CHAPTER

NETWORK ACCESS CONTROL AND CLOUD SECURITY

5.1 Network Access Control

Elements of a Network Access Control System Network Access Enforcement Methods

5.2 Extensible Authentication Protocol

Authentication Methods EAP Exchanges

5.3 IEEE 802.1X Port-Based Network Access Control

5.4 Cloud Computing

Cloud Computing Elements Cloud Computing Reference Architecture

- 5.5 Cloud Security Risks and Countermeasures
- 5.6 Data Protection in the Cloud
- 5.7 Cloud Security as a Service
- 5.8 Recommended Reading
- 5.9 Key Terms, Review Questions, and Problems

"No ticket! Dear me, Watson, this is really very singular. According to my experience it is not possible to reach the platform of a Metropolitan train without exhibiting one's ticket."

- The Adventure of the Bruce-Partington Plans, Sir Arthur Conan Doyle

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

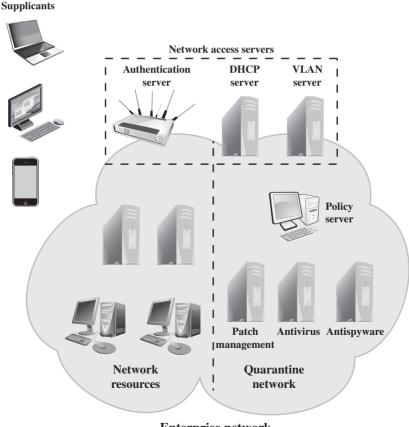
- Discuss the principal elements of a network access control system.
- Discuss the principal network access enforcement methods.
- Present an overview of the Extensible Authentication Protocol.
- Understand the operation and role of the IEEE 802.1X Port-Based Network Access Control mechanism.
- Present an overview of cloud computing concepts.
- Understand the unique security issues related to cloud computing.

This chapter begins our discussion of network security, focusing on two key topics: network access control and cloud security. We begin with an overview of network access control systems, summarizing the principal elements and techniques involved in such a system. Next, we discuss the Extensible Authentication Protocol and IEEE 802.1X, two widely implemented standards that are the foundation of many network access control systems.

The remainder of the chapter deals with cloud security. We begin with an overview of cloud computing, and follow this with a discussion of cloud security issues.

5.1 NETWORK ACCESS CONTROL

Network access control (NAC) is an umbrella term for managing access to a network. NAC authenticates users logging into the network and determines what data they can access and actions they can perform. NAC also examines the health of the user's computer or mobile device (the endpoints).


Elements of a Network Access Control System

NAC systems deal with three categories of components:

• Access requestor (AR): The AR is the node that is attempting to access the network and may be any device that is managed by the NAC system, including workstations, servers, printers, cameras, and other IP-enabled devices. ARs are also referred to as **supplicants**, or simply, clients.

- **Policy server:** Based on the AR's posture and an enterprise's defined policy, the policy server determines what access should be granted. The policy server often relies on backend systems, including antivirus, patch management, or a user directory, to help determine the host's condition.
- Network access server (NAS): The NAS functions as an access control point for users in remote locations connecting to an enterprise's internal network. Also called a media gateway, a remote access server (RAS), or a policy server, an NAS may include its own authentication services or rely on a separate authentication service from the policy server.

Figure 5.1 is a generic network access diagram. A variety of different ARs seek access to an enterprise network by applying to some type of NAS. The first step is generally to authenticate the AR. Authentication typically involves some sort of secure protocol and the use of cryptographic keys. Authentication may be performed by the NAS, or the NAS may mediate the authentication process. In the latter case, authentication takes place between the supplicant and an authentication server that is part of the policy server or that is accessed by the policy server.

Enterprise network

Figure 5.1 Network Access Control Context

The authentication process serves a number of purposes. It verifies a supplicant's claimed identity, which enables the policy server to determine what access privileges, if any, the AR may have. The authentication exchange may result in the establishment of session keys to enable future secure communication between the supplicant and resources on the enterprise network.

Typically, the policy server or a supporting server will perform checks on the AR to determine if it should be permitted interactive remote access connectivity. These checks-sometimes called health, suitability, screening, or assessment checks-require software on the user's system to verify compliance with certain requirements from the organization's secure configuration baseline. For example, the user's antimalware software must be up-to-date, the operating system must be fully patched, and the remote computer must be owned and controlled by the organization. These checks should be performed before granting the AR access to the enterprise network. Based on the results of these checks, the organization can determine whether the remote computer should be permitted to use interactive remote access. If the user has acceptable authorization credentials but the remote computer does not pass the health check, the user and remote computer should be denied network access or have limited access to a quarantine network so that authorized personnel can fix the security deficiencies. Figure 5.1 indicates that the quarantine portion of the enterprise network consists of the policy server and related AR suitability servers. There may also be application servers that do not require the normal security threshold be met.

