl, B0 : in std logic;
FO0, F1, F2, F3 : out std logic
D5

end combé6 ;

architecture Boolean functions of combé6 is
begin

F0 <= not Bl and not BO;

F1 <= not Bl and BO;

F2 <= Bl and not BO;

F3 <= Bl and BO;
end Boolean functions;

Waveform 3.3 shows waveform diagrams for the VHDL design for the 2-to-4 decoder.

Name Value |0 s |20|0 ns
1 b1 0 TV
Boo o I N
Bo — —
S 1
Br o 1
B o 1

3.7 Decoders 81

LISTING 3.6
Complete VHDL
design for the 2-to-4
decoder (project:
comb6)

WAVEFORM 3.3 waveform diagrams
for the VHDL design for the 2-to-4
decoder

Off-the-shelf decoders are usually equipped with one or more enable inputs—some active
high and some active low. A decoder with an enable input is also called a demultiplexer. Table
3.2 shows the truth table for a 3-to-8 decoder with an active high enable input G1, an active low
enable input G2, and active-low outputs. The 3-to-8 decoder shown in Table 3.2 is very similar
to the off-the-shelf Texas Instruments CD74AC138 3-line to 8-line decoder/demultiplexer. As
discussed earlier, logic products for Texas Instruments and data sheets are available online at

http://ti.com.
TABLE 3.2 Truth table for the 3-to-8 decoder/demultiplexer

Enable Select inputs Outputs
inputs

G1 G2 B2 Bl B0 FO F1 F2 F3 F4 F5 F6 Fi
0 X X X X 1 1 1 1 1 1 1 1
X 1 X X X 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 1
| 0 0 0 1 1 0 1 1 | 1 1 |
1 0 0 1 0 1 1 0 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1 1 1
1 0 1 0 0 1 1 1 1 0 1 1 1
| 0 1 0 1 1 | 1 1 | 0 1 |
1 0 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 1 1 1 0

82 Chapter 3

LISTING

3.7 Complete VHDL
design for the 3-to-8
decoder (project:
comb?)

Introduction to Logic Circuit Analysis and Design

Using only the 0 in the column of the output function F0, we can write the Boolean function

for FOas FO = G1-G2-B2-B1-BOoras FO = G1-G2-B2-B1-B0.In VHDL, the latter form is

written as

FO <= not (G1 and not G2 and not B2 and not Bl and not B0).
Listing 3.7 shows a complete VHDL design for the 3-to-8 decoder/demultiplexer in Table 3.2.

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comb7 is port (

Gl, G2,
FO, F1,
) g

end comb7;

B2,
F2,

B1,
153,

BO
F4,

in std logic;

F5,

Fe,

architecture Boolean functions of

begin
FO <=
Fl <=
F2 <=
F3 <=
F4 <=
F5 <=
F6 <=
F7 <=

not
not
not
not
not
not
not
not

G1
G1
G1
1
1
1
G1
G1

QQ Q

(
(
(
(
(
(
(
(

and
and
and
and
and
and
and
and

end Boolean functions;

not
not
not
not
not
not
not
not

G2
G2
G2
G2
G2
G2
G2
G2

and
and
and
and
and
and
and
and

F7

out std logic

and not Bl and not BO0);
and not Bl and BO) ;

comb7 is

not B2

not B2

not B2 and Bl
not B2 and Bl
B2 and not Bl
B2 and not Bl
B2 and Bl and
B2 and Bl and

and not BO) ;
and BO) ;

and not BO) ;
and BO) ;

not BO) ;
BO) ;

3.7.1 Designing Logic Circuits with Decoders and Single Gates

It is rather easy to manually design a logic circuit using a decoder and a single gate (AND gate,
OR gate, NAND gate, or NOR gate). The design technique utilizes the fact that a decoder gener-
ates all possible minterms for the input variables. ORing the required minterms for the 1s of the
function is the job of an OR gate when designing with a decoder that has active high outputs. If
a decoder has active low outputs, then ORing the minterms is the job of a NAND gate drawn as
an OR form—that is, its DeMorgan equivalent gate symbol.

ORing the required minterms for the Os of the function is the job of a NOR gate when
designing with a decoder that has active high outputs. If a decoder has active low outputs, then
ORing the minterms is the job of an AND gate drawn as an OR form—that is, its DeMorgan
equivalent gate symbol.

When designing with a decoder and a gate, the function does not have to be reduced.
Table 3.3 shows the truth table for the function F1(A,B,C) = 2m(2,3,5,7).

