chapter

3

NUMBER REPRESENTATION
AND ARITHMETIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will learn about:

e Representation of numbers in computers
e Circuits used to perform arithmetic operations
e Performance issues in large circuits

e Use of Verilog to specify arithmetic circuits

121

122 CHAPTER 3 ¢ NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

In this chapter we will discuss logic circuits that perform arithmetic operations. We will explain how numbers
can be added, subtracted, and multiplied. We will also show how to write Verilog code to describe the
arithmetic circuits. These circuits provide an excellent platform for illustrating the power and versatility of
Verilog in specifying complex logic-circuit assemblies. The concepts involved in the design of arithmetic
circuits are easily applied to a wide variety of other circuits.

Before tackling the design of arithmetic circuits, it is necessary to discuss how numbers are repre-
sented in digital systems. In Chapter 1 we introduced binary numbers and showed how they can be expressed
using the positional number representation. We also discussed the conversion process between decimal and
binary number systems. In Chapter 2 we dealt with logic variables in a general way, using variables to
represent either the states of switches or some general conditions. Now we will use the variables to represent
numbers. Several variables are needed to specify a number, with each variable corresponding to one digit of

the number.
‘ 3.1 POSITIONAL NUMBER REPRESENTATION
| B | When dealing with numbers and arithmetic operations, it is convenient to use standard
K AET b symbols. Thus to represent addition we use the plus (+) symbol, and for subtraction we use
YITE AR

the minus (—) symbol. In Chapter 2 we used the + symbol mostly to represent the logical
HERIERE(BITE oR operation. Even though we will now use the same symbols for two different purposes,
5880 AL the meaning of each symbol will usually be clear from the context of the discussion. In
ForY R J5 IR cases where there may be some ambiguity, the meaning will be stated explicitly.

T\ g R

v kg D E N
75 . 3.1.1 UNSIGNED INTEGERS

The simplest numbers to consider are the integers. We will begin by considering positive
integers and then expand the discussion to include negative integers. Numbers that are
positive only are called unsigned, and numbers that can also be negative are called signed.
Representation of numbers that include a radix point (real numbers) is discussed later in
the chapter.

As explained in Section 1.5.1, an n-bit unsigned number

B = bn—lbn—Z tee blb()
represents an integer that has the value

_ n—1 n—2 . 1 0
THEL. V(B)—ﬁi;l X 2 +b,n x2 + +by x2'+byx?2 [3.1]
Unsigned number, R _ Zb' % 2
ﬁﬁfﬁﬂﬁé&o i=0

3.1 PoOSITIONAL NUMBER REPRESENTATION

3.1.2 OcTAL AND HEXADECIMAL REPRESENTATIONS

The positional number representation can be used for any radix. If the radix is r, then the
number

K = n—lkn—2 T 'klkO

has the value
n—1

V(K) = Zk,- x
i=0

Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful—S8 and 16. Numbers represented with
radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.
In octal representation the digit values range from O to 7. In hexadecimal representation
(often abbreviated as hex), each digit can have one of 16 values. The first ten are denoted
the same as in the decimal system, namely, O to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 3.1
gives the first 18 integers in these number systems.

In computers the dominant number system is binary. The reason for using the octal and
hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number

Table 3.1 Numbers in different systems.

Decimal Binary Octal Hexadecimal
00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 OE
15 01111 17 OF
16 10000 20 10
17 10001 21 11

18 10010 22 12

123

ARSH:
Signed number, 7 LA
H A

B RRIE:
Positional Number
Representation, J %
FHENMLE KA
NE KRR T —MH
W%

124

I\HEHI %
Octal number, % %8
K,

B HIEL
Hexadecimal number,
oA 16H %,

CHAPTER 3 . NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

101 011 010 111
~—~— ~—~— ~—~— ~—~—
5 3 2 7

which means that (101011010111), = (5327)g. If the number of bits is not a multiple of
three, then we add Os to the left of the most-significant bit. For example, (10111011), =
(273)g because of the grouping

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101), = (AF25) ¢

using the grouping

1010 1111 0010 0101
S——’ S—— N —’ S —’
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000), = (368),6 because of the grouping

0011 0110 1000
e ~—— S——

3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n-tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

3.2 AbpDITION OF UNSIGNED NUMBERS

125

3.2 ADDITION OF UNSIGNED NUMBERS

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only O or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1¢. This circuit, which implements the addition of
only two bits, is called a half-adder.

X 0 0 1 1
+y +0 +1 +0 +1
00 01 01 10

cs
Carry —T 1— Sum

(a) The four possible cases

Carry Sum
Xy c s
0 0 0 0
0 1 0 1
1 0 0 1
11 1 0
(b) Truth table
D
s
Y 7
X —= ——
HA
y ——» ——» ¢

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.

