Chapter 3 Functions

C ++ inherits all the C syntax, including the definition and usage of functions. In
process-oriented programming (also known as structured programming) ., function is the
basic unit of module division, and an abstract of problem-solving process. Function is also
important in object-oriented programming, in which it is an abstract of functionalities.

To develop or debug a complex system, engineers will usually divide it into several
sub-systems, and then develop or debug based on these sub-systems. Sub-programs in
high-level program languages are used to realize this kind of module division. In C and C++ sub-
programs are embodied as functions. We usually abstract independent and frequently used
functionality modules into functions. Once a function is written, we can reuse it only ac-
cording to its functions and usage, without the need to know its specific implementation.
In this way code reuse is achieved, development efficiency and program reliability are im-

proved, and collaboration, modification and maintenance can be realized much easily.

3.1 Definition and Use of Function

A C++ program consists of one main function and several sub-functions. A program is
executed starting from its main function. The main function may call sub-functions, and
sub-functions may in turn call other sub-functions.

The function which calls other functions is named “calling function”, and the function
called by others is named “called function”. A function may call another function and also
be called by some other. Thus it can be a calling function in some occasion and a called

function in another.
3.1.1 Definition of Function

1. Syntax Form of Function Definition

Type identifier Function name (Formal Parameter list)

{

Statements

2. Type of Function and Return Value

The type identifier defines the type of the function, also the type of the return value
of the function. The return value of the function is the result that the function returned to
its calling function, which is given by return statement, such as “return 0”.

o T2 o

The function without a return value has a type identifier of void, and there need not
be return statement in the function.
3. Formal Parameters

Here is the form of formal parameter list:
type 1 name 1, type 2 name2, ***, type n namen

typel, type2,==+, typen are type identifiers which represent the types of formal parame-
ters, and namel, name2,++, name n are the names of formal parameters. Formal parame-
ters are used to realize the connection between the called function and the calling function.
We often let the data that needs to process, factors that affect the function’s behavior, or
the processing results of the function to be the function’s formal parameters. Functions
without formal parameters should have void on the position of the parameter list.

Main function can also have formal parameters and return value. The formal parame-
ters of the main function are also called command line parameters, which are initialized by
the operating system when starting the program. The return value of main function is re-
turned to the operating system. The types and the number of formal parameters of the
main function have a special format. Refer to the experiment instructions in < Student’s
Book ™ to write programs with command line parameters.

A function is only a piece of text before it has been called, and its formal parameters
at the time are just symbols, indicating what type of data should appear on the position of
the formal parameter. A function starts execution when it is called, and at that time does
the calling function assigns the actual parameters to the formal parameters. This is similar
to the definition of function in mathematics:

flx) =2 +x+1

The function f will not be calculated until its argument has been assigned a value.

3.1.2 Function Calls

1. Form of Function Calls
Before calling a function we firstly need to declare the function prototype. The decla-

ration can be in the calling function or before all the functions, with the following form:
Type identifier Function name (Formal parameter list with type declarations);

If a function prototype is declared before all the functions, it is effective in the whole
program file. That is, we can call the corresponding function anywhere in the file accord-
ing to the prototype. If a function prototype is declared inside a calling function, it is only
effective in this calling function.

After declaring the function prototype, we can make a function call by the following
form;

. 73 .

Function name (Actual parameter list)

The actual parameter list should provide parameters that accurately match the formal
parameters in number and in types. A function call can be used as a statement, where the
return value of the function is not needed; a function call can also appear in an expression,
where an explicit return value of the function is needed.

Similar to the declaration and definition of variable, declaring a function only tells the
compiler its relevant information (about function name, parameters, return type, etc)
without generating any codes, while defining of a function mainly gives the function code
besides its relevant information.

Example 3-1 Writing a function to calculate the nth power of x.