Once an AR has been authenticated and cleared for a certain level of access to the enterprise network, the NAS can enable the AR to interact with resources in the enterprise network. The NAS may mediate every exchange to enforce a security policy for this AR, or may use other methods to limit the privileges of the AR.

Network Access Enforcement Methods

Enforcement methods are the actions that are applied to ARs to regulate access to the enterprise network. Many vendors support multiple enforcement methods simultaneously, allowing the customer to tailor the configuration by using one or a combination of methods. The following are common NAC enforcement methods.

- **IEEE 802.1X:** This is a link layer protocol that enforces authorization before a port is assigned an IP address. IEEE 802.1X makes use of the Extensible Authentication Protocol for the authentication process. Sections 5.2 and 5.3 cover the Extensible Authentication Protocol and IEEE 802.1X, respectively.
- Virtual local area networks (VLANs): In this approach, the enterprise network, consisting of an interconnected set of LANs, is segmented logically into a number of virtual LANs.¹ The NAC system decides to which of the

¹A VLAN is a logical subgroup within a LAN that is created via software rather than manually moving cables in the wiring closet. It combines user stations and network devices into a single unit regardless of the physical LAN segment they are attached to and allows traffic to flow more efficiently within populations of mutual interest. VLANs are implemented in port-switching hubs and LAN switches.

network's VLANs it will direct an AR, based on whether the device needs security remediation, Internet access only, or some level of network access to enterprise resources. VLANs can be created dynamically and VLAN membership, of both enterprise servers and ARs, may overlap. That is, an enterprise server or an AR may belong to more than one VLAN.

- **Firewall:** A firewall provides a form of NAC by allowing or denying network traffic between an enterprise host and an external user. Firewalls are discussed in Chapter 12.
- **DHCP management:** The Dynamic Host Configuration Protocol (DHCP) is an Internet protocol that enables dynamic allocation of IP addresses to hosts. A DHCP server intercepts DHCP requests and assigns IP addresses instead. Thus, NAC enforcement occurs at the IP layer based on subnet and IP assignment. A DCHP server is easy to install and configure, but is subject to various forms of IP spoofing, providing limited security.

There are a number of other enforcement methods available from vendors. The ones in the preceding list are perhaps the most common, and IEEE 802.1X is by far the most commonly implemented solution.

5.2 EXTENSIBLE AUTHENTICATION PROTOCOL

The Extensible Authentication Protocol (EAP), defined in RFC 3748, acts as a framework for network access and authentication protocols. EAP provides a set of protocol messages that can encapsulate various authentication methods to be used between a client and an authentication server. EAP can operate over a variety of network and link level facilities, including point-to-point links, LANs, and other networks, and can accommodate the authentication needs of the various links and networks. Figure 5.2 illustrates the protocol layers that form the context for EAP.

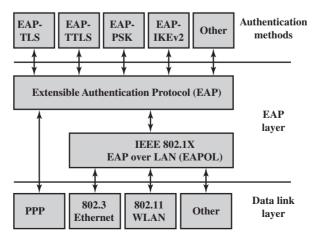


Figure 5.2 EAP Layered Context

Authentication Methods

EAP supports multiple authentication methods. This is what is meant by referring to EAP as *extensible*. EAP provides a generic transport service for the exchange of authentication information between a client system and an authentication server. The basic EAP transport service is extended by using a specific authentication protocol, or method, that is installed in both the EAP client and the authentication server.

Numerous methods have been defined to work over EAP. The following are commonly supported EAP methods:

- EAP-TLS (EAP Transport Layer Security): EAP-TLS (RFC 5216) defines how the TLS protocol (described in Chapter 6) can be encapsulated in EAP messages. EAP-TLS uses the handshake protocol in TLS, not its encryption method. Client and server authenticate each other using digital certificates. Client generates a pre-master secret key by encrypting a random number with the server's public key and sends it to the server. Both client and server use the pre-master to generate the same secret key.
- EAP-TTLS (EAP Tunneled TLS): EAP-TTLS is like EAP-TLS, except only the server has a certificate to authenticate itself to the client first. As in EAP-TLS, a secure connection (the "tunnel") is established with secret keys, but that connection is used to continue the authentication process by authenticating the client and possibly the server again using any EAP method or legacy method such as PAP (Password Authentication Protocol) and CHAP (Challenge-Handshake Authentication Protocol). EAP-TTLS is defined in RFC 5281.
- EAP-GPSK (EAP Generalized Pre-Shared Key): EAP-GPSK, defined in RFC 5433, is an EAP method for mutual authentication and session key derivation using a Pre-Shared Key (PSK). EAP-GPSK specifies an EAP method based on pre-shared keys and employs secret key-based cryptographic algorithms. Hence, this method is efficient in terms of message flows and computational costs, but requires the existence of pre-shared keys between each peer and EAP server. The set up of these pairwise secret keys is part of the peer registration, and thus, must satisfy the system preconditions. It provides a protected communication channel when mutual authentication is successful for both parties to communicate over and is designed for authentication over insecure networks such as IEEE 802.11. EAP-GPSK does not require any public-key cryptography. The EAP method protocol exchange is done in a minimum of four messages.
- **EAP-IKEv2:** It is based on the Internet Key Exchange protocol version 2 (IKEv2), which is described in Chapter 9. It supports mutual authentication and session key establishment using a variety of methods. EAP-TLS is defined in RFC 5106.

