CHAPTER 3

Simulation Software

Recommended sections for a first reading: 3.1 through 3.4

3.1
INTRODUCTION

In studying the simulation examples in Chaps. | and 2, the reader probably noticed
several features needed in programming most discrete-event simulation models,
including:

* Generating random numbers, that is, observations from a U(0,1) probability
distribution

* Generating random variates from a specified probability distribution (e.g.,
exponential)

* Advancing simulated time

* Determining the next event from the event list and passing control to the appro-
priate block of code

* Adding records to, or deleting records from, a list

* Collecting output statistics and reporting the results

* Detecting error conditions

As a matter of fact, it is the commonality of these and other features to most simu-
lation programs that led to the development of special-purpose simulation pack-
ages. Furthermore, we believe that the improvement and greater ease of use of these
packages have been major factors in the increased popularity of simulation in recent
years.

We discuss in Sec. 3.2 the relative merits of using a simulation package rather
than a programming language such as C, C++, or Java for building simulation
models. In Sec. 3.3 we present a classification of simulation software, including
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a discussion of general-purpose and application-oriented simulation packages.
Desirable features for simulation packages, including animation, are described
in Sec. 3.4. Section 3.5 gives brief descriptions of Arena, ExtendSim, and Simio,
which are popular general-purpose simulation packages. A simulation model of a
small factory is also given for each package. In Sec. 3.6 we describe object-oriented
simulation software. Finally, in Sec. 3.7 we delineate a number of different
application-oriented simulation packages.

The publication OR/MS Today has a survey of simulation software on a fairly
regular basis.

3.2
COMPARISON OF SIMULATION PACKAGES
WITH PROGRAMMING LANGUAGES

One of the most important decisions a modeler or analyst must make in performing a
simulation study concerns the choice of software. If the selected software is not flexible
enough or is too difficult to use, then the simulation project may produce erroneous
results or may not even be completed. The following are some advantages of using a
simulation package rather than a general-purpose programming language:

» Simulation packages automatically provide most of the features needed to build a
simulation model (see Secs. 3.1 and 3.4), resulting in a significant decrease in
“programming” time and a reduction in overall project cost.

* They provide a natural framework for simulation modeling. Their basic modeling
constructs are more closely akin to simulation than are those in a general-purpose
programming language like C.

* Simulation models are generally easier to modify and maintain when written in a
simulation package.

» They provide better error detection because many potential types of errors are
checked for automatically. Since fewer modeling constructs need to be included
in a model, the chance of making an error will probably be smaller. (Conversely,
errors in a new version of a simulation package itself may be difficult for a user to
find, and the software may be used incorrectly because documentation is some-
times lacking.)

On the other hand, some simulation models (particularly for defense-related
applications) are still written in a general-purpose programming language. Some
advantages of such a choice are as follows:

* Most modelers already know a programming language, but this is often not the
case with a simulation package.

* A simulation model efficiently written in C, C++, or Java may require less exe-
cution time than a model developed in a simulation package. This is so because a
simulation package is designed to address a wide variety of systems with one set
of modeling constructs, whereas a C program can be more closely tailored to a
particular application. This consideration has, however, become less important
with the availability of inexpensive, high-speed PCs.
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* Programming languages may allow greater programming flexibility than certain
simulation packages.

* The programming languages C++ and Java are object-oriented (see Sec. 3.6),
which is of considerable importance to many analysts and programmers, such as
those in the defense industry. On the other hand, most simulation packages are not
truly object-oriented.

» Software cost is generally lower, but total project cost may not be.

Although there are advantages to using both types of software, we believe, in
general, that a modeler would be prudent to give serious consideration to using a
simulation package. If such a decision has indeed been made, we feel that the crite-
ria discussed in Sec. 3.4 will be useful in deciding which particular simulation pack-
age to choose.

3.3
CLASSIFICATION OF SIMULATION SOFTWARE

In this section we discuss various aspects of simulation packages.

3.3.1 General-Purpose vs. Application-Oriented Simulation Packages

There are two main types of simulation packages for discrete-event simulation,
namely, general-purpose simulation software and application-oriented simulation
software. A general-purpose simulation package can be used for any application,
but might have special features for certain ones (e.g., for manufacturing or process
reengineering). On the other hand, an application-oriented simulation package is
designed to be used for a certain class of applications such as manufacturing, health
care, or communications networks. A list of application-oriented simulation pack-
ages is given in Sec. 3.7.

3.3.2 Modeling Approaches

In the programs in Chaps. 1 and 2, we used the event-scheduling approach to
discrete-event simulation modeling. A system is modeled by identifying its charac-
teristic events and then writing a set of event routines that give a detailed descrip-
tion of the state changes taking place at the time of each event. The simulation
evolves over time by executing the events in increasing order of their time of
occurrence. Here a basic property of an event routine is that no simulated time
passes during its execution.

On the other hand, most contemporary simulation packages use the process ap-
proach to simulation modeling. A process is a time-ordered sequence of interrelated
events separated by intervals of time, which describes the entire experience of an
“entity” as it flows through a “system.” The process corresponding to an entity ar-
riving to and being served at a single server is shown in Fig. 3.1. A system or simu-
lation model may have several different types of processes. Corresponding to each
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FIGURE 3.1

Process describing the flow of an entity through a system.

process in the model, there is a process “routine” that describes the entire history of
its “process entity” as it moves through the corresponding process. A process rou-
tine explicitly contains the passage of simulated time and generally has multiple
entry points.

