Unit 5 The Transport Layer

Section A The Transport Service and UDP

fransport | '
netwar)
data Tink ror— /’
physical data_link
| physical
network /
data link
[physical network
data link
physical

data link

,__.,' L@_._x .
5 g physzical

I. The transport service

The transport layer is the heart of the whole protocol hierarchy, whose task is to
provide reliable, cost-effective data transport from the source machine to the destination
machine. It provides services to the application layer, which is implemented by the
transport entity using transport service primitives, ©

1. Transport entity

Transport entity is the hardware and/or software within the transport layer that does
the work. It can be located in the operating system kernel or in a library package to the
application layer.

2. Transport Service Primitives

To allow users to access the transport service, it must provide some operations to

application programs. Each transport service, also called primitive, is done by its own

T E LR 4 55 1F

102

interface. The simplest transport service primitive is shown in Figure 5. 1.

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

Figure 5.1 The primitives for a simple transport service

Considering an application with a server and a number of remote clients, these
primitives may be used. To start with, the server executes a LISTEN primitive, typically
by calling a library procedure to block the server until a client comes.® When a client
wants to communicate with the server, it executes a CONNECT primitive. The transport
entity carries out this primitive by blocking the caller and sending a packet to the server.
Now data can be exchanged using the SEND and RECEIVE primitives. When data
transmission between the sender and the receiver is done, the connection is must be
released to free up table space within the two transport entities.

Disconnection has two variants: asymmetric and symmetric. In the asymmetric variant,
either transport user can issue a DISCONNECT primitive. In the symmetric variant, each
direction is closed separately, independently of the other one. If one side sends a
DISCONNECT, it does not send data any more but is willing to accept data from its
partner.

Another set of transport primitives is Berkeley Sockets, which is used in Berkeley
UNIX for TCP (Transport Control Protocol). It involves in eight primitives: SOCKET,
BIND, LISTEN, ACCEPT, CONNECT, SEND, RECEIVE, CLOSE. The flow chart of
Berkeley Sockets for TCP is shown in Figure 5. 2.

11I. UDP

There are two protocols available in the transport layer to its applications: UDP and
TCP. Now let’s study how UDP works.

1. The UDP protocol

UDP (User Datagram Protocol) is connectionless and provides a way for applications
to send data without having to establish a connection. UDP transmits segments consisting
of an 8-byte header followed by the payload. Its header is shown in Figure 5. 3.

The source port and the destination port field are used to specify which process on the
sending/receiving machine for sending back a reply.

The length field includes the 8-byte header and the data.

The checksum is optional and stored as 0 if not computed.

Compared with TCP, UDP is a connectionless service and lacks congestion control.

Unit 5 The Transport Layer

Server | Socket() Socket() |Client

Waiting for
connection

Conn Request
Connect()

Data Request

Data Processing

Data Response

Close()

Figure 5.2 Flow Chart of Socket for TCP

32 Bits

Source port Destination port

UDP length UDP checksum

Figure 5.3 The UDP header

But UDP has its own features, such as small segment header overhead and unregulated send
rate. It is also commonly used today with multimedia applications, such as Internet
phone, real-time video conferencing, and streaming of stored audio and video.

2. An example of UDP applications

DNS is an example of an application-layer protocol that uses UDP.

When the DNS application in a host wants to make a query, it constructs a DNS query
message and passes the message to a UDP socket. Without performing any handshaking,
UDP adds a header fields to the message and passes the resulting segment to the network
layer. The network layer encapsulates the UDP segment into a datagram and sends the
datagram to a name server. The DNS application at the querying host then waits for a
reply to its query. If it doesn’t receive a reply, it either tries sending the query to another
name-server, or it informs the invoking application that it can’t get a reply.

In practice, DNS almost always runs over UDP.

3. UDP client-server programming

Here we present the application of UDP in Java. The reason has two: first, it is more

103

T E LR 4 55 1F

neatly and cleanly written in Java. Second, client-server programming in Java is becoming

increasingly popular. The client/server program using UDP is shown in Figure 5. 4.