Ed

ATE LR
TR S B
1B5E B HxE R 2
IECZIE v IEEN
H 5 B TR SR E
INdIE SR A 1,
DA K S A [+ B Y
FERIERT - ARG R
NS 5 R B
N AR B LS,
HF 2 2Kk
SR DACRES . $iid
IR L 1,
P T AT WAL
% e
— ML
Huisi B T A
IEz 5T 2Rk
J%— 8L 5
B3 DL 3 9 vk

BH -

126

E Syl

Half adder(HA), R ¢
WAL He 4 B 8 AT A
EHE

CHAPTER 3 . NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Generated carries —= 1110

Civ1 G

X = X X3%5x1X, 01111 (15)9 X;

+Y = y,9392 910 +01010 + (10)q e Y

S = 54835,55 11001 (25);0 S;
(a) An example of addition (b) Bit position i

Figure 3.2 Addition of multibit numbers.

A more interesting case is when larger numbers that have multiple bits are involved.
Then it is still necessary to add each pair of bits, but for each bit position i, the addition
operation may include a carry-in from bit position i — 1.

Figure 3.2a presents an example of the addition operation. The two operands are X =
(01111), = (15)10 and Y = (01010), = (10),. Five bits are used to represent X and
Y, making it possible to represent integers in the range from O to 31; hence the sum
S =X +Y = (25)9canalsobe denoted as a five-bitinteger. Note the labeling of individual
bits, such that X = x4x3xx1x9 and Y = y4y3y»2y1Y0. The figure shows, in a blue color, the
carries generated during the addition process. For example, a carry of 0 is generated when
Xo and yg are added, a carry of 1 is produced when x; and y; are added, and so on.

In Chapter 2 we designed logic circuits by first specifying their behavior in the form
of a truth table. This approach is impractical in designing an adder circuit that can add the
five-bit numbers in Figure 3.2. The required truth table would have 10 input variables, 5
for each number X and Y. It would have 2'° = 1024 rows! A better approach is to consider
the addition of each pair of bits, x; and y;, separately.

For bit position 0, there is no carry-in, and hence the addition is the same as for
Figure 3.1. For each other bit position i, the addition involves bits x; and y;, and a carry-in
¢;, as illustrated in Figure 3.2b. This observation leads to the design of a logic circuit that
has three inputs x;, y;, and ¢;, and produces the two outputs s; and c;11. The required truth
table is shown in Figure 3.3a. The sum bit, s;, is the modulo-2 sum of x;, y;, and ¢;. The
carry-out, ciy1, is equal to 1 if the sum of x;, y;, and ¢; is equal to either 2 or 3. Karnaugh
maps for these functions are shown in part (b) of the figure. For the carry-out function the
optimal sum-of-products realization is

Ciyl = XiYi + XiCi + YiCi
For the s; function a sum-of-products realization is
Si = XiYiCi + Xiy;Ci + Xiy;Ci + XiYiCi

A more attractive way of implementing this function is by using the XOR gates, as explained
below.

3.2 ADDITION OF UNSIGNED NUMBERS

XiYi
¢ 00 01 11 10
0 1 1
Ci X Vi |[Cisn 8
1] 1 1
0 0 0 0 0
0 0 1 0 1
o1 0| o0 |1 5i = %Oy ®c
01 1 1 0
XV
1oo | o |1) i
110 1 0 0 1
11 1 1 1
1 11]
(a) Truth table
Civl = XY+ X6+ YiC;
(b) Karnaugh maps
X
¥i) Si
c r’D

!) Civ1

T
)

(c) Circuit

Figure 3.3 Full-adder.

127

£mEE:

Full adder(FA), R xt
AN L hre By ¥ —
AL HEAT fmE 5 4y W B,
B RAKALA AL
BEAL, U R AR &
AL By BE AL,

128

R

0dd function, B 5% 5
EE M LA
AE B EE AL,

CHAPTER 3 . NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Use of XOR Gates

As shown in Chapter 2, the XOR function of two variables is defined as x; @ x, =
X1x2 + x1%,. The preceding expression for the sum bit can be manipulated into a form that
uses only XOR operations as follows

si = (Xiyi +x)¢ + Xy; + xiyi)ci
= (x; D y)ci + (x; B yi)c
=X ®y) D

The XOR operation is associative; hence we can write
s5i=xi@yi®c

Therefore, a three-input XOR operation can be used to realize s;.

The XOR operation generates as an output a modulo-2 sum of its inputs. Thus, the
output is equal to 1 if an odd number of inputs have the value 1, and it is equal to O
otherwise. For this reason the XOR is sometimes referred to as the odd function. Observe
that the XOR has no minterms that can be combined into a larger product term, as evident
from the checkerboard pattern for function s; in the map in Figure 3.3b. The logic circuit
implementing the truth table in Figure 3.3a is given in Figure 3.3¢. This circuit is known
as a full-adder.