To illustrate the nature of the process approach more succinctly, Fig. 3.2 gives
a flowchart for a prototype customer-process routine in the case of a single-
server queueing system. (This process routine describes the entire experience of a
customer progressing through the system.) Unlike an event routine, this process
routine has multiple entry points at blocks 1, 5, and 9. Entry into this routine at
block 1 corresponds to the arrival event for a customer entity that is the most
imminent event in the event list. At block 1 an arrival event record is placed in the
event list for the next customer entity to arrive. (This next customer entity will
arrive at a time equal to the time the current customer entity arrives plus an inter-
arrival time.) To determine whether the customer entity currently arriving can
begin service, a check is made (at block 2) to see whether the server is idle. If the
server is busy, this customer entity is placed at the end of the queue (block 3) and
is made to wait (at block 4) until selected for service at some undetermined time
in the future. (This is called a conditional wait.) Control is then returned to the
“timing routine” to determine what customer entity’s event is the most imminent
now. (If we think of a flowchart like the one in Fig. 3.2 as existing for each cus-
tomer entity in the system, control will next be passed to the appropriate entry
point for the flowchart corresponding to the most imminent event for some other
customer.) When this customer entity (the one made to wait at block 4) is acti-
vated at some point in the future (when it is first in queue and another customer
completes service and makes the server idle), it is removed from the queue at
block 5 and begins service immediately, thereby making the server busy (block 6).
A customer entity arriving to find the server idle also begins service immediately
(at block 6); in either case, we are now at block 7. There the departure time for the
customer beginning service is determined, and a corresponding event record is
placed in the event list. This customer entity is then made to wait (at block 8) until
its service has been completed. (This is an unconditional wait, since its activation
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FIGURE 3.2
Prototype customer-process routine for a single-server queueing system.

time is known.) Control is returned to the timing routine to determine what cus-
tomer entity will be processed next. When the customer made to wait at block 8 is
activated at the end of its service, this makes the server idle ar block 9 (allowing
the first customer in the queue to become active immediately), and then this cus-
tomer is removed from the system at block 10.
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TABLE 3.1
Entities, attributes, resources, and queues for some common simulation applications

Type of system Entities Attributes Resources Queues
Manufacturing Part Part number, due date Machines, Queues or
workers buffers

Communications Message Destination, message Nodes, links Buffers
length

Airport Airplane Flight number, weight Runways, gates Queues

Insurance agency Application, claim Name, policy number, Agents, clerks Queues
amount

A simulation using the process approach also evolves over time by executing
the events in order of their time of occurrence. Internally, the process and event-
scheduling approaches to simulation are very similar (e.g., both approaches use a
simulation clock, an event list, a timing routine, etc.). However, the process ap-
proach is more natural in some sense, since one process routine describes the entire
experience of the corresponding process entity.

3.3.3 Common Modeling Elements

Simulation packages typically include entities, attributes, resources, and queues as
part of their modeling framework. An entity (see Table 3.1 for examples) is created,
travels through some part of the simulated system, and then is usually destroyed.
Entities are distinguished from each other by their attributes, which are pieces of
information stored with the entity. As an entity moves through the simulated system,
it requests the use of resources. If a requested resource is not available, then the
entity joins a gueue. The entities in a particular queue may be served in a FIFO
(first-in, first-out) manner, served in a LIFO (last-in, first-out) manner, or ranked on
some attribute in increasing or decreasing order.

3.4
DESIRABLE SOFTWARE FEATURES

There are numerous features to consider when selecting simulation software. We
categorize these features as being in one of the following groups:

» General capabilities (including modeling flexibility and ease of use)
Hardware and software requirements

* Animation and dynamic graphics

Statistical capabilities

e Customer support and documentation

* Output reports and graphics

We now discuss each group of features in turn.
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3.4.1 General Capabilities

In our opinion, the most important feature for a simulation-software product to have
is modeling flexibility or, in other words, the ability to model a system whose operat-
ing procedures can have any amount of complexity. Note that no two systems are
exactly alike. Thus, a simulation package that relies on a fixed number of modeling
constructs with no capability to do some kind of programming in any manner is
bound to be inadequate for certain systems encountered in practice. Ideally, it
should be possible to model any system using only the constructs provided in the
software—it should not be necessary to use routines written in a programming lan-
guage such as C. The following are some specific capabilities that make a simula-
tion product flexible:

» Ability to define and change attributes for entities and also global variables, and
to use both in decision logic (e.g., if-then-else constructs)

» Ability to use mathematical expressions and mathematical functions (logarithms,
exponentiation, etc.)

» Ability to create new modeling constructs and to modify existing ones, and to
store them in libraries for use in current and future models

The second most important feature for a simulation product is ease of use
(and ease of learning), and many contemporary simulation packages have a
graphical user interface to facilitate this. The software product should have mod-
eling constructs (e.g., icons or blocks) that are neither too “primitive” nor too
“macro.” In the former case, a large number of constructs will be required to
model even a relatively simple situation; in the latter case, each construct’s dia-
log box will contain an excessive number of options if it is to allow for adequate
flexibility. In general, the use of tabs in dialog boxes can help manage a large
number of options.

Hierarchical modeling is useful in modeling complex systems. Hierarchy allows
a user to combine several basic modeling constructs into a new higher-level con-
struct. These new constructs might then be combined into an even higher-level
construct, etc. This latter construct can be added to the library of available constructs
and can then be reused in this model or future models (see Sec. 3.5.2 for an example).
This ability to reuse pieces of model logic increases one’s modeling efficiency.
Hierarchy is an important concept in a number of simulation packages. It is also a
useful way to manage “screen clutter” for a graphically oriented model that consists
of many icons or blocks.

The software should have good debugging aids such as an interactive debugger.
A powerful debugger allows the user to do things such as:

* Follow a single entity through the model to see if it is processed correctly

» See the state of the model every time a particular event occurs (e.g., a machine
breakdown)

* Set the value of certain attributes or variables to “force” an entity down a logical
path that occurs with small probability
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Fast model execution speed is important for certain applications such as large
military models and models in which a large number of entities must be processed
(e.g., for a high-speed communications network). We programmed a simple manu-
facturing system in six simulation products and found that, for this model, one prod-
uct was as much as 11 times faster than another.

It is desirable to be able to develop user-friendly model “front ends” when the
simulation model is to be used by someone other than the model developer. This
capability allows the developer to create an interface by which the nonexpert user
can easily enter model parameters such as the mean service time or how long to run
the simulation.