//3_1.cpp
#include<iostream>
using namespace std;
double power (double x, int n);
int main ()
{
cout<< "5 to the power 2 is "<<power (5,2)<<endl;
//Function call is counted as an expression in the output statement.
return 0;
}
double power (double x, int n)
{
double val=1.0;
while (n--)
val % =x;
return(val);

}

Running result;
5 to the power 2 is 25

Example 3-2 Enter an 8-bit binary number, convert it to its decimal form and then
output the result.

Analysis: To convert a binary number to its decimal form, we need to multiply every
bit of the binary number with the corresponding weight, and then add them up. For exam-
ple: 00001101,=0(2")+0(2°)4+0(2°)+0(2")+1(2°)+1(2*)+0(2")+1(2°)=13},. So
when the input is 1101, the output should be 13.

Here we make a function call on the function power in Example 3-1 to calculate 2",

Source code:

//3_2.cpp

#include<iostream>

o T4 o

using namespace std;

double power (double x, int n);

int main ()
{
int i;
int wvalue=0;

char ch;

cout<<"Enter an 8 bit binary number ;
for (i=7; 1 >=0; i--)
{

cin >>ch;

if (ch=="'1")

valuet+=int (power (2,1));

}
cout<<"Decimal value is "<<value<<endl;

return 0;

double power (double x, int n)
{
double val=1.0;

while (n--)
val ¥ =x;
return (val) ;

}

Running result;

Enter an 8 bit binary number 01101001

Decimal value is 105

Example 3-3 Write a program to compute the value of n using the following formula:

T = 1681‘C‘[81’1<%)* 4arctan(ﬁ)
Use the following series to calculate the arctangent of a number:
Continue accumulating until the absolute value of one item in the series is less than
107", The type of & and x are both double.

5

xX

5

3 7
arctan(x) = x — % +E — % 4o

Source code:

//3_3.cpp

#include<iostream>

using namespace std;

int main ()

{
double a, b;
double arctan (double x) ;
a=16.0* arctan(1/5.0) ;
b=4.0* arctan(1/239.0) ;
//Note: Since the division of integers is to be rounded off, the value of 1/5 and
//1/239 are both 0.
cout<<"PI="<<a-b<<endl;
return 0;

}

double arctan (double x)
{

int i;

double r, e, £, sqr;

sSgr=x * x;

r=0;

e=Xxy

i=1;

while (e/1i>1e-15)

{

f=e/1;

}

return r ;

}

Running result:
PI=3.14159

Example 3-4 Find the number m between 11 and 999 that m, m” and m® are all palin-
dromes, and then output m.

Palindromes are numbers which have symmetrical number digits. For example: 121,
676 and 94249 are all palindromes. One instance that satisfies this subject’s requirement
is; m=11, m*=121,m*=1331.

Analysis: To check whether a number is a palindrome or not, we can get every digit
of the number by continuously dividing it by 10 and get the remaining. After getting all
the digits, we reverse the digit order to get a new number, and compare the new number
with the original one. The original number is a palindrome if and only if it is the same as
the new number.

Source code:

o« TG o

//3_4.cpp
#include<iostream>
using namespace std;
int main ()
{

bool symm(long n);

long m;

for(m=11; m<1000; m++)

if (symm(m) &&symm (m* m) &&symm (m * m* m))
cout<<"m="<<m<<" m¥m="<<m*m<<" m¥m*m="<<m*m*m<<endl;

return 0;

bool symm(long n)
{
long i, m;
i=n; m=0;
while (i)
{
m=m* 10+1%10;
i=i/10 ;
}
return (m==n);

}

Running result;

m=11 m¥m=121 m*m*m=1331
m=101 m*m=10201 m*m*m=1030301
m=111 m*m=12321 m*m*m=1367631

Example 3-5 Compute the value of the following formula and output the result:

J sin® (r) + sin*(s) when r* <s*

k= 1))
1?sin(r X s) when 72 > s

Here the value of r and s is input from the keyboard. The approximate value of sinx is cal-
culated using following formula:
. x 713 Is 717 B - B . Ianl
sinz = 77 37'_’_7' 77+ —E(D n— D1

The precision of the calculation is 10°. Stop accumulating when the absolute value of one

n=1

item is less than the precision, and the accumulated value is the approximate value of sinx.