Notes

class UDPClient {
public static void main(3tring args[]) throws Exception
{
BufferedReader inFromUser =
new BufferedReadet(new InputStreamReader(System.in));
Dat.)’ lientSocket = new Datagy k B
InetAddress IPAddress = InetAddress getByN ame(" hostname");
byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser readLine();
sendData = sentence. getBytes();
DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData length, IP Address 9876);
clientSocket send(sendPacket),
DatagramPacket receivePacket =
new DatagramPacket(receiveD ata, receiveData length),
clientSocket receive(receivePacket);
String modifiedSentence =
new String(receivePacket.getData());
System. out. println' FROM SERVER:" + modifiedSertence);
clientSocket.close();
}
}

=

UDPServer.java
UDPClient.java import java.io.*;
import java.io.*, import javanet.*,
import javanst*; class UDPServer {

public static void main(String args[]) throws Exception
{
Datagram3ocket serverSocket =new DatagramSocket(9876),
byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];
while(trug)
{
DatagramPacket receivePacket =new DatagramPackef(receiveData, receiveData length);
serverSocket receive(receivePacket),
String sentence= new String(receivePacket getData());
InetAddress [PAddress = receivePacket. getAddress();
int port = receivePacket. getPort();
String capitalizedSentence = sentencetoUpperCase(),
sendData = capitalizedSentence. getBytes();
DatagramPacket sendPacket =new DatagramPacket(sendData, sendData length, IPAddress,
port);
serverSocket send(sendPacket),
)

)

)

Figure 5.4 Implementation of UDP programming

(D It provides services to the application layer, which is implemented by the transport
entity using transport service primitives, 3X A]i% A 49 which #5818 Hij 1 A services, A1 % iy 52
PRS2 s using SRR ing JH 2, B S i S U A B 9 entity.

@ To start with, the server executes a LISTEN primitive, typically by calling a
library procedure to block the server until a client comes. £ X ~0] T 7, F 152 server, if
W& execute, B i J& primitive, At i) 8 J2 & i B0 . A 8 by 45 3 44 16 KB
server, 1E 30 44 5L 1 BUA AL & — > until 515 (49 DA 48 1 HE i 1 19 BEL 28 119 Al 55 4%

New Words and Phrases

104

cost-effective [[kosti'fektiv] adj. HIAS R0 KA
entity ['entati | ST FFTE 5 AR i
primitive ['primativ] LA HTHY ARG iR A
kernel ['ka:nl] M A s Pl s kS B
block [blok | FH %€

{ree up FETil

disconnection [idisko'nekfon] STBAR

variant ['veoriont] AR

asymmetric [eisi'metrik | adj. ANXFFRIY

symmetric [si'metrik | adj. XTFRAY s SIFR Y
connectionless [ka'nek/nles | JoiEE

Unit 5 The Transport Layer

specify ['spesifai | v, TEAL s 8 & R

overhead ['ovuvehed] n. 28 FF 37 0 2R BT A
unregulate Lian'regjuleitid] adj. ANHRAE s ZEELIY s A2 B
encapsulate lin'keepsjuleit] 0. e NS 5 B IE NS TR 46 s MRS
segment ['segmont | n. T I s M B

datagram ['detograem | n. AR BUE i

Computer Terminologies

library package (3ol

Sockets T

UDP (User Datagram Protocol) JEEDRE S EiiEi 73N
Exercises

Answer the questions,

1. Describe the differences between UDP and TCP.

2. What does the service primitives mean?

3. What does the transport service supply and list them and explain?

4. Tell the differences between asymmetric variant disconnection and symmetric
variant disconnection.

5. Which kind of programming language is commonly used in UDP client-server
programming.

6. Give some examples of UDP applications.

Extending Your Reading

Case history— Vinton Cerf, Robert Kahn and TCP/IP

In the early 1970’s, packet-switched networks began to proliferate, with the
ARPAnet—the precursor of the Internet—being just one of many networks. Each of
these networks had its own protocol. Two researchers, Vinton Cerf and Robert Kahn
recognized the importance of interconnecting these networks and invented a cross-
network protocol called TCP/IP, which stands for Transmission Control Protocol/
Internet Protocol. The TCP/IP protocol, which is the bread and butter of today’s
Internet, was devised before PCs and workstations, the web, streaming audio., and
chat. Cerf and Kahn saw the need for a networking protocol that, on the one hand,

provides broad support for yet-to-be-defined applications and, on the other hand,

allows arbitrary hosts and link-layer protocols to interoperate.

105

T E LR 4 55 1F

106

BHEL
&4 AR 55 70 I P 50 R 3
4R 5

1 i JZ 2 B AS 73 2 PRSI AZ L B AT 5502 D TR SEALEN H AR EALR AL Al {5 59 A A 2L
4 R e e i . o T SR S5 o Pl A i R el o A i AR 5 D SR S B

e stk

e i S AR S BT 55)67 T A5 2 (9 B 0 A . B T REE TR AR R G R B
TR = B PR AL

fRHi ARk 5 R iE

T P AL G R 55 2 1) B R e S i — SR A e B — R R IR 5
F B 22 10Ok S B Rl . e T B A% i IR 55 TR AN 5. 1 TR .