TABLE 3.3 Truth table

for function F1

— o o o o =

—_ = =

B c| r1
00| 0
01| o
1 o] 1
L1
00| o
01| 1
10| o
111

3.7 Decoders

Figure 3.18a shows a design for the function F1(A,B,C) = Zm(2,3,5,7) in Table 3.3 using a
3-to-8 decoder with an OR gate.

3-to-8 3-to-8
decoder m0 decoder/ s
0 b— Vee demultiplexer () oy
i —al o
m2 Io m2
m3 m3
c —0 3 ¢ —0 30—
mé mé
B — 4 —1 4 10—
m5 mS
A —2 5 - A —2 So—
mob mb
6 60—
m7 ml
7 70
OR gate ——Pp» DeMorgan equivalent ——Jp»
gate symbol for a
NAND gate
Fl Fl

(a) ®)
FIGURE 3.18 Design of the function F1(4,8,C) = 3m(2,3,5,7) (a) using a 3-to-8
decoder with active high outputs for the 1s of the function F1 and (b} using a 3-to-8
decoder/demultiplexer with active low outputs for the 1s of the function F1

Figure 3.18b shows an equivalent design for the function F1(A,B,C) = 2m(2,3,5.7) in Table
3.3 using a 3-to-8 decoder/demultiplexer with a NAND gate. Notice that both designs use the
function expressed as the minterms of the 1s of the function F1.

Listing 3.8 shows a complete VHDL design for the function F1(A,B,C) = 2m(2,3,5.7).

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comb8 is port (
A, B, C : in std logic;
F1 : out std logic
)i

end comb8;

architecture Boolean function of comb8 is
begin
F1l <= (not A and B and not C) or (not A and B and C) or
--minterms 2 and 3
(A and not B and C) or (A and B and C) ;
--minterms 5 and 7
end Boolean function;

LISTING 3.8 Complete VHDL design for the function F1(A,B,C) = 3m(2,3,5,7) (project: comb8)
The function F1 expressed as the minterms of the Os of the function is written as FI(A,B,C)

= >m(0,1.4,6). Figure 3.19a shows a design for the function ﬁ(A,B,C) = >m(0,1,4,6) using a
3-to-8 decoder with a NOR gate, which ORs the minterms and complements the result.

83

84 Chapter 3 Introduction to Logic Circuit Analysis and Design

FIGURE 3.19 Design for
the function F1(A,B,C)

= 3m(0,1,4,6): (a) using
a 3-to-8 decoder with
active high outputs for
the Os of the function
F1; (b) using a 3-t0-8
decoder/demultiplexer
with active low outputs
for the Os of the function
F1

3-to-8 3-to-8
decoder ml) v decoder/ mo
0 ce demultiplexer 0 O————
ml T—ai ml
1 10—
2
5 m2 GND TrO G2 s b m_
m3 m3
c —o 3 c —0 3P —
i s — 4=
5
A —2 s A —2 sp=
6 mb 610 'f
7 m 7lo 7
NOR gate —p» DeMorgan equivalent ———J»
gate symbol for an
AND gate
o F1

(@) (b)

Figure 3.19b shows an equivalent design for the function ﬁ(A,B,C) = >m(0,1,4,6) using
the 3-to-8 decoder/demultiplexer with an AND gate. If you are confused with the names associ-
ated with the DeMorgan equivalent gate symbols, now is a good time to review the DeMorgan
equivalent gate symbols back in Chapter 1, Section 1.5.1.

When implementing a function with a decoder, it is best to use the fewest number of 1s or
0s to make up the function so that the fan-in of the gate is as small as possible. If there are fewer
1s in the function, use the compact minterm form for the Is of the function to obtain the design;
however, if there are fewer Os in the function, use the compact minterm form for the Os of the
function. Additional gates can also be added to provide for additional outputs, thus allowing
more than a single function to be implemented with a decoder.

Listing 3.9 shows a complete VHDL design for the function FI(A,B,C) = Sm(0,1,4,6).

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comb9 is port (

A, B, C : in std logic;

F1 : out std logic
)i

end comb9;

architecture Boolean function of comb$ is

begin

F1 <= not ((not A and not B and not C) or (not A and not B and C) or
--minterms 0 and 1
(A and not B and not C) or (A and B and not C));
--minterms 4 and 6

end Boolean function;

LISTING 3.9 Complete VHDL Design for the function F1(A,B,C} = 2m(0,1,4,6) (project: comb9)

3.8 Multiplexers 85

3.8 MULTIPLEXERS

Figure 3.20a shows a very versatile circuit called a multiplexer or MUX that utilizes a NOT
gate, a couple of AND gates, and an OR gate shown in AND/OR form. A MUX is a circuit that
is used to direct one of 2" data inputs to a single output. Because #n select lines are used to select
each of the 2" data input signals and direct it to the output, a MUX is also called a data selec-
tor. Figure 3.20a shows the circuit diagram for a 2-line to 1-line MUX, which we will just call
a 2-to-1 MUX.