EAP Exchanges

Whatever method is used for authentication, the authentication information and authentication protocol information are carried in EAP messages.

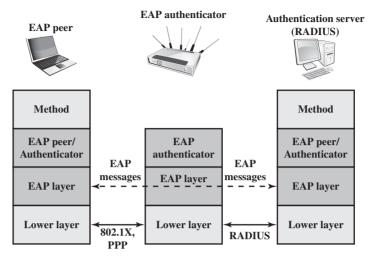


Figure 5.3 EAP Protocol Exchanges

RFC 3748 defines the goal of the exchange of EAP messages to be successful authentication. In the context of RFC 3748, *successful authentication* is an exchange of EAP messages, as a result of which the authenticator decides to allow access by the peer, and the peer decides to use this access. The authenticator's decision typically involves both authentication and authorization aspects; the peer may successfully authenticate to the authenticator, but access may be denied by the authenticator due to policy reasons.

Figure 5.3 indicates a typical arrangement in which EAP is used. The following components are involved:

- **EAP peer:** Client computer that is attempting to access a network.
- **EAP authenticator:** An access point or NAS that requires EAP authentication prior to granting access to a network.
- Authentication server: A server computer that negotiates the use of a specific EAP method with an EAP peer, validates the EAP peer's credentials, and authorizes access to the network. Typically, the authentication server is a Remote Authentication Dial-In User Service (RADIUS) server.

The authentication server functions as a backend server that can authenticate peers as a service to a number of EAP authenticators. The EAP authenticator then makes the decision of whether to grant access. This is referred to as the **EAP pass-through mode**. Less commonly, the authenticator takes over the role of the EAP server; that is, only two parties are involved in the EAP execution.

As a first step, a lower-level protocol, such as PPP (point-to-point protocol) or IEEE 802.1X, is used to connect to the EAP authenticator. The software entity in the EAP peer that operates at this level is referred to as the **supplicant**. EAP messages containing the appropriate information for a chosen EAP method are then exchanged between the EAP peer and the authentication server.

EAP messages may include the following fields:

- **Code:** Identifies the Type of EAP message. The codes are Request (1), Response (2), Success (3), and Failure (4).
- Identifier: Used to match Responses with Requests.
- Length: Indicates the length, in octets, of the EAP message, including the Code, Identifier, Length, and Data fields.
- **Data:** Contains information related to authentication. Typically, the Data field consists of a Type subfield, indicating the type of data carried, and a Type-Data field.

The Success and Failure messages do not include a Data field.

The EAP authentication exchange proceeds as follows. After a lower-level exchange that established the need for an EAP exchange, the authenticator sends a Request to the peer to request an identity, and the peer sends a Response with the identity information. This is followed by a sequence of Requests by the authenticator and Responses by the peer for the exchange of authentication information. The information exchanged and the number of Request–Response exchanges needed depend on the authentication method. The conversation continues until either (1) the authenticator determines that it cannot authenticate the peer and transmits an EAP Failure or (2) the authenticator determines that successful authentication has occurred and transmits an EAP Success.

Figure 5.4 gives an example of an EAP exchange. Not shown in the figure is a message or signal sent from the EAP peer to the authenticator using some protocol

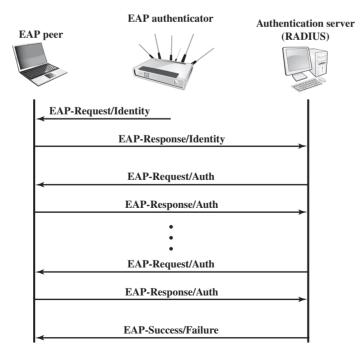


Figure 5.4 EAP Message Flow in Pass-Through Mode

other than EAP and requesting an EAP exchange to grant network access. One protocol used for this purpose is IEEE 802.1X, discussed in the next section. The first pair of EAP Request and Response messages is of Type identity, in which the authenticator requests the peer's identity, and the peer returns its claimed identity in the Response message. This Response is passed through the authenticator to the authentication server. Subsequent EAP messages are exchanged between the peer and the authentication server.