JFiE KA A X
LISTEN (E) FHZE, HEIHHERS vELER:
CONNECT CONNECTION REQ. TR —
SEND DATA KGR
RECEIVE (&) FHZE, HEI—ArfEEBE
DISCONNECT | DISCONNECTION REQ. | E& i —A4N B 7 1%

P 5.1 B i R 55 Dl

ZE — B MRS A 2 G m R i N B0 B g s . R IR IR 55 A AT
LISTEN J5iih . 878 by 3 oo i i P22 7 BHL 2 il 55 # B B % P B0k . Y 520 7 o AR
PRS2 (E B PAT CONNECT Jif . A% i J23 520 38 aok BH 2 98 FH 25 DA K & 3 53 4 45 i
5 S PAT I EIE . PRAE B v] DL i 4] SEND #1 RECEIVE J5iE #4788 7, 450
TN AE 2 32 35 RN WS 8 22 18] 56 B » T 4 A Hhin S AR 22] 114 32 422 0 25 1 R i AR T 3R 25)

Wt i B2 A W FR 7 2 JEXS AR AR . e A X BRI S AR] 9 AR B R P R T LR R
—/> DISCONNECT Jiif5 . XS R 7 2, B — J5 &0 2 Bk 5 P, o s 7 55 b — 5. dn i
—} k% T —A DISCONNECT, &R & & AT] £ 45 . B2 B AT RE A 5 — 7 B i gidis

7 — B G R 2 Berkely £42% , B H T Berkely UNIX py et dil Uril . B M 8
A . SOCKET, BIND, LISTEN, ACCEPT,CONNECT, SEND,RECEIVE #1 CLOSE,
FH T AL i 4 i U3 1) Berkeley B4 F B 40 5. 2 s .

UDP

1% 7 J2 G WG R AT A9 DB 5 1% B . UDP fl TCP, BR7E2% 3 UDP 2 Wfal TAEM .

UDP {#il

UDP J2& JC i $2: (1 - A I FHAR AL T — Fp %2 26 B5dis A 75 22l o7 #4219 J7 8. UDP 1% #ii 4y
5B 8 FATHY SR B R A, TSk WE 5. 3 iR,

TR ity 11T B A i 11 S B SR B K B B RPL R L WA R R R R R A

Unit 5 The Transport Layer

Socket() | % i

B K
Connect()

EISETRS

BRI

B 5.2 TCP Y Socket il {3 5 F2 &

Close()

32
1 | Il 1 1 | 1 | | | Il 1 | | Il | | 1 Il 1 | | Il | | | Il 1 | | Il
Ui 1 H i 1
UDPK & UDPHR B

5.3 UDP skl

KB FBASE T 8 7 i Sk 38 LL R Bl .

2 56 R B AT R I A R T A R O,

5 TCP # 1t , UDP & — A JCiE 2 Ik 55 . /b P 28221 . B2 UDP A H O B9FFE A Qv
MY BCACKIF RS A LE Y R, A B g W T 2 B0k 0 G 9 2% 3 | S
A

— 4~ UDP & A %IF

DNS J&—~ 5 F 2 Pr i H UDP 1415

LAY DNS R AR & R — A i) B —4 DNS 2 8 IR B Rk 4
UDP £4:7 ., AN 248 F, UDP X B3 — Sk F B g R B R LA M)ZE . W
2230 UDP Bef 3 0 Bodl 4, J- 050 I % 45 o 48 I 55 4% . &5 00 E ML 19 DNS 4515 &
WY B, a5 e A YR A8 2 24) o) A1 1) i 44 IR 55 2% & 36 A 1) B0 B 08 R
P, EARMSE A,

SfR L DNS —Hizf14E UDP 2 I,

UDP ZP-lR&B4HmIE

X B Java 1B F kA UDP R A . B A M & H— R Java i6 5 B &34 T

107

T E LR 4 55 1F

108

H = Java -l o5 d i A2 22 4% H AR AT . UDP % 5 I 55 45 I 4 A2 AN 5. 4 FTom

UDPServer.java
UDPClient.java importjava.io.*;
import javain.*, import java.net.*;
import javanet®; class UDPServer {
class UDPClient {

ublic static void String args(]) throws Exception
public static void main(String args[]) throws Exception ? maiString arg{]) !
{

EBufferedReader inFromUser = Datagram3ocket serverSocket =new DatagramSocket(9876),

new BufferedReadet(new InputStreamReader(System i), byte]] receiveData = new byte[1024];

DatagramSocket cli ket =new Datagr ket(); byte[] sendData = new byte[1024];

InetAddress [PAddtess = InetAddress getByName(" hostname"), while(true)

byte[] sendData = new byte[1024]; {

byte[] receiveData = new byte[1024], DatagramPacket receivePacket =new DatagramPackel(receiveData, receiveData lengih);

String sertence = inFromUser readLine();

serverSocket receive(receivePacket),
sendData = sentence. getBytes();

String sentence= new String(receivePacket. getData());

DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData lengih, IP Address,9876); InetAddress IPAddress = receivePacket. getAddress(),

clientSocket send(sendPacket), int port = receivePacket getPort(),

DatagramPacket receivePacket = String capitalizedSentence = sentence toUpperCase();

new DatagramPacket(receiveData, receiveData length), sendData = capitalizedSentence. getBytes();

clientSocket.receive(receivePacket); DatagramPacket sendPacket =new DatagramPacket(sendData, sendData length, IPAddress,
String modifiedSentence = port;

new StringfreceivePacket getData()),

System n\iK pn'nﬂn("FROl\E SER‘:O Ei(" + modifiedSentence); serverSocket send(sendPacket),

clientSocket.close();)

})
})

B 5.4 UDP 4z

Section B TCP and its Congestion Control

\ Transmission

rate adjustment

¢ 6

Transmission

network Internal

congestion

é [

Small-capacity Large-capacity

receiver ﬁ receiver

I. TCP

TCP (Transmission Control Protocol) operates in the transport layer, and is designed
to provide a reliable end-to-end byte stream transmission over an unreliable internetwork.
The internetworks may differ from each other in topologies, bandwidths, delays, packet

sizes, and other parameters. TCP can dynamically adapt to these properties and is robust

Unit 5 The Transport Layer

in the face of many kinds of failures. It is formally defined in RFC 793.

1. Sockets and ports

TCP provides services to the application layer. TCP service is obtained by both the
sender and recciver creating end points, called sockets.® A socket consists of the IP
address of the host and its 16-bit port number. A TCP connection is identified uniquely by
two ends in communication. That is, TCP connection = { socketl, socket2} = {(IP1;
portl), (IP2: port2)}.

A port is the TCP name for a TSAP (Transport Service Access Point) and is just used
to identify the process of the application layer. Generally, ports can be divided into three
categories;

* Well-known ports: 0~1023, reserved for standard services. A few of the better

known services are listed in Figure

F T S D T S H

5. 0. T|e|M|N|F|N|T

: Application 2 ! i 8 10 B

e Registered ports: 1024 ~49151, reserved p}iayer n | P Plp| P
for application programs without well- :

known ports.]
 Client ports: 49152~65535, reserved for ~ Transport

2120723—25— 5369 161——80

Layer TCP/UDP
client processes and used temporarily. —————
Network P
2. The TCP protocol Layer

One of key features of TCP is that every N . .
Figure 5.5 Some assigned ports

byte on a TCP connection has its own 32-bit

sequence number, which is used for acknowledgements and for the window mechanism.
TCP exchanges data in the form of segments. Every segment begins with a fixed-format,

20-byte header, shown in Figure 5. 6.

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP U[A|P|R|S|F
header R|C[S|S|Y|I Window size
length G|K|H|T N[N
Checksum Urgent pointer
R Options(0 or more 32-bit words) R
R Data(optional) R

Figure 5.6 The TCP Segment Header

The Source port and Destination port fields identify the local end points of the

109

T E LR 4 55 1F

connection.

The Sequence number field is the number of the sending data.

The Acknowled gement number field specifies the number of the next byte expected,
not the last byte correctly received.

The TCP header length tells how many 32-bit words are contained in the TCP header.

Next there are a 6-bit field that is not used, and six 1-bit flags. URG is set to 1 if the
Urgent pointer is in use. The ACK bit is set to 1 to indicate that the Acknowledgement
number is valid. The PSH bit indicates PUSHed data. The RST bit is used to reset a
connection that has become confused. The FIN bit is used to release a connection. It
specifies that the sender has no more data to transmit.

The Window size field tells how many bytes may be sent starting at the byte
acknowledged. @

A Checksum is also provided for extra reliability.

3. TCP Connection Establishment

Connections are established in TCP by means of the three-way handshake between the
server and the client. Firstly, the server passively waits for an incoming connection by
executing the primitives of LISTEN and ACCEPT. Then, the client executes a
CONNECT primitive. The CONNECT primitive sends a TCP segment with the SYN bit
on and ACK bit off and waits for a response. © When the server receives this segment, it
can either accept or reject the connection. If it accepts, an acknowledgement segment is
sent back. The establishment process of the TCP connection in the normal case is shown

in Figure 5. 7.

@ Host A Host B @
User s
types 69:42,ACK\
' W
host ACKs
receipt of
'C’,echoes
back 'C’
host A.CKs
receipt
of echoed s

time

Figure 5.7 Establishment of TCP connection in the normal case

4. TCP Connection Release
To release a connection, either client or server can send a TCP segment with the FIN
bit set, which means no more data to transmit. When the FIN is acknowledged, the data

transmission in that direction is shut down. However, data may continue to flow

110