_ —19
DO DO DO) N F

-|>o— F 11 5
D1 D1 :
1

F
F = D0-50 + D1-50 |

S0 %0 S0
(a) (b) (c)

D1

To observe how the MUX works, look at the switch representation in Figure 3.20c. When the
select input SO is 0, output F is D0, and when SO is 1, output F is D1. The equation of the MUX
in Figure 3.20a provides the same result when SO is 0 and when S0 is 1 as shown as follows:
when S0 = 0
when S50 =1

F = D0-S0 + D1-S0 = DO
F = D0-S0 + D1-S0 = D1

The logic symbol for the MUX in Figure 3.20b implies that ¥ = DO when §0 = 0 and F = DI
when SO = 1. The truth table for the 2-to-1 MUX is shown in Table 3.4.

TABLE 3.4 Truth table for

Inputs
the 2-to-1 MUX in Figure 3.20

Output

S0 D1 DO F

0O o0 0 0

0 0 1 1
0o 1 0 0
0

1 1 1
1 0 0 0
1 0 1 0
1 1 0 1

Notice in the truth table that output F follows (is the same as) input DO when S0 is 0, but
output F follows (is the same as) input D1 when SO is 1. Based on this observation, we can write
a compact or compressed form of the truth table for the 2-to-1 MUX as shown in Table 3.5.

TABLE 3.5 Compressed truth
table for the 2-to-1 MUX in Figure
3.20

SO | F

0 DO

1 D1

| iz

KA el 5 —
Five WLEYeH & 2 5
HLEK— 2 B0
Hgh HH 2 B R
A BT 2 B HLER
Jitko

FIGURE 3.20
Multiplexer: (a) gate-
level circuit diagram;
(b) logic symbol; (c)
switch representation

& BRI
multiplexer, A 5 % 2"
O & PN R
G
W,

86 Chapter 3 Introduction to Logic Circuit Analysis and Design

LISTING 3.10
Complete

VHDL design

for the function

F = D0-SO + D1-S0
for the 2-to-1 MUX
(project: comb10)

FIGURE 3.21 (a) Logic
symbol and output
function for the 2-to-1
MUX with an active low
strobe input G; (b) Logic
symbol and output
function for a 4-to-1
MUX without a strobe
input

Listing 3.10 shows a complete VHDL design for the function F = D0-SO + D1-50 for the
2-to-1 MUX.

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity comblO is port (
D1, DO, SO : in std logic;
F : out std logic
)

end combl0;

architecture Boolean function of combl0 is
begin

F <= (D0 and not S0) or (D1 and SO);
end Boolean function;

Larger MUXs or data selectors (4-to-1, 8-to-1, 16-to-1, etc.) have similar truth tables and
operate in a similar manner with more inputs. Table 3.6 shows the compressed truth table for a
2-to-1 MUX with an active low strobe input G. When the strobe input is 1 the output is 0, and
when the strobe input is 0 the output is selected from one of the two data inputs and is routed
to the output. The 2-to-1 MUX shown in Table 3.6 performs the same as one-fourth of an off-
the-shelf Texas Instruments CD74AC157 Quadruple 2-line to 1-line data selector/multiplexer.
CD stands for compliant device and is a lead-free device. When discarded, these devices do not
pollute the world by contributing to lead contamination because they are lead free.

TABLE 3.6 Compressed Go so|l F
truth table for the 2-to-1 MUX
with an active low strobe input G Y

0 0] DO

0 1| D1

Figure 3.21a shows the logic symbol and output function for the 2-to-1 MUX in Table 3.6,
and Figure 3.21b shows the logic symbol and output function for a 4-to-1 MUX without a strobe
input.

G
MUX
Do ——0
MUX
po —{o o Dl —1 -
D2 —2
DI —1 S
_ _ D3 —3 /O o _
Fl = G-(D0-S0 + D1-S0) 1 F2 = D0-S1-80 + D1-S1-50
+ D2-S1-50 + D3+51-S0
S0
S1 S0
(a) (b)

MUXs are used to implement designs for logic functions and to provide data-flow paths
between circuits by using MUXs as steering or routing circuits. We discuss the implementation
of logic functions with MUXs in the following section.