Source code:

//3_5.cpp
#include<iostream>

#include<cmath> //Header file cmath has declaration of mathematic functions

« 77 .

using namespace std;
int main ()
{
double k,r,s;
double tsin (double x);
cout<<"r=";
cin>>r;
cout<<"s=";
cin>>s;
if (r* r<=s* s)
k=sqgrt (tsin(r) * tsin(r)+tsin(s) * tsin(s)) ;
else
k=tsin(r* s)/2;
cout<<k<<endl;

return O;

double tsin (double x)
{
double p=0.000001,g=0, t=x;
int n=1;
do {
g=gt+t;
n++;
t=—-t*xx*xx/(2%n-1)/(2% n-2);
twhile (fabs (t)>=p);
return g;

}

Running result:
r=5
s=8

1.37781

Example 3-6 Game of casting dice.

Game rules: Dice has 6 faces—counting by the points they are 1, 2, 3, 4, 5 and 6.
The player inputs an unsigned integer which is used as the seed to generate a random num-
ber at the beginning of the program.

In each turn the dice is casted twice, and we can get the total point. In the first turn,
if the total point is 7 or 11, the player wins and the game is over; if the total point is 2, 3
or 12, the player loses and the game is over; otherwise the player records the total point as
his point. In the following turns, if the total point is equal to the player’s point, the player
wins and the game is over; if the total point is 7, the player loses and the game is over;

otherwise, it goes on to the next round.

.« 78 .

The function rolldice is used to simulate rolling the dice, get the total point and out-
put it.

Note: The system function int rand (void) is to generate a pseudo random number.
The pseudo random number is not really random. When we call this function continuously
in a program, in the hope that it will generate a sequence of random numbers, we may dis-
cover that it will generate a same sequence each time we run the program. This sequence is
called pseudo random number sequence. It is because that rand needs an initial number
called “seed”, and different seeds will generate different sequences. Thus, if we give the
program a different seed in each run, continuously calling rand will generate a different
random number sequence. If the seed is not set, rand will use the default value 1 as the
seed. Note that the method to set seed is somewhat special: it is not through the parame-
ters of rand, but by calling another function void srand (unsigned int seed) to set the seed
before calling rand, and the parameter seed in function srand is the seed of rand.

Source code:

//3_6.cpp

#include<iostream>

#include<cstdlib>

using namespace std;

int rolldice (void) ;

int main ()

{
int gamestatus, sum,mypoint;
unsigned seed;

cout<<"Please enter an unsigned integer:";

cin>>seed; //Input the seed for the random number
srand (seed) ; //Pass the seed to rand()
sum=rolldice () ; //The first round, roll the dice and get the total point

switch (sum)
{
case 7: //Win if the total point is 7 or 11, status=1
case 11:
gamestatus=1;
break;
case 2: //Lose if the total point is 2, 3 or 12, status=2
case 3:
case 12:
gamestatus=2;
break;
default: //Otherwise, continue the game, record the player's point,
//and set status=0
gamestatus=0;
mypoint=sum ;

cout<<"point is "<<mypoint<<endl;

break;
}
while (gamestatus==0) //Go to the next round if status=0
{
sum=rolldice() ;
if (sum==mypoint) //Win if the total point is equal to the player's point,
//set status=1
gamestatus=1 ;
else
if (sum==) //Lose if the total point is 7, set status=2
gamestatus=2;
}
//When the status is not 0, the loop above ends, and the following code outputs the
//result
if(gamestatus==)
cout<<"player wins\n";
else
cout<<"player loses\n";
return 0;
}
int rolldice (void)
{ //Roll the dice, get the total point, and output it
int diel,die2,worksum;
diel=1+rand()%6;
die2=1+rand()%6;
worksum=diel+die2;
cout<<"player rolled "<<diel<< '+ '<<die2<< '='"'<<worksum<<endl;

return worksum;