Upon receiving the identity Response message from the peer, the server selects an EAP method and sends the first EAP message with a Type field related to an authentication method. If the peer supports and accepts the selected EAP method, it replies with the corresponding Response message of the same type. Otherwise, the peer sends a NAK, and the EAP server either selects another EAP method or aborts the EAP execution with a failure message. The selected EAP method determines the number of Request/Response pairs. During the exchange the appropriate authentication information, including key material, is exchanged. The exchange ends when the server determines that authentication has succeeded or that no further attempt can be made and authentication has failed.

5.3 IEEE 802.1X PORT-BASED NETWORK ACCESS CONTROL

IEEE 802.1X Port-Based Network Access Control was designed to provide access control functions for LANs. Table 5.1 briefly defines key terms used in the IEEE 802.11 standard. The terms *supplicant*, *network access point*, and *authentication server* correspond to the EAP terms *peer*, *authenticator*, and *authentication server*, respectively.

Until the AS authenticates a supplicant (using an authentication protocol), the authenticator only passes control and authentication messages between the supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data channel is blocked. Once a supplicant is authenticated and keys are provided, the authenticator can forward data from the supplicant, subject to predefined access control limitations for the supplicant to the network. Under these circumstances, the data channel is unblocked.

As indicated in Figure 5.5, 802.1X uses the concepts of controlled and uncontrolled ports. Ports are logical entities defined within the authenticator and refer to physical network connections. Each logical port is mapped to one of these two types of physical ports. An uncontrolled port allows the exchange of protocol data units (PDUs) between the supplicant and the AS, regardless of the authentication state of the supplicant. A controlled port allows the exchange of PDUs between a supplicant and other systems on the network only if the current state of the supplicant authorizes such an exchange.

The essential element defined in 802.1X is a protocol known as EAPOL (EAP over LAN). EAPOL operates at the network layers and makes use of an IEEE 802 LAN, such as Ethernet or Wi-Fi, at the link level. EAPOL enables a supplicant to communicate with an authenticator and supports the exchange of EAP packets for authentication.

The most common EAPOL packets are listed in Table 5.2. When the supplicant first connects to the LAN, it does not know the MAC address of the

Table 5.1 Terminology Related to IEEE 802.1X

Authenticator

An entity at one end of a point-to-point LAN segment that facilities authentication of the entity to the other end of the link.

Authentication exchange

The two-party conversation between systems performing an authentication process.

Authentication process

The cryptographic operations and supporting data frames that perform the actual authentication.

Authentication server (AS)

An entity that provides an authentication service to an authenticator. This service determines, from the credentials provided by supplicant, whether the supplicant is authorized to access the services provided by the system in which the authenticator resides.

Authentication transport

The datagram session that actively transfers the authentication exchange between two systems.

Bridge port

A port of an IEEE 802.1D or 802.1Q bridge.

Edge port

A bridge port attached to a LAN that has no other bridges attached to it.

Network access port

A point of attachment of a system to a LAN. It can be a physical port, such as a single LAN MAC attached to a physical LAN segment, or a logical port, for example, an IEEE 802.11 association between a station and an access point.

Port access entity (PAE)

The protocol entity associated with a port. It can support the protocol functionality associated with the authenticator, the supplicant, or both.

Supplicant

An entity at one end of a point-to-point LAN segment that seeks to be authenticated by an authenticator attached to the other end of that link.

authenticator. Actually it doesn't know whether there is an authenticator present at all. By sending an **EAPOL-Start** packet to a special group-multicast address reserved for IEEE 802.1X authenticators, a supplicant can determine whether an authenticator is present and let it know that the supplicant is ready. In many cases, the authenticator will already be notified that a new device has connected from some hardware notification. For example, a hub knows that a cable is plugged in before the device sends any data. In this case the authenticator may preempt the Start message with its own message. In either case the authenticator sends an EAP-Request Identity message encapsulated in an **EAPOL-EAP** packet. The EAPOL-EAP is the EAPOL frame type used for transporting EAP packets.

The authenticator uses the **EAP-Key** packet to send cryptographic keys to the supplicant once it has decided to admit it to the network. The **EAP-Logoff** packet type indicates that the supplicant wishes to be disconnected from the network.

The EAPOL packet format includes the following fields:

- Protocol version: version of EAPOL.
- Packet type: indicates start, EAP, key, logoff, etc.