Listing 3.11 shows a complete VHDL design for the 2-to-1 MUX and the 4-to-1 MUX in
Figure 3.21.

3.8 Multiplexers 87

library IEEE;
use IEEE.STD LOGIC 1164 .ALL;

entity combll is port (
D3, D2, D1, DO, S1, SO0, G : in std logic;
F1, F2 : out std logic
he

end combll;

architecture Boolean functions of combll is
begin
F1 <= not G and ((D0 and not S0) or (D1 and SO0));
F2 <= (D0 and not S1 and not S0) or (D1 and not S1 and S0) or
(D2 and S1 and not S0) or (D3 and S1 and S0) ;
end Boolean functions;

3.8.1 Designing Logic Circuits with MUXs

To obtain a MUX design for a logic function, we use the compact minterm form of the function.
To implement the function, connect the data inputs of the MUX to the function values (V. for
1 and GND for 0). Connect the select lines of the MUX to the input variables. To generate the
design for a function, simply write the compact minterm form for the function; that is, the func-
tion does not have to be reduced.

Figure 3.22a shows a MUX design for the function F1(X,Y,Z) = Zm(1,2,5,7) or the func-
tion F1(X,Y,Z) = Sm(0, 3, 4, 6). Simply connect the data inputs of the MUX to the values of the
function F1. If you wish, you may write the truth table for the function and then use the function
values in the truth table, or you can simply make the connections for the 1s and by default the
rest of the connections are for the Os, or vice versa. The select inputs 3, 52, and S1 are then
connected to the input X, ¥, and Z respectively. The MUX design shown in Figure 3.22a uses
an 8-to-1 MUX, such as a Texas Instruments CD74AC151, with an active low strobe input. The
MUX design in Figure 3.22b does not have a strobe input.

LISTING 3.11
Complete VHDL
design for the 2-to-1
MUX and the 4-to-1
MUX in Figure 3.21
(project: comb11)

(@) with a strobe input;
(b) without a strobe input

Vee FIGURE 3.22 MUX design:
C

N o TS
L 1 L
(1) 2 (1) 2
mE Fl T rl
T 7

s 5
o i o

7 7

V GND WV GND
XYz XYz

(@) (®)

With this manual procedure, you can obtain a MUX design for any 2-variable function
using a 4-to-1 MUX, or you can obtain a MUX design for any 3-variable function using an
8-to-1 MUX. For a MUX design you need a 2"-to-1 MUX for any n-variable function. Notice
that you do not have to reduce a function to obtain a MUX design, but you must obtain the truth
table of the function or obtain the function in compact minterm form for its 1s or 0s.

Listing 3.12 shows a complete VHDL design for the function FI(X,Y,Z) = 2m(1,2,5,7).

88 Chapter 3

LISTING 3.12
Complete VHDL
design for the
function F1(X,Y;2)
=3Im(1,2,5,7)
{(project: comb12)

Introduction to Logic Circuit Analysis and Design

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

entity combl2 is port (
X, ¥, Z : in std logic;
F1 : out std logic
he

end combl2;

architecture Boolean function of combl2 is
begin
F1 <= (not X and not Y and Z) or (not X and Y and not Z) or
--minterms 1 and 2
(X and not Y and Z) or (X and Y and Z7) ;
--minterms 5 and 7
end Boolean function;

As you can see, the manual MUX design methods that we presented are rather easy to use
and understand, but you still must obtain a detailed logic diagram for the circuit so that the
circuit can be wired up on a breadboard or on a PC board. The modern way is to write VHDL
code for the design and then download the bit pattern into a CPLD or an FPGA. The software
automatically wires up the circuit on the CPLD or FPGA chip. You must remember to assign the
external package pins for each of the signals that are placed in the entity.

3.9 HAZARDS

| iz

KA red 25
je FEL % g B
RIS 5 R B
DI RERS SRE B
e 3

Hazards are classified as either function hazards or logic hazards. In this section, we present
a brief introduction to these two different types of hazards. A hazard can cause a logic glitch,
where a glitch is an undesired momentary pulse that occurs at the output of a circuit. In some
cases, glitches in a circuit can cause a circuit to fail.

3.9.1 Function Hazards

A hazard that can cause a glitch in the output signal of a combinational logic function imple-
mented with gates, when two or more input signals are changed at the same time in the circuit
due to the way the function is defined, is called a function hazard. A function hazard can be
spotted by plotting the function in a K-map. If two or more input signals are changed in the
function to produce the output, a logic glitch may occur. In a combinational logic circuit, the
designer has no control over function hazards. Figure 3.23 illustrates the occurrence of static
and dynamic function hazards and their corresponding glitches for the function F1.