Running result 1:

Please enter an unsigned integer:8
player rolled 5+1=6

point is 6

player rolled 6+6=12

player rolled 6+4=10

player rolled 6+6=12

player rolled 6+6=12

player rolled 3+2=5

player rolled 2+2=4

player rolled 3+4=7

player loses

Running result 2

80

Please enter an unsigned integer:23
player rolled 6+3=9

point is 9

player rolled 5+4=9

player wins

2. Procedure of Calling a Function

The compiler compiles a C++ program and outputs a piece of executable code, which
is then stored as a file suffixed with exe in the external storage. When the program is star-
ted, computer firstly loads the executable code from the external storage into the code area
of the memory, and then executes the code from the entry address (the beginning of the
main function). During the execution, the computer will stop executing the current func-
tion when a function call occurs. It will then save the address of the next instruction (re-

turn address, used as the entry point of execution when returned from the called func-

tion), save the execution scene, jump to the

. Save:
. main
entry address of the called function and execute 0 Return addr ® fun()
he called function. Wh i O} 2 seene
the calle unction. en meeting a return Call fun() @
statement or reaching the end of the called @‘ \Restore‘
.) ' ®
function, the computer will restore the scene End © Scene Return
Return addr

previously stored, jump back to the return ad-
. . . Figure 3-1 Procedure of Function Call and
dress and continue the execution. Figure 3-1)
)) Function Return
shows the procedure of calling a function and
returning from the call. The labels in the figure indicate the order of execution.

3. Nested Function Call

Nested call is allowed in a function. For example, function A calls function B, then
function B calls function C, and this forms a nested call.

Example 3-7 Input two integers and compute sum of squares of them.

Analysis: Although the problem is easy, we design two functions to show how nested
call works: The function named funl is used to compute the sum of squares, and the func-
tion named fun2 is used to compute the square of an integer. The main function calls funl,
and funl calls fun2.

Source code:

//3_T.cpp
#include<iostream>
using namespace std;
int main ()
{

int a,b;

int funl (int x,int y);

cin>>a>>b;

in Example 3-7. The labels in the figure indicate

cout<<"Sum of squares of a and b:"<<funl (a,b)<<endl;

return 0;

int funl (int x,int y)
{
int fun2 (int m);

return (fun2 (x)+£fun2(y));

int £un2 (int m)

{

return (m* m);

}

Running result:

34

Sum of squares of a and b:25

Figure 3-2 shows the order of function calls

the executing order.

This kind of function call is called recursive call.

4. Recursive Call

A function can call itself directly or indirectly.

Calling oneself directly means that the body

mam {} funl() fun2()

Callfun](<allfu < ®

Return Return
Figure 3-2 The order of function calls in

Example 3-7

of a function contains a function call to itself, for example:

void funl (void)

{

funl () ; //A function call in funl to itself

}

And here is another example of function indirectly calling itself:

void funl (void)

{

fun2 () ;
}
void fun?2 (void)

{

82 -

funl () ;

}

Here funl calls fun2 and fun2 in turn calls funl. These two calls constitute an indi-
rect recursive call.

The essence of recursion is that it decomposes the original problem into a new prob-
lem which may use the solution of the original problem. Continue the decomposition ac-
cording to this principle, and each new problem emerged is a simplified subset of the origi-
nal problem. The ultimately decomposed problem should be one whose solution is already
known. The procedure above is a finite recursive call. Only finite recursive call makes
sense; infinite recursive call will not get any result and it makes no sense.

The procedure of recursive call consists of 2 parts:

First stage: Recurrence. Decompose the original problem continuously into new sub-
problems until we reach a known situation, at which point the recurrence ends.