Most simulation software vendors offer a run-time version of their software,
which, roughly speaking, allows the user to change model data but not logic
by employing a user-friendly “front end.” Applications of a run-time version
include:

+ Allowing a person in one division of an organization to run a model that was
developed by a person in another division who owns a developmental version of
the simulation software

» Sales tool for equipment suppliers or system integrators

* Training

Note that a run-time license generally has a considerably lower cost than a normal
developmental license or is free.

A feature that is of considerable interest is the ability to import data from (and
export data to) other applications (e.g., an Excel spreadsheet or a database).

Traditionally, simulation products have provided performance measures
(throughput, mean time in system, etc.) for the system of interest. Now some prod-
ucts also include a cost module, which allows costs to be assigned to such things as
equipment, labor, raw materials, work in process, finished goods, etc.

In some discrete-event simulations (e.g., steelmaking), it may be necessary to
have certain capabilities available from continuous simulation. We call such a simu-
lation a combined discrete-continuous simulation (see Sec. 13.4).

Occasionally, one might have a complex set of logic written in a programming
language that needs to be integrated into a simulation model. Thus, it is desirable for
a simulation package to be able to invoke external routines.

It is useful for the simulation package to be easily initialized in a nonempty and
idle state. For example, in a simulation of a manufacturing system, it might be desir-
able to initialize the model with all machines busy and all buffers half full, in order
to reduce the time required for the model to reach “steady state.”

Another useful feature is that the state of a simulation can be saved at the end
of a run and used to restart easily the simulation at a later time.

Finally, cost is usually an important consideration in the purchase of simulation
software. Currently, the cost of simulation software for a PC ranges from $1000 to
$100,000 or even more. However, there are other costs that must be considered,
such as maintenance fees, upgrade fees, and the cost for any additional hardware
and software that might be required (see Sec. 3.4.2).
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3.4.2 Hardware and Software Requirements

In selecting simulation software, one must consider what computer platforms the
software is available for. Almost all software is available for Windows-based PCs,
and some products are also available for Apple computers. If a software package is
available for several platforms, then it should be comparible across platforms. The
amount of RAM required to run the software should be considered as well as what
operating systems are supported. It is highly desirable if independent replications of
a simulation model can be made simultaneously on multiple processor cores or on
networked computers.

3.4.3 Animation and Dynamic Graphics

The availability of built-in animation is one of the reasons for the increased use of
simulation modeling. In an animation, key elements of the system are represented
on the screen by icons that dynamically change position, color, and shape as the
simulation model evolves through time. (See the Color Plates at the back of the
book.) For example, in a manufacturing system, an icon representing a forklift
truck will change position when there is a corresponding change in the model, and
an icon representing a machine might change color when the machine changes state
(e.g., idle to busy) in the model.
The following are some of the uses of animation:

* Communicating the essence of a simulation model (or simulation itself) to a man-
ager or to other people who may not be aware of (or care about) the technical
details of the model

* Debugging the simulation computer program

» Showing that a simulation model is not valid

+ Suggesting improved operational procedures for a system (some things may not
be apparent from looking at just the simulation’s numerical results)

» Training operational personnel

* Promoting communication among the project team

There are two fundamental types of animation: concurrent and post-
processed (also called playback). In concurrent animation the animation is being
displayed at the same time that the simulation is running. Note, however, that the
animation is normally turned off when making production runs, because the ani-
mation slows down the execution of the simulation. In post-processed animation,
state changes in the simulation are saved to a disk file and used to drive the
graphics after the simulation is over. Some simulation software products have
both types of animation.

We now discuss desirable features for animation. First, the simulation soft-
ware should provide default animation as part of the model-building process.
Since animation is primarily a communications device, it should be possible to
create high-resolution icons and to save them for later reuse. The software should
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come with a library of standard icons, or it should be possible to import icons
from an external source (e.g., Google Warehouse). The software should provide
smooth movement of icons; icons should not “flash” or “jump.” There should be
a control to speed up or slow down the animation. It should be possible to zoom
in or out and to pan to see different parts of a system too large to fit on one
screen. Some software products have named animation views, so that one can
construct a menu of views corresponding to different parts of the simulated
system. It is desirable if the animation uses vector-based graphics (pictures are
drawn with lines, arcs, and fills) rather than pixel-based graphics (pictures are
drawn by turning individual pixels on or off). The former type of graphics allows
rotation of an object (e.g., a helicopter rotor) as well as a vehicle to maintain its
proper orientation as it goes around a corner.

Some simulation products with concurrent animation allow the user to stop the
simulation “on the fly” while observing the animation, make changes to certain
model parameters (e.g., the number of machines in a workstation), and then instantly
restart the simulation. However, this can be statistically dangerous if the state of the
system and the statistical counters are not reset.

Many simulation packages provide three-dimensional animation (the vantage
point from which to view the animation can be rotated around all three axes), which
might be important for management presentations and for situations in which verti-
cal clearances are important. In these products it may also be possible to provide the
viewer of the animation with a perspective of “riding through the system on the
back of an entity.”

It should be possible to import CAD drawings and clip art into an animation.

It is often desirable to display dynamic graphics and statistics on the screen as
the simulation executes. Examples of dynamic graphics are clocks, dials, level
meters (perhaps representing a queue), and dynamically updated histograms and
time plots (see Sec. 3.4.6). An example of the latter would be to update a plot of the
number in some queue as the simulation moves through time.

3.4.4 Statistical Capabilities

If a simulation product does not have good statistical-analysis features, then it is
impossible to obtain correct results from a simulation study. First, the software must
have a good random-number generator (see Chap. 7), that is, a mechanism for gen-
erating independent observations from a uniform distribution on the interval [0, 1].
Note that not all random-number generators found on computers or in software
products have acceptable statistical properties. The generator should have at least
100 different streams (preferably far more) that can be assigned to different sources
of randomness (e.g., interarrival times or service times) in a simulation model—this
will allow different system designs to be compared in a more statistically efficient
manner (see Sec. 11.2). The simulation software should produce the same results on
different executions if the default seeds are used for the various streams—the seeds
should not depend on the internal clock of the computer. On the other hand, the user
should be able to set the seed for each stream, if desired.
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In general, each source of randomness in the system of interest should be rep-
resented in the simulation model by a probability distribution (see Chap. 6), not just
the perceived mean value. If it is possible to find a standard theoretical distribution
that is a good model for a particular source of randomness, then this distribution
should be used in the model. At a minimum, the following continuous distributions
should be available: exponential, gamma, Weibull, lognormal, normal, uniform,
beta, and triangular. The last distribution is typically used as a model for a source
of randomness when no system data are available. Note also that very few input
random variables in real simulations have a normal distribution. The following
discrete distributions should also be available: binomial, geometric, negative binomial,
Poisson, and discrete uniform.