Another interesting feature of XOR gates is that a two-input XOR gate can be thought
of as using one input as a control signal that determines whether the true or complemented
value of the other input will be passed through the gate as the output value. This is clear
from the definition of XOR, where x; @ y; = Xy 4+ xy. Consider x to be the control input.
Then if x = 0, the output will be equal to the value of y. But if x = 1, the output will be
equal to the complement of y. In the derivation above, we used algebraic manipulation
to derive s; = (x; ® y;) @ ¢;. We could have obtained the same expression immediately
by making the following observation. In the top half of the truth table in Figure 3.3a, ¢;
is equal to O, and the sum function s; is the XOR of x; and y;. In the bottom half of the
table, ¢; is equal to 1, while s; is the complemented version of its top half. This observation
leads directly to our expression using 2 two-input XOR operations. We will encounter an
important example of using XOR gates to pass true or complemented signals under the
control of another signal in Section 3.3.3.

In the preceding discussion we encountered the complement of the XOR operation,
which we denoted as x @ y. This operation is used so commonly that it is given the distinct
name XNOR. A special symbol, ©, is often used to denote the XNOR operation, namely

XOQy=x®y

The XNOR is sometimes also referred to as the coincidence operation because it produces
the output of 1 when its inputs coincide in value; that is, they are both O or both 1.

3.2 ADDITION OF UNSIGNED NUMBERS

c; - s s,

s HA c '
)Cl- —_— O ——

HA c Civ1
yi —=

(a) Block diagram

i+1

)
_J
(b) Detailed diagram

Figure 3.4 A decomposed implementation of the full-adder circuit.

3.2.1 DEeEcomMPOSED FULL-ADDER

In view of the names used for the circuits, one can expect that a full-adder can be constructed
using half-adders. This can be accomplished by creating a multilevel circuit given in
Figure 3.4. It uses two half-adders to form a full-adder. The reader should verify the
functional correctness of this circuit.

3.2.2 RiIrPPLE-CARRY ADDER

To perform addition by hand, we start from the least-significant digit and add pairs of digits,
progressing to the most-significant digit. If a carry is produced in position 7, then this carry is
added to the operands in position i + 1. The same arrangement can be used in a logic circuit
that performs addition. For each bit position we can use a full-adder circuit, connected as
shown in Figure 3.5. Note that to be consistent with the customary way of writing numbers,
the least-significant bit position is on the right. Carries that are produced by the full-adders
propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before
the output sum, S, is valid. Each full-adder introduces a certain delay before its s; and ¢
outputs are valid. Let this delay be denoted as A¢. Thus the carry-out from the first stage,
c1, arrives at the second stage At after the application of the xy and y, inputs. The carry-out
from the second stage, c», arrives at the third stage with a 2A¢ delay, and so on. The signal
cu—1 is valid after a delay of (n — 1) A¢, which means that the complete sum is available

129

—HizH:
Coincidence opera-
tion, R REH, Y
AN BUE — B
(] 082 1) At 4ir i
Hlo

130

ITIRBEALINGERS

Ripple carry adder,
% A & w2 R
EACEEA: R TE: PN
LA e 5 B R B 1R
o 9 B AL 3, HE AL R
FHRBR -,

CHAPTER 3 . NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Xn-1 Yn-1 X1 N Yo Yo
i
C, a—-1 FA o« Cy_| e ee () a— FA - FA -— (y
Sn-1 S So
MSB position LSB position

Figure 3.5 An n-bit ripple-carry adder.

after a delay of nAt. Because of the way the carry signals “ripple” through the full-adder
stages, the circuit in Figure 3.5 is called a ripple-carry adder.

The delay incurred to produce the final sum and carry-out in a ripple-carry adder
depends on the size of the numbers. When 32- or 64-bit numbers are used, this delay
may become unacceptably high. Because the circuit in each full-adder leaves little room
for a drastic reduction in the delay, it may be necessary to seek different structures for
implementation of n-bit adders. We will discuss a technique for building high-speed adders
in Section 3.4.

So far we have dealt with unsigned integers only. The addition of such numbers does
not require a carry-in for stage 0. In Figure 3.5 we included ¢ in the diagram so that the
ripple-carry adder can also be used for subtraction of numbers, as we will see in Section 3.3.

3.2.3 DESIGN EXAMPLE

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let
A = aza6 - - - ajap denote the number and P = pgpg - - - p1po denote the product P = 3A.
Note that 10 bits are needed to represent the product.

A simple approach to design the required circuit is to use two ripple-carry adders to
add three copies of the number A, as illustrated in Figure 3.6a. The symbol that denotes
each adder is a commonly-used graphical symbol for adders. The letters x;, y;, s;, and c;
indicate the meaning of the inputs and outputs according to Figure 3.5. The first adder
produces A + A = 2A. Its result is represented as eight sum bits and the carry from the
most-significant bit. The second adder produces 2A + A = 3A. It has to be a nine-bit adder
to be able to handle the nine bits of 2A, which are generated by the first adder. Because the
y; inputs have to be driven only by the eight bits of A, the ninth input yg is connected to a
constant 0.

This approach is straightforward, but not very efficient. Because 34 = 2A + A, we
can observe that 2A can be generated by shifting the bits of A one bit-position to the left,
which gives the bit pattern ayagasasazaaap0. According to Equation 3.1, this pattern is