For example, to calculate 5!, we can make a decomposition as follows:

51=5x41—41=4x31-31=3x21-21=2x1! - 1!=1x0!—0!=1
Unknown Known

Second stage: Regression. Starting from the known situation, use the result of the de-
composed problem to solve the previous (more complex) problem. Repeat this process re-
gressively according to the reversed order of the recurrence stage, until we reach the start
of the recurrence. The regression then ends and the whole recursion finishes.

The regression procedure of calculating 5! is:

51=5x41=120—4!=4x31=2431=3x21=6-21=2x11=2—11=1x0!=10!=1
Unknown Known

Example 3-8 Compute n!.

Analysis: The formula of calculating n! is:
1 (n=0)
nn—1D1 (>0

This formula is recursive, since it calculates a factorial by using another factorial.

nl =

Thus the program uses recursive call. The ending condition of the recursion is n=0.

Source code:

//3_8.cpp
#include<iostream>
using namespace std;
long fac (int n)
{
long £;
if (n<0) cout<<"n<0,data error!"<<endl;
else if (n==0) f=1;
else f=fac(n-1) ¥ n;

return(f);

int main ()
{
long fac(int n);
int n;
long y;
cout<<"Enter a positive integer:";
cin>>n;
y=fac(n);
cout<<n<<"!="<<y<<endl;
return 0;

}

Running result;

Enter a positive integer:8
8!=40320

Example 3-9 Calculate the number of possible combinations (i. e. the combinatorial
number) of selecting £ person(s) out of n person(s) to form a committee.
Analysis; The combinatorial number of selecting £ person(s) out of n person(s)
= The combinatorial number of selecting # person(s) out of n—1 person(s)
—+ The combinatorial number of selecting £#—1 person(s) out of n—1 person(s)
Since the formula is recursive, it is easy to write a recursive function to implement the
calculation. The ending condition of the recursion is n==%| |k= =0, at which time the
combinatorial number is 1. Then the regression may start.

Source code:

//3_9.cpp
#include<iostream>
using namespace std;
int main ()
{
int n, k;
int comm(int n, int k);
cin>>n>>k;
cout<<comm (n, k) <<endl;
return O;
}
int comm(int n, int k)
{
if (k>n)
return 0;
else if(n==kllk==)

return 1;

else
return comm(n-1,k)+comm(n-1,k-1);

}

Running result;

18 5
8568

Example 3-10 Game of Hanoi Tower.

There are 3 pillars A, B and C. N plates of different sizes has been piled on pillar A,
with larger plates being under smaller plates, as shown in Figure 3-3. The procedure of
the game is to move the plates from pillar A to pillar C. The player can use pillar B during
the game, while he can only move 1 plate once, and larger plates should always be under

smaller plates during the movement.

A B C

Figure 3-3 Game of Hanoi Tower

Analysis:

We could decompose the procedure of moving n plates from pillar A to pillar C to 3 steps:

(1) Move n—1 plates from pillar A to pillar B;

(2) Move the last plate on pillar A to pillar C;

(3) Move n—1 plates from pillar B to pillar C,

Actually, the 3 steps contain 2 kinds of operations:

(1) Move multiple plates from one pillar to another. It is a recursive operation.

(2) Move one plate from one pillar to another.

The following program uses two functions to implement the two kinds of operations
above—function hanoi for the first operation and function mowve for the second.

Source code:

//3_10.cpp
#include<iostream>
using namespace std;
void move (char getone,char putone)
{
cout<<getone<<"-->"<<putone<<endl;
}
void hanoi (int n,char one,char two,char three)
{

void move (char getone,char putone);

e 85

if (n==1) move (one,three);
else
{
hanoi (n-1,one,three, two) ;
move (one, three) ;

hanoi (n-1,two,one, three) ;

int main ()
{
void hanoi (int n,char one,char two,char three);
int m;
cout<<"Enter the number of diskes:";
cin>>m;
cout<<"the steps to moving "<<m<<" diskes:"<<endl;
hanoi(m,'A','B','C'");
return O;

}

Running result:

Enter the number of diskes:3

the steps to moving 3 diskes:

A-->C
A-->B
C-->B
A-—>C
B-->A
B==>C
A-->C

3.1.3 Passing Parameters between Functions

Before a function is called, the formal parameters of this function neither take up any
real memory space nor have real values. When a function call is made, computer allocates
memory for the formal parameters and assigns the actual parameters to the formal parame-
ters. An actual parameter could be constant, variable or expression, which should match
the type of the corresponding formal parameter (the parameter in the same position in its
parameter list). Passing parameters between functions is the process of assigning formal
parameters according to actual parameters. C++ has two ways to pass parameters; Call-by-
Value and Call-by-Reference.

1. Call-by-Value

The procedure of Call-by-Value consists of two steps: allocating memory space for a

« 86 o

formal parameter, and using the actual parameter to initialize the formal parameter (assign
the actual parameter to the formal parameter). This procedure just passes the value of the
actual parameter to the formal parameter. The formal parameter does not have any relation
with the actual parameter once it has been initialized, and any change of the formal param-
eters afterwards can not affect the actual parameter.

Example 3-11 Swap and output two integers.

//3_11.cpp
#include<iostream>
using namespace std;

void Swap (int a, int b);

int main ()
{
int x(5), y(10);
cout<< Mx="<<x<<" y="<<y<<endl;

Swap (x,y) ;
cout<<"x="<<x<<" y="<<y<<endl;

return 0;

void Swap (int a, int b)
{

int t;

t=a;

a=b;

b=t;
}

Running result:

x=5 y=10
x=5 y=10

Analysis: From the running result we can see that the values of variable x and y have
not been swapped. It’s because that in the function call above we use Call-by-Value to pass
parameters, where only the values of the actual parameters are passed to the formal pa-
rameters. Thus the change of the formal parameters afterwards will not affect the actual
parameters. Figure 3-4 shows the status of variables when the program is running.

2. Call-by-Reference

We have seen that passing parameters through Call-by-Value is unidirectional. So
how can changes made in the called function on formal parameters affect the actual param-
eters in the calling function? We can use Call-by-Reference to achieve this.

Reference is a special type of variable; it can be viewed as an alias of another variable. Access-

ing the reference of a variable is the same as accessing the variable itself. Here is an example:

. 87

Execute the function call in the | 5 | | 10 |

main function: P y
Swap(x, y);
[s | []
a b
Inside the function Swap:
t=a, a=b; b=t,
Ls JLwo | [s JLw] [s [[w0]
x y x y X Y
][] [w] [w][5]
a a b a b

Returned to the main function: ’

Figure 3-4 The Status of Variables When the Program in Example 3-11 is Running

int i,3;

int &ri=1i; //Make an int type reference of ri, initialize it to an alias of i
j=10;

ri=j; //Same as i=73;

The following rules must be followed when using references:

(1) A reference must be initialized to refer to an existing object when it is declared.

(2) Once a reference is initialized, it cannot be changed to refer to other objects.

The rules above indicate that, a reference should be fixed to refer to an object in its
whole life, from its definition to its end.

Formal parameters can also be references. When a formal parameter is a reference,
the situation is a bit different: the formal parameter of the reference type is not initialized
during its type declaration, and it is only when the function is called does the computer al-
locate memory space for the formal parameter and initialize it to the actual parameter. In
this way, the formal parameter of the reference type becomes an alias of the actual pa-
rameter, and every operation on the formal parameter would directly affect the actual parameters.

The function call which uses references as formal parameters is called Call-by-Reference.

Example 3-12 Rewrite the program of Example 3-11, using Call-by-Reference to

make the two integers swap correctly.