If a theoretical distribution cannot be found that is a good representation for a
source of randomness, then an empirical (or user-defined) distribution based on the
data should be used (see Sec. 6.2.4). In this case, random numbers are used to
sample from a distribution function constructed from the observed system data.

There should be (a single) command available for making independent replica-
tions (or runs) of the simulation model. This means:

» Each run uses separate sets of different random numbers.
¢ Each run uses the same initial conditions.
¢ Each run resets the statistical counters.

Note that simulation results from different runs are independent and also proba-
bilistic copies of each other. This allows (simple) classical statistical procedures to
be applied to the results from different runs (see Chap. 9).

There should be a statistically sound method available for constructing a confi-
dence interval for a mean (e.g., the mean time in system for a part in a factory). The
method should be easy to understand and should provide good statistical results. In
this regard, we feel that the method of replication (see Secs. 9.4.1 and 9.5.2) is def-
initely the superior approach.

If one is trying to determine the long-run or “steady-state” behavior of a sys-
tem, then it is generally desirable to specify a warmup period for the simulation, that
is, a point in simulated time when the statistical counters (but not the state of the
system) are resct. Ideally, the simulation software should also be able to determine
a value for the warmup period based on making pilot runs. There is currently at
least one simulation product that uses Welch’s graphical approach (see Sec. 9.5.1)
to specify a warmup period.

It should be possible to construct a confidence interval for the difference be-
tween the means of two simulated systems (e.g., the current system and a proposed
system) by using the method of replication (see Sec. 10.2).

The simulation software should allow the user to specify what performance
measures to collect output data on, rather than produce reams of default output data
that are of no interest to the user.

At least one simulation product allows the user to perform statistical experi-
mental designs (see Chap. 12) with the software, such as full factorial designs or
fractional factorial designs. When we perform a simulation study, we would like to
know what input factors (decision variables) have the greatest impact on the
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performance measures of interest. Experimental designs tell us what simulation
experiments (runs) to make so that the effect of each factor can be determined.
Some designs also allow us to determine interactions among the factors.

A topic that is of interest to some people planning to buy simulation software is
“optimization” (see Sec. 12.5). Suppose that there are a number of decision vari-
ables (input factors) of interest, each with its own range of acceptable values. (There
may also be linear constraints on the decision variables.) In addition, there is an
objective function to be maximized (or minimized) that is a function of one or more
simulation output random variables (e.g., throughput in a manufacturing system)
and of certain decision variables. Then the goal of an “optimizer” is to make runs of
the simulation model (each run uses certain settings of the decision variables) in an
intelligent manner and to determine eventually a combination of the decision vari-
ables that produces an optimal or near-optimal solution. These optimization mod-
ules use heuristics such as genetic algorithms, simulated annealing, neural networks,
scatter search, and tabu search.

3.4.5 Customer Support and Documentation

The simulation software vendor should provide public training on the software on a
regular basis, and it should also be possible to have customized training presented
at the client’s site. Good technical support is extremely important for questions on
how to use the software and in case a bug in the software is discovered. Technical
support, which is usually in the form of telephone help, should be such that a re-
sponse is received in at most one day.

Good documentation is a crucial requirement for using any software product. It
should be possible, in our opinion, to learn a simulation package without taking a
formal training course. Generally, there will be a user’s guide or reference manual.
There should be numerous detailed examples available. Most products now have
context-dependent online help, which we consider very important. (It is not suffi-
cient merely to have a copy of the documentation available in the software.) Several
products have a library of “mini examples™ to illustrate the various modeling
constructs.

There should be a detailed description of how each modeling construct works,
particularly if its operating procedures are complex. For example, if a simulation-
software product for communications networks offers a module for a particular type
of local-area network, then its logic should be carefully delineated and any simpli-
fying assumptions made relative to the standard stated.

It is highly desirable to have a university-quality textbook available for the sim-
ulation package.

Most simulation products offer a free demo and, in some cases, a working ver-
sion of the software can be downloaded from the vendor’s website, which will allow
small models to be developed and run.

It is useful if the vendor publishes an electronic newsletter and has a yearly
users’conference. The vendor should have regular updates of the software (perhaps,
once a year).
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3.4.6 Output Reports and Graphics

Standard reports should be provided for the estimated performance measures. It
should also be possible to customize reports, perhaps for management presenta-
tions. Since a simulation product should be flexible enough so that it can compute
estimates of user-defined performance measures, it should also be possible to write
these estimates into a custom report. For each performance measure {e.g., time in
system for a factory), the average observed value, the minimum observed value, and
the maximum observed value are usually given. If a standard deviation is also given
(based on one simulation run), then the user should be sure that it is based on a sta-
tistically acceptable method (such as batch means with appropriate batch sizes, as
discussed in Sec. 9.5.3), or else it should be viewed as highly suspect. [Variance and
standard-deviation estimates require independent data, which are rarely produced
by one run of a simulation model (see Sec. 4.4).] It should be possible to obtain re-
ports at intermediate points during a simulation run as well as at the end.

The simulation product should provide a variety of (static) graphics. First, it
should be possible to make a histogram (see Fig. 14.29) for a set of observed data.
For continuous (discrete) data, a histogram is a graphical estimate of the underlying
probability density (mass) function that produced the data. Time plots are also very im-
portant. In a rime plot (see, for example, Fig. 14.27) one or more key system variables
(e.g., the numbers in certain queues) are plotted over the length of the simulation,
providing a long-term indication of the dynamic behavior of the simulated system.
(An animation provides a short-term indication of the dynamic behavior of a system.)
Some simulation products allow the simulation results to be presented in bar charts or
pie charts. Finally, a correlation plot (see Fig. 6.29) is a useful way to measure the
dependence in the output data produced from one simulation run.