The function in Figure 3.23 is a 3-input XOR gate. All hardware implementations of this
function will contain the function hazards, so showing the circuit is not necessary. The directed
lines in the K-map show the transitions that cause each of the function hazards and their cor-
responding glitches—that is, a static 1 function hazard, a static 0 function hazard, a dynamic
1-to-0 function hazard, and a dynamic 0-to-1 function hazard. Notice in Figure 3.23 that a runt
pulse can also occur. A runt pulse is a pulse with small amplitude.

Function hazards cannot be eliminated; however, the output signals from circuits that con-
tain function hazards may be used by simply waiting until the function hazards settle (die out).
After the output signals become stable or the function hazards settle, the signals may be used.
This concept is the basis of synchronous circuits that are introduced in Chapters 6 and 9, where
settling occurs between clock ticks.

Fl
AB
c 00 01 11 10
,
Lt
0 110 1 0
0 —l 2 As 4
v |y
1 0 1 0 1
! 3 7 5

Static 1 function hazard m0 to m3 (ABC = 000 to ABC = 011)
0 4 BC = 0010 BC = 11
F 4 Logic0 (Two signals change)
1 glitch
Static 0 function hazard Losic 1 ml to m2 (ABC = 001 to ABC = 010)
1 O8I BC =01t BC = 10
Fi litch (runt puls SR
0 |_| glitch (runt pulse) (Two signals change)
Dynamic 1-to-0 function hazard m0 to m7 (ABC = 000 to ABC = 111)
1 Logic | ABC =000 to ABC = 111
gic
F “« Three signals ch
0 glitch (Three signals change)
Dynamic O-to-1 function hazard ml to m6 (ABC = 001 to ABC = 110)

! Logic 0 ABC = 001 t0 ABC = 110
1 <~ donals che
0 glitch (Three signals change)

FIGURE 3.23 Function hazards—hazards that result from two or more
input signals changing at the same time

3.9.2 Logic Hazards

A hazard that can cause a glitch in the output signal of a combinational logic function imple-
mented with gates, when only one input signal is changed due to delays in the particular circuit
used to implement the function, is called a logic hazard. Both static and dynamic logic hazards
can be eliminated by adding additional product terms in the Boolean equation implemented by
the circuit (this requires adding more gates in the implementation). To eliminate a logic hazard,
a designer must recognize that a logic hazard may occur and add the necessary circuitry to pre-
vent the logic hazard. Some functions do not contain logic hazards. Figure 3.24 shows a design
specification with a single static 1 logic hazard. The single static 1 logic hazard represented
in Figure 3.24a exists for any realization of the minimized logic function. Figure 3.24b shows
a circuit for the function and a plausible explanation for the single static 1 logic hazard to be
present.

Figure 3.25a shows how the single static 1 logic hazard can be eliminated, and Figure 3.25b
shows a circuit for the function that eliminates the single static 1 logic hazard.

Things you should know about eliminating static and dynamic logic hazards:

» Logic hazards may occur for a minimized function implemented for the 1s or Os of the func-
tion. If the product terms for the function are linked to each other, as shown for the K-map
for the 1s of the function in Figure 3.25a, then the function contains no logic hazards.

* For the minimized 1s or Os of a function, one can add logic hazard cover terms if required,
which are consensus terms, to eliminate static and dynamic logic hazards.

* Cover terms are nonessential product terms that are used to link each product term in the
minimized form in the K-map for the function.

3.9 Hazards 89

IEER &

function hazard,% #,
BYEARFEE LA
WS 5 AR — 2
RAZAARITEDR
[eERes A At &k
Az 55l —NER
By e 2,

90 Chapter 3 Introduction to Logic Circuit Analysis and Design

* In some cases, product terms for a minimized form of the function are linked to each other
and require no additional cover terms.

* By chain linking all the minimized product terms in a K-map for the function, you will
obtain the required cover terms to add to the minimized form of the function to eliminate
all the static and dynamic logic hazards for the function.

* A function that has all of its products terms for the 1s or Os of the function linked to each
other does not have static or dynamic logic hazards and is called a logic hazard-free
function.