//3 12.cpp
#include<iostream>
using namespace std;
void Swap (int& a, int& b);
int main ()
{

e 88

int x(5), y(10);
cout<< "x="<<x<<" y="<<y<<endl;

Swap (x,y) /
cout<<"x="<<x<<" y="<<y<<endl;

return 0;

void Swap (int& a, int& b)
{

int t;

t=a;

a=b;

b=t;
}

Running result:

x=5 y=10
x=10 y=5

Analysis: We can see from the running result that the swap is successful when the
program uses Call-by-Reference to pass parameters. The only difference between Call-by-
Value and Call-by-Reference lies in the declaration of the formal parameters, while the
function call statements in the calling function are the same. Figure 3-5 shows the status

of variables when the program is running.

Execute the function call in the
main function:
Swap(x, y);

T [

| |
| |
| X y |
| |
| |
I_ |

| Addrofx | |Addrofy |

Inside the function Swap:
t=a; a=b;

| 10 |~ 10 |
I

IAddrl of x | IAddr‘ ofy |

a b
I
 Rewmedtothemainfunction: | —— ——
Lo J [s |
x y

Figure 3- 5 The Status of Variables when the Program in Example 3-12 is Running

Example 3-13 An example of Call-by-Reference.

//3_13.cpp

#include<iostream>

#include<iomanip>

using namespace std;

void fiddle (int inl, int &in2);

int main ()

{
int count=7, index=12;
cout<<"The values are ";
cout<<setw (5)<<count;
cout<<setw (5)<<index<<endl;
fiddle (count, index);
cout<<"The values are ";
cout<<setw (5)<<count;
cout<<setw (5)<<index<<endl;

return 0;

void fiddle (int inl, int &in2)

{
inl=inl+100;
in2=1n2+100;

".
’

cout<<"The values are
cout<<setw (5)<<inl;
cout<<setw (5)<<in2<<endl;

}

Running result:

The values are 712
The values are 107 112

The values are 7112

Analysis: The first parameter inl of function fiddle has type int, and is assigned the
value of the actual parameter count when the function is called. The second parameter in2
is a reference, and is initialized by the actual parameter index to an alias of index. Thus,
the change on inl in the called function has no effect on the actual parameter count, while
the change on in2 in the called function is in fact the change on the variable index in the
main function. When returned back to the main function, the value of count has not been

changed, while the value of index has been changed.

3.2 Inline Functions

At the beginning of this chapter, we mentioned that using functions help developers
to reuse codes, improve the development efficiency and the reliability of the program, and

. 90 -

facilitate the collaboration and modification of the program. But function calls can also re-
duce the execution efficiency of programs. When a function call is made, computer needs
to save the execution scene and return address before jump to the entry address of the
called function and start execution; when returned from the called function, computer
needs to restore the scene and return address previously saved before continuing the execu-
tion. These procedures take time and memory space. For some simple, small, but fre-
quently used functions, we can use inline functions. Inline function does not cause control
transfer when it is called, but make itself embedded in every place it is called during the com-
pilation. In this way, the cost of passing parameters and control transfer can be saved.

Inline functions use keyword “inline” in the function definition. The form is like this:
inline Type identifier Function name (Parameters) { Function body; }

Several attentions when using inline functions:

(1) Generally, loop statements and switch statements should not appear in an inline
function.

(2) Inline function must be defined before its first call.

(3) Inline function does not support abnormal interface statements. (Abnormal inter-
face statements will be discussed in Chapter 12.)

Generally, inline functions should be simple functions, with simple structures and few
statements. Defining a complex function as an inline function may lead to code bloat and
also increase the cost. In this case, most compilers will automatically convert the inline
function into a common function before processing. What kind of functions should be
counted as complex? The answer depends on compilers. Generally, functions that have
loop statements cannot be processed as inline functions.

Therefore, the keyword inline is just a request. The compiler does not promise that
every function with keyword inline will be processed as an inline function. Moreover,
functions without the inline keyword can possibly be compiled as inline functions.

Example 3-14 An example of inline function.

//3 14.cpp

#include<iostream>

using namespace std;

inline double CalArea (double radius)

//Inline function, to calculate the area of a circle
return 3.14 % radius * radius;
int main ()

{
double r(3.0); //r is the radius of the circle