It should be possible to export individual model output observations (e.g., times
in system) to other software packages such as spreadsheets, databases, statistics
packages, and graphical packages for further analysis and display.

3.5
GENERAL-PURPOSE SIMULATION PACKAGES

In Secs. 3.5.1 through 3.5.3 we give brief descriptions of Arena, ExtendSim, and
Simio, respectively, which are (at this writing) popular general-purpose simulation
packages. In each case we also show how to build a model of a small factory.
Section 3.5.4 lists some additional general-purpose simulation packages.

3.5.1 Arena

Arena [see Rockwell (2013) and Kelton et al. (2010)] is a general-purpose simula-
tion package marketed by Rockwell Automation (Wexford, Pennsylvania) that is
commonly used for applications such as manufacturing, supply chains, defense,
health care, and contact centers. There are two different versions of Arena, namely,
the Standard Edition and the Professional Edition.
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Modeling constructs, which are called “modules™ in Arena, are functionally
arranged into a number of “templates.” (A module contains logic, a user interface,
and, in some cases, options for animation.) The “Basic Process™ template contains
modules that are used in virtually every model for modeling arrivals, departures,
services, and decision logic of entities. The “Advanced Process” template contains
modules that are used to perform more advanced process logic and to access exter-
nal data files in Excel, Access, and SQL databases. The “Advanced Transfer”
template contains modules for modeling various types of conveyors, forklift trucks,
automated guided vehicles, and other material-handling equipment. The “Flow
Process” template is used for modeling tanks, pipes, valves, and batch-processing
operations. Also the lower-level “Blocks” and “Elements” templates are used in
modeling some complex real-world systems; these two templates constitute what
was previously called the SIMAN simulation language.

A model is constructed in Arena by dragging modules into the model window,
connecting them to indicate the flow of entities through the simulated system, and
then detailing the modules by using dialog boxes or Arena’s built-in spreadsheet. A
model can have an unlimited number of levels of hierarchy.

“Visual Designer” is used to create concurrent three-dimensional (3-D) anima-
tions and “live-data dashboards,” which display dynamic graphics (e.g., histograms,
pie charts, and time plots). (Two-dimensional animation is also available.) It also
allows one to “watch the logic execute” and to perform sophisticated graphical
model debugging. AVI files can be generated directly from Arena for sharing anima-
tions with other people, and each Arena license includes one additional runtime-
only license (see Sec. 3.4.1).

There are an unlimited number of random-number streams (see Chap. 7) avail-
able in Arena. Furthermore, the user has access to 12 standard theoretical probabil-
ity distributions and also to empirical distributions. Arena has a built-in capability
for modeling nonstationary Poisson processes (see Sec. 6.12.2), which is a model
for entity arrivals with a time-varying rate.

There is an easy mechanism for making independent replications of a particular
simulated system and for obtaining point estimates and confidence intervals for per-
formance measures of interest. It is also possible to construct a confidence interval for
the difference between the means of two systems. A number of plots are available,
such as histograms, time plots, bar charts, and correlation plots. The “OptQuest for
Arena” (see Sec. 12.5.2) optimization module is available as an option.

Activity-based costing is incorporated into Arena, providing value-added and
non-value-added cost and time reports. Simulation results are stored in a database
and are presented using Crystal Reports, which is embedded in Arena.

Microsoft Visual Basic for Applications (VBA) and a complete ActiveX object
model are available in Arena. This capability allows more sophisticated control and
logic including the creation of user-friendly “front ends” for entering model parame-
ters, the production of customized reports, etc. This technology is also used for Arena’s
interfaces with many external applications including the Visio drawing package.

Arena Professional Edition includes the ability to create customized modules
and to store them in a new template. Arena also has an option that permits a model
to run in real time (or any multiple thereof) and to dynamically interact with other
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FIGURE 3.3
Arena model for the manufacturing system.

processes; this supports applications such as the High Level Architecture (see
Sec. 1.6.2) and testing of hardware/software control systems.

We now develop an Arena model for the simple manufacturing system of
Example 9.25, which consists of a machine and an inspector. However, we assume
here that the machine never breaks down. Figure 3.3 shows the five required logic
modules and the necessary connections to define the entity flow.

The “Create” module, whose dialog box is shown in Fig. 3.4, is used to generate
arrivals of parts. We label the module “Generate Parts™ and specify that interarrival
times are exponentially distributed [denoted “Random (Expo)”’] with a mean of 1 minute.
The Create module is connected to the “Process™ module (see Fig. 3.5), which is

Create @ [z|
MName: Entity Type:
IGer‘uerate Parts ;I IPart ;l
Time Between Arivals
Type: Value: Units:
| Random (Expo] ;I | 1 | Minutes ;I
Entities per Arrival: Max Arrivals: First Creation:
[1 [Infinite (0.0
oK Cancel I Help
FIGURE 34

Dialog box for the Arena Create module “*Generate Parts.”
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Process @[X}

MName: Tuvpe:
|Machine Part ;I IStandard ;I
—Logic
Action; Priority;
Seize Delay Release | |Medum(2) |
Resources:
Resource, Machine, 1 Add...
<End of list>
Edit...
Delete
Delay Type: Units: Allocation;
I]Jniform ﬂ IMinutea LI I"u"alue Added ;I
Minimum: M aximumm;
{0.65 (0,70
v Report Statistics
0K Cancel | Help

FIGURE 3.5
Dialog box for the Arena Process module “Machine Part.”

used to represent the processing of a part at the machine. This module is labeled
“*Machine Part,” has a single resource named “Machine” with one unit, and has pro-
cessing times that are uniformly distributed between 0.65 and 0.70 minute.

The next Process module (see Fig. 3.6) is used to represent the inspector. We
specify that inspection times are uniformly distributed between .75 and 0.80 minute.
After inspection, a “Decide” module (see Fig. 3.7) specifies that a part can have
one of two outcomes: “True” (occurs 90 percent of the time) or “False.” If the part
is good (True), then it is sent to the “Depart” module (not shown) labeled “Good
Part Finished,” where it is destroyed. Otherwise (False), it is sent back to the
Machine Part module to be remachined.