F2 4p
C 00 01 11 10

F2 = AC + B-C

()
A —1 Y))
Static 1 logic hazard

¢ — 1 WithAB = 11,

5 7 £2 N |_| & Lﬁglﬁ 0 ¢ changes from
S EETA g — ghite 1t00.
BIEK S ¢ —o
Togic hazard, % &, #& & t
R - NMRANEE 4 Consider the negated input to have additional delay.
P YR EL TN With AB = 11, when Cchang.;es from 1 to 0, Ych.anges to
. . 0 before Z changes to 1, causing F2 to momentarily
B R W4 S B change t0 0,
HE B TR ALE A)
CEBD BN FIGURE 3.24 (a) Design specification with a single static 1 logic hazard;
BB R -4 E N (b) circuit for the function and a plausible explanation for the single static
%% 1 logic hazard to be present

£2 4p

F2=A-C+B-C+AB
C 00 01 11 10 ¢ ¢

1
0| 0 1 1 0 f

Logic hazard cover
110 0 1 1 term is the consensus term
(a)
A —
C —
No logic hazard ~ With AB = 11,

B — ” | C changes from 1 to 0.
¢ —9 0 Static 1 logic hazard

has been eliminated.
A [—
B —] - With AB = 11, this gate provides the logic

hazard cover term A-B that holds F2 at 1 when
C changes from 1 to 0.
(b)
FIGURE 3.25 (a) How a single static 1 logic hazard is eliminated;
(b} circuit for the function that eliminates the single static 1 logic hazard

Problems 91

Logic hazards may be eliminated; however, the output signals from circuits that contain
logic hazards may also be used by simply waiting until the logic hazards settle (die out). After
the output signals become stable or the logic hazards settle, the signals may be used. This con-
cept is the basis of synchronous circuits that are introduced in Chapters 6 and 9, where settling
occurs between clock ticks.

PROBLEMS

Section 3.2 Integrated Circuit Devices

3.1

3.2

3.3
3.4

3.5

What can physical hardware devices called integrated
circuits (ICs) do?

What type of wire is used to connect together the die and
the package leads or pins inside an IC?

What does an IC with a hermetical seal provide?

Name a few different types of integrated circuit
packages.

Which IC package type has balls of solder on its pins
that are soldered directly to a PC board?

Section 3.3 Analyzing and Designing Logic Circuits

3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14

3.15

3.16

3.17

What is the process of circuit analysis?

What is the process of circuit design or synthesis?

Show a common symbol for normally closed relay contacts.
Show a common symbol for normally open relay contacts.
Relays or switches connected in series provide what
logic operation?

Relays or switches connected in parallel provide what
logic operation?

What is the name that is used for logic switching circuit
in power applications?

Analyze the logic switching circuit shown in Figure
P3.13 to obtain its function F.

< >
F

FIGURE P3.13

Show the design for an OR gate ladder logic circuit driv-
ing a lamp.

Show the design for an AND gate ladder logic circuit
driving a control relay (CR).

Show the design for an NAND gate ladder logic circuit
driving a lamp.

Analyze the logic circuit shown in Figure P3.17 to obtain
its function F in SOP form and its truth table.

C
B

[Do

FIGURE P3.17

3.18

C
B

Analyze the logic circuit shown in Figure P3.18 to obtain
its function F in SOP form and its truth table.

T
Jo— ‘

FIGURE P3.18

3.19

Analyze each of the following circuits in Figure P3.19
to obtain their Boolean function in SOP form and their
truth table.

zﬁg
o

Dk

Y
X

FIGURE P3.19

3.20 Design a circuit that provides the 1's complement at its

output for each 4-bit binary number applied at its input.
Use the input signals /N3, IN2, IN1, and INO and the

92

3.21

3.22

3.23

3.24

3.25

Chapter 3

corresponding output signals QUT3, OUT2, OUT1, and
OUTO. Hint: The 1’s complement of a binary number is
simply the complement of each individual bit.

Show a complete VHDL design for a circuit that pro-
vides the 1’s complement at its output for each 4-bit
binary number applied at its input. Use the input signals
IN3, IN2, IN1, and INO and the corresponding output
signals OUT3, OUT2, OUT1, and OUTO. Hint: The I’s
complement of a binary number is simply the comple-
ment of each individual bit.

Design a circuit that provides the 2’s complement at its
output for each 3-bit binary number applied at its input.
Use the input signals X, ¥, and Z and the corresponding
output signals F1, F2, and F3, and only AND, OR, and
NOT gates. Hint: The 1’s complement of a binary num-
ber is simply the complement of each individual bit. The
2’s complement of a binary number is the 1’s comple-
ment of the binary number + 1 (i.e., the 1 is added to the
least significant bit).