Finally, we need to use Run > Setup (see Fig. 3.8) to specify the experimental
parameters. We state that one run of length 100,000 minutes is desired.

The results from running the simulation are given in Fig. 3.9, from which we
see that the average time in system of a part is 4.64 minutes. Additional output
statistics can be obtained from the options on the left-hand side of the screen.
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Process
Mame; Type:
||nspe|:t Part LI IStandard LI
— Logic
Action: Priarity:
|Seize Delay Release ~| |Medium[2] ~|
Besources:
Besource, Inspector, 1 Add...
<End of list>
Edit...
Delete
Delay Type: Units: Allocation:
|L[nifurm Ll | Minutes LI INDn-"JaIue Added LI
Mirirmum; M aximum:
[0.75 {0.80
v Report Statistics
0K Cancel | Help

FIGURE 3.6

Dialog box for the Arena Process module “Inspect Part.”

Decide
Mame: Tvpe:
|Pas3ed Inspection? ;l |2—wa_l,1 by Chance ;]
Percent True [0-100];
30 > =
0K Cancel Help
FIGURE 3.7

Dialog box for the Arena Decide module “Passed Inspection?”
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Run Setup @
Run Speed I Run Cantral | Reports I
Froject Parameters Replication Parameters I Array Sizes |

e - Initialize Between Replications —
MNumber of Replications: P ‘

|1 ¥ Statistics V¥ System

Start Date and Time:

E Thursday . November 03

i

W arm-up Period: Time Units:

(0.0 lMinutes LI
Replication Length: Time Units:

[rooooa | Minutes =]
Hours Per Day: Base Time Units:

|24 IMinutes Ll

T erminating Conditior:

(1] Cancel Apply Help

FIGURE 3.8
Dialog box for the Arena Run Setup configuration options.

3.5.2 ExtendSim

ExtendSim [see Imagine (2013)] is the family name for four general-purpose
simulation packages marketed by Imagine That, Inc. (San Jose, California). Each
ExtendSim product has components aimed at specific market segments, but all
products share a core set of features. A model is constructed by selecting blocks
from libraries (Item, Value, Plotter, etc.), placing the blocks at appropriate locations
in the model window, connecting the blocks to indicate the flow of entities (or
values) through the system, and then detailing the blocks using dialog boxes.
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ExtendSim can model a wide variety of system configurations using the blocks
supplied with the product. If needed, the internal ModL language can be used to
customize existing blocks and to create entirely new blocks. These “new” blocks can
be placed in a new library for reuse in the current model or future models. The code
corresponding to a particular block can be viewed by right-clicking on the block and
selecting “Open Structure”; this feature is useful for understanding the actual opera-
tion of the block. ModL can also access applications and procedures created with
external programming languages such as Visual Basic and C++.

A model can have an unlimited number of levels of hierarchy (see below) and
also use inheritance (see Sec. 3.6). A “Navigator” allows one to move from one
hierarchical level to another. All ExtendSim products provide a basic 2-D anima-
tion, and the ExtendSim Suite product also provides 3-D animation.

Each simulation model in ExtendSim has an associated “Notebook,” which can
contain pictures, text, dialog items, and model results. Thus, a Notebook can be
used as a “front end” for a model or as a vehicle for displaying important model
results as the simulation is actually running. The parameters for each model can also
be stored in, and accessed from, the model’s internal relational database; this is use-
ful for data consolidation and management.

There are an essentially unlimited number of random-number streams available
in ExtendSim. Furthermore, the user has access to 34 standard theoretical probability
distributions and also to empirical distributions. ExtendSim has an easy mechanism
for making independent replications of a simulation model and for obtaining point
estimates and confidence intervals for performance measures of interest. A number of
plots are available such as histograms, time plots, bar charts, and Gantt charts.

There is an activity-based costing capability in ExtendSim that allows one to
assign fixed and variable costs to an entity as it moves through a simulated system.
For example, in a manufacturing system a part might be assigned a fixed cost for the
required raw materials and a variable cost that depends on how long the part spends
waiting in queue.

ExtendSim’s “Item” library contains blocks for performing discrete-event
simulation (entity arrival, service, departure, etc.), as well as for material handling
(see Sec. 14.3 for further discussion of material handling) and routing. (An entity is
called an “Item” in ExtendSim.) The optional “Rate” library provides blocks for
modeling high-speed, high-volume manufacturing systems (e.g., canning lines)
within a discrete-event environment. The blocks in the “Value” library are used to
perform continuous simulation (see Sec. 13.3) and to provide modeling support
(mathematical calculations, simulation-based optimization, data sharing with other
applications, etc.) for discrete-event simulation.

ExtendSim’s “Scenario Manager” allows the modeler to investigate how the
simulation model’s responses change from one scenario (a set of values for the
model’s input parameters or factors) to another. The scenarios of interest can either
be entered manually or are specified automatically by the Scenario Manager in the
case of a factorial design (see Sec. 12.2). Additionally, the modeler specifies the
number of independent replications (each using different random numbers) of each
scenario that is desired. The Scenario Manager runs the scenarios iteratively, re-
cords the responses for each replication, and the responses are then summarized
across the replications for each scenario. The model factors and their corresponding
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ExtendSim model for the manufacturing system.

responses can be exported to ExtendSim'’s database, the JMP and Minitab statistical
packages, or Excel for further analysis. ExtendSim also has a built-in optimization
module (see Sec. 12.5.2).

We now show how to build an ExtendSim model for the manufacturing system
discussed in Sec. 3.5.1. In particular, Fig. 3.10 shows the required blocks and con-
nections for the model; the connections correspond to the flow of entities (parts for
this model). All the blocks in this model are from the ExtendSim Item library. We
have placed a descriptive label below each block, which we will refer to in the dis-
cussion of the model below.

The “Executive” block, which is not graphically connected to any other block,
manages the event list for an ExtendSim model. The first block actually in the model
is a “Create” block labeled “Generate Parts” (see its dialog box in Fig. 3.11), which
is used to generate parts having exponential interarrival times with a mean of
1 minute. This is followed by a *Queue” block labeled “Machine Queue” (Fig. 3.12),
which stores the parts while they are waiting for processing. This queue has infinite
capacity by default and merges the parts from the Create block with those parts that
need to be reworked after inspection.

Following the Machine Queue block is an “Activity” block labeled “Machine
Part.” In the dialog box for this latter block (Fig. 3.13), we specify that one part can
be processed at a time. We also select “Uniform, Real” as the processing-time dis-
tribution and then set its minimum and maximum values to 0.65 and 0.70 minute,
respectively. This Activity block is connected to a second Queue block labeled
“Inspect Queue,” where parts wait for the inspection process. The output of this
Queue block is connected to a second Activity block labeled “Inspect Part,” where
inspection times are uniformly distributed between 0.75 and 0.80 minute.

The Activity block corresponding to the inspector is connected to the “Select
[tem Out” block labeled “Random Output,” which is used to determine whether a
part is good or bad. In its dialog box (Fig. 3.14), we specify that parts will leave
randomly through the block’s outputs. In the table we enter the probabilities
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| Create | Options | Item Animation | Block Animation | Comments |

Creates items and values randomly or by schedule j
Cancel
rSelect hlock hehavior
[Create iterms randomly = | Time units: [minutes |
r Configure random time between arrivals (TBA)
Create iterns using: [one random distribution = |
- Specify a distribution for TBA ~Itemn information
|Exponential = Plot Sample | Item quantity (@) 1
mean: il Max items: Infinity
location: lu— Total created: 100082
Total quantity; 100082
Total cost: 0
Block type: Residence
Help |Em9 Parts |L9fth:| right vl 4 | | v | 2

FIGURE 3.11
Dialog box for the ExtendSim Create block “Generate Parts.”

Commenis
Queue | Options | Results | Contents | ftem Animation | Block Animation |
=]
ftems wait here for downstrearmn capacity /5]
Cancel |
~Select queue behavior.
rSelect sort method
Sortby:
Block type: Residence
_Help [Machine Queve | Leftioright | «| _lsz»

FIGURE 3.12
Dialog box for the ExtendSim Queue block “Machine Queue.”
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FIGURE 3.13
Dialog box for the ExtendSim Activity block “Machine Part.”

] Options | [tem Animation | BlockAnimation | Comments |
=
Sends each item to a selected output
Cancel |
[ Specify selection conditions
Select output based on:
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FIGURE 3.14

Dialog box for the ExtendSim Select Item Out block *Random Output.”
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Help |Part Statistics || Left fo right -] | Lﬁ
FIGURE 3.15

Dialog box for the ExtendSim Information block “Part Statistics.”

0.9 and 0.1, indicating that 90 percent of the parts will be sent through the top out-
put as “Good™ and 10 percent of the parts will be sent through the lower output as
“Bad.” We also choose to have the probabilities displayed on the output connec-
tions of this block.

The next block in the model is an “Information™ block labeled “‘Part Statistics,”
which computes output statistics for completed parts. In its dialog box (Fig. 3.15),
we see that 100,078 (good) parts were completed and that the average time in system
(cycle time) was 4.46 minutes. The last block in the model is an “Exit” block la-
beled “Destroy Parts” (see Fig. 3.10), where the completed parts are removed from
the model.

The time units for the model (minutes), the simulation run length (100,000),
and the desired number of runs (1) are specified in the “Simulation Setup” option
that is accessed from the “Run” pull-down menu (not shown) at the top of the
screen. The Notebook for the model (Fig. 3.16), which is accessed from the
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FIGURE 3.16
ExtendSim Notebook for the manufacturing system.

“Window” pull-down menu, brings together important input parameters and re-
sults for the model.

In Fig. 3.17 we give a version of the ExtendSim model that uses hierarchy (see
Sec. 3.4.1). If we double-click on the hierarchical block named *“‘Process” (at the
first level of hierarchy), then we go down to the second level of hierarchy where we
see the original Machine Queue and Machine Part blocks, as shown in Fig. 3.18.

Executive
II [ B ; = = Good I':
Q¥ s
' IR

¥ Destroy Parts
Bad Part Statistics

Process =
Inspect

FIGURE 3.17
Hierarchical ExtendSim model for the manufacturing system.
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FIGURE 3.18
Components of the Process hierarchical block.

3.5.3 Simio

Simio [Simio (2013) and Kelton et al. (2011)] is an object-oriented (see Sec. 3.6)
suite of simulation and scheduling products marketed by Simio LLC (Sewickley,
Pennsylvania). Simio is a simulation-modeling framework based on intelligent
objects, which allows one to build models using either the default Standard Library
(for discrete-event simulation) or by graphically creating entirely new objects. (An
object in Simio has properties, states, and logic.) The Standard library, which contains
15 object definitions, can be modified and extended using process logic (see below),
and new objects can be stored in libraries for use in other simulation projects.

An object in a library might be a customer, machine, doctor, or anything else
that you might find in a system. A model is constructed in Simio by dragging objects
into the “Facility” window, connecting them by links to indicate the flow of entities
through the simulated system, and then detailing the objects by using a property
editor. The model logic and animation are built in a single step, typically in a
two-dimensional view for ease of modeling. However, one can switch to a three-
dimensional (3-D) perspective view with just a single keystroke.

Building an object in Simio is identical to building a model, since there is no dif-
ference between the two constructs. Whenever you build a model, it is by definition an
object that can be used in another model. For example, if you combine two machines
and a robot into a model of a workstation, then the workstation model is itself an object
that can then be used in other models. Every model that is built in Simio is automati-
cally a building block that can be used in constructing hierarchical models.

When you instantiate an object into a model, you may specify “properties” (static
input parameters) of the object that govern the behavior of this specific instance of the
object. For example, a property of a machine might be its processing time. The devel-
oper of an object decides on the number of properties and their meanings. Properties
in Simio can be numerical values, Boolean variables, text strings, etc.