Show a complete VHDL design for a circuit that pro-
vides the 2’s complement at its output for each 3-bit
binary number applied at its input. Use the input signals
X, Y, and Z and the corresponding output signals F1, F2,
and F3. Hint: The 1’s complement of a binary number is
simply the complement of each individual bit. The 2’s
complement of a binary number is the 1’s complement
of the binary number + 1 (i.e., the 1 is added to the least
significant bit).

Design a majority of 1s circuit such that the output signal
F'is 1 when a majority of the input signals X, ¥, and Z are
1. Only use OR, AND, and NOT gates.

Use VHDL to design a majority of 1s circuit such that
the output signal F is 1 when a majority of the input
signals X, ¥, and Z are 1.

Section 3.4 Generating Detailed Schematics

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

What is the difference between a functional logic or sche-
matic diagram and a detailed logic or schematic diagram?
List a good online source for obtaining datasheets for IC
devices as mentioned in the text.

How many gates are contained in the IC device IC1 in
Figure 3.10a in the text? Name the gates.

Which pin must be connected to Ve and which pin must
be connected to GND for IC device IC1 in Figure 3.10a
in the text?

How many gates are contained in the IC device IC2 in
Figure 3.10a in the text? Name the gates.

Which pin must be connected to Vi and which pin must
be connected to GND for IC device IC2 in Figure 3.10a
in the text?

How many gates are contained in the IC device IC1 in
Figure 3.10b in the text? Name the gates.

Which pin must be connected to V¢ and which pin must
be connected to GND for IC device IC1 in Figure 3.10b
in the text?

List the important items that are necessary when draw-
ing a detailed schematic.

Introduction to Logic Circuit Analysis and Design

3.35

3.36

3.37

3.38

Why do you need to know how to provide detailed sche-
matics of your designs?

Show a complete VHDL design for the functions
Fl =AB+ A-Band F2 = A-B.

What is the purpose of running a simulation on a VHDL
design?

To obtain a circuit on a system board, why is a detailed
schematic not required when using a hardware descrip-
tion language such as VHDL?

Section 3.5 Designing Gircuits in NAND/NAND and
NOR/NOR Form

3.39

3.40

34

3.42

343

3.44

3.45

3.46

Design a two-1s-out-of-four event detector for input sig-
nals A, B, C, D and output signal F. Use a vertical-input
scheme and fan-in reduction if possible using NOT gates
(six in a package), 4-input NAND gates (two in a pack-
age), and an 8-input NAND gate (one in a package). Use
the graphical design method.

Show a complete VHDL design for a two-1s-out-of-four
event detector for input signals A, B, C, D and output
signal F.

Design a circuit using the 1s of the function F(X,Y,Z) =
>m(1,2,4). If possible, reduce the function. Draw the cir-
cuit for the function using just NAND gates in NAND/
NAND form and NOT gates. Use the graphical design
method.

Show a complete VHDL design for a circuit using the 1s
of the function F(X,Y,Z) = 3m(1,2,4).

Design a circuit using the 1s of the function F(X,Y,Z) =
>m(1,2,4). If possible, reduce the function. Draw the cir-
cuit for the function using just NOR gates in NOR/NOR
form and NOT gates. Use the graphical design method.
Design a circuit using the 1s of the function F(W,X.Y,Z)
= 3m(0,2,5,7,8,10) + Zmd(12, 13). If possible, reduce
the function. Draw the circuit for the function using just
NAND gates in NAND/NAND form and NOT gates.
Use the graphical design method.

Show a complete VHDL design for a circuit using the
1s of the function F(W,X,Y,Z) = 2m(0,2,5,7,8,10) +
Smd(12,13). Hint: Choose Os for the don’t cares, to
reduce the number of minterms in the VHDL expres-
sion for F.

Design a circuit using the 1s of the function F(W,X.Y,Z)
= Ym(0,2,5,7,8,10) + Xmd(12,13). If possible, reduce
the function. Draw the circuit for the function using just
NOR gates in NOR/NOR form and NOT gates.

Section 3.6 Propagation Delay Time

347

3.48
3.49

3.50

Which metal has the best conductivity—copper, gold, or
silver? Which has the second best conductivity? Which
has the third best conductivity?

Provide an equation for #, in terms of #py, and 4.
Describe what is meant by the term worst-case delay
time through a circuit.

Draw a circuit for a function FDELAY = A made up of
four cascaded NOT gates. If each NOT gate has a delay

3.51

3.52

of 1, what is the output delay of the circuit from its input
to its output?

Draw a circuit for the function FD1 = A-B implemented
with an AND gate and NOT gates. Determine the worst-
case output delay for the circuit, assuming each gate has

adelay of 7,.

Draw a circuit for the function FD2 = X + Y imple-
mented with an OR gate and NOT gates. Determine the
worst-case output delay for the circuit, assuming each
gate has a delay of 7.

Section 3.7 Decoders

3.53

3.54

3.55

3.56

3.57

Draw and label a gate level circuit for a 3-to-8 decoder
with active low outputs. Also draw and label a logic
symbol for the 3-to-8 decoder.

Design a circuit for the function F(X,Y,Z) = 2m(0,2,7)
with a 3-to-8 decoder with active high outputs. Use an
appropriate gate to provide the smallest possible fan-in
Lo implement the [unction.

Show a complete VHDL design [or the [unction F(X,Y,Z)
= 3m(0,2,7).

Design a circuit for the function F(X,Y,Z) = %m(0,1,5,6,7)
with a 3-to-8 decoder/demultiplexer that has an active
low enable input and active low outputs. Use an appro-
priate gate to provide the smallest possible fan-in to
implement the function.

Show a complete VHDL design for the function F(X.Y,Z)
= 3m(0,1,5,6,7). To simplify the function in VHDL,
rewrite the function with a minimum number of minterms.

Section 3.8 Multiplexers

3.58

3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

Write the equation for a 4-to-1 MUX (data selector); then
draw and label the circuit. Use D3 down to DO as the
data inputs, S1 down to SO as the select inputs, and F as
the output. Draw a logic symbol for the circuit, and then
show its truth table in compressed form.

Show a complctc VHDL design for a 4-to-1 MUX (data
selector). Use D3 down to DO as the data inputs, S1 down
to SO as the select inputs, and F as the output.

Obtain a MUX design for the AND function F(A,B)
= A-B using an off-the-shelf MUX without a strobe input.
Show a complete VHDL design for the AND function
F(A, B) = A'B.

Obtain a MUX design for the NOR function F(A,B)
= A + B using an off-the-shelf MUX without a strobe
input.

Show a complete VHDL design for the NOR function
F(A,By=A + B.

Obtain a MUX design for the XOR function F(X.,Y)
= XY + X-Y using an off-the-shelf MUX with an
active low strobe input.

Show a complete VHDL design for the XOR function
FXY)=XY +XY.

Obtain a MUX design for the function F(X,Y,Z)
= Xm(0,1,2,3,5,7) using an off-the-shelf MUX with an
active low strobe input.

3.67

93

Problems

Show a complete VHDL design for the function F(X,Y,Z)
= 3m(0,1,2,3,5,7). To simplify the function in VHDL,
rewrite the function with a minimum number of minterms.

Section 3.9 Hazards

3.68
3.69
3.70

371

3.72
373
3.74

3.75

3.76
3.77

3.78

3.79

3.80

3.81

3.82

3.83

Name the two classifications of hazards.

Whalt can a hazard cause at the output of a circuit?

List the reason a glitch can occur in a combinational
logic circuit as a result of a function hazard.

List the four types of function hazards covered in the
book.

List the two types of glitches covered in the book.

What is a runt pulse?

Can function hazards be eliminated? Describe how the
outputs of circuits that contain function hazards can be
used.

List the reason a glitch can occur in a combinational
logic circuit as a result of a logic hazard.

Can logic hazards be eliminated? If so, describe how.
Eliminate all logic hazards that can result for the 1s of
the Boolean function FI(A,B,C) = Zm(1,3,4,5). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.
Eliminate all logic hazards that can result for the Os of
the Boolean function F1(A,B,C) = 2m(1,3,4,5). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.
Eliminate all logic hazards that can result for the 1s of
the Boolean function F2(A,B,C) = 2(1,2,3,6). Show the
K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.
Eliminate all logic hazards that can result for the Os of
the Boolean function F2(A,B,C) = X(1,2,3,6). Show the
K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.
Eliminate all logic hazards that can result for the 1s of
the Boolean function F3(A,B,C) = 2(0,2,3,4,6). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.
Eliminate all logic hazards that can result for the Os of
the Boolean function F3(A,B,C) = 2(0,2,3,4,6). Show
the K-maps and the equations for the minimum Boolean
function and the logic hazard-free Boolean function.
Determine the number of logic hazards that the circuit
shown in Figure P3.83 could contain. What product
terms are necessary to eliminate these logic hazards?
Write a logic hazard-free function for the circuits.

B
D

F4

LS b4

TA» Owx

FIGURE P3.83