In addition to properties, objects have “states™ that change values as a result of
the execution of the object’s logic. A state for a machine might be its status (e.g.,
idle or busy). Properties and states together constitute the attributes of an object.

An object in Simio may be defined from one of five base classes, which pro-
vides the underlying behavior for the object. The first class is the “fixed object,”
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which has a fixed location in the model and is used to represent something in a sys-
tem that does not move from one location to another, such as a machine in a factory
or an operating room in a hospital.

An “entity” is an object that can move through 3-D space over a network of links
and nodes. Examples of entities are parts in a manufacturing system, and patients,
nurses, and doctors in a hospital. Note that in traditional simulation packages entities
are passive and are acted upon by the model processes (see Sec. 3.3.2). However, in
Simio the entities are intelligent objects that can control their own behavior.

“Link” and “node” objects are used to build networks over which entities may
flow. A link defines a pathway for entities to move from one object to another,
whereas a node defines the beginning or ending point of a link. Links and nodes can
be combined together into complex networks. A link could be an escalator with a
fixed travel time or it could represent a conveyor.

The final class of objects is a “transporter,” which is a subclass of the entity class. A
transporter is an entity that has the added capabilities to pick up, carry, and drop off one
or more other entities. A transporter could be used to model a bus, a forklift truck, or any
other object that has the ability to carry other entities from one location to another.

A key feature of Simio is the ability to create a wide range of object behaviors
from the base classes. The Simio modeling framework is application-domain
neutral, i.e., these base classes are not specific to a particular application area such
as manufacturing or health care. However, it is easy to build application-oriented
libraries composed of intelligent objects from the base classes. Simio’s design
philosophy dictates that domain-specific logic belongs in the objects built by users,
and it is not programmed into the core system.

The process approach (see Sec. 3.3.2) is commonly used for extending an object’s
logic or for building new objects. A process is defined in Simio using a flowchart,
where each step in the flowchart defines some action to perform. There are over 50 dif-
ferent process steps available in Simio to perform specific actions such as delay by
time, wait to seize a resource, etc. Process logic can be inserted into a specific instance
of an object to modify or extend its behaviors. For example, an object representing a
machine might use process logic to seize and hold a repairman during a breakdown.

There are an essentially unlimited number of random-number streams available
in Simio. Furthermore, the user has access to 19 standard theoretical probability
distributions and to empirical distributions. There is an easy mechanism for making
independent replications of a simulation model and for obtaining point estimates
and confidence intervals for performance measures of interest. A number of plots
are available such as time plots, histograms, bar charts, and pie charts.

Simio provides a 3-D interactive environment for building and running simula-
tion models, which is useful for accurately modeling spatial relationships and for
communicating model behavior to the simulation project’s stakeholders. However,
Simio also provides a set of sophisticated features for performing and analyzing
simulation experiments. In particular, a model may have an associated “experiment”
that specifies a set of scenarios to execute. Each scenario may have one or more input
controls and will have one or more output responses. The input controls are factors
that are changed from one scenario to the next (e.g., the number of machines in a
workstation), and the output responses are the measures of performance (e.g., average
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time in system of a part) that are used to evaluate the efficacy of the different scenar-
ios. Furthermore, each scenario can be replicated a specified number of times and
these replications can be simultaneously executed across multiple processor cores or
across different computers on a network, which will greatly reduce the time required
for experimentation. Simio’s built-in analysis tools include a procedure for automati-
cally selecting the best scenario from a set of candidate scenarios [see Sec. 10.4.3 and
Kim and Nelson (2001)] and SMORE plots [see Nelson (2008)]. A SMORE plot si-
multaneously displays a point estimate and confidence interval for the expected value
of a response, as well as a superimposed box plot (see Sec. 6.4.3). The “OptQuest for
Simio” (see Sec. 12.5.2) optimization module is available as an option.

Although Simio is primarily oriented toward performing discrete-event simula-
tion using an object-oriented approach, Simio also supports modeling continuous-
flow systems, performing agent-based simulation (because of its object orientation),
and performing discrete-event simulation using the process approach. Moreover,
Simio can also be used in an operational setting as a risk-based planning and sched-
uling tool to improve the day-to-day functioning of an organization.

We now develop a Simio model of the simple manufacturing system discussed
in Sec. 3.5.1. The Simio model for this system is shown in Figure 3.19 and is
composed of a “Source” object named *“Part_Arrivals” that creates the jobs arriving
to the system. a “Server” object named “Machine_Part™ that models the machining
operation, a Server object named “Inspect_Part™ that models the inspection process,
and a “Sink™ object named *“Part_Departures,” where entities leave the system. In
this example, we use a zero-time link called a “Connector™ to define the travel paths
between the Source, Servers, and Sink objects.
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Simio model for the manufacturing system.
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The small circular “selection handles” surrounding the Part_Arrivals object in-
dicate that the object was selected for editing (by clicking on it with the mouse). The
properties of a selected object are edited using the “Property Editor,” which is on the
lower-right side of the screen. The Part_Arrivals object is used to generate arrivals
to the system based on an “Arrival Mode.” The default “Interarrival Time” mode
used in this example specifies that the distribution of interarrival times is expo-
nential with a mean of | minute. [Alternatively, the “Time Varying Arrival Rate”
mode generates arrivals in accordance with a nonstationary Poisson process (see
Sec. 6.12.2) and the “Arrival Table” mode schedules arrivals using data stored in a
table or an external source such as a spreadsheet.|

Figure 3.20 displays the properties for the Machine_Part object. The properties are
organized into categories that can be expanded and collapsed with the +/— signs to the
left of the category name. These properties specify that “Processing Time™ is uniformly
distributed on the interval [0.65, 0.70] minute. Note that this expression can be typed
in directly or specified using an “Expression Editor,” which can be accessed using a
pull-down arrow on the right side of the field (not shown). If failures of Machine Part

Properties: Machine_Part (Server)

Capacity Type Fixed

Initial Capacity 1

Ranking Rule First In First Out
Dynamic Selection ... None

[# Transfer-In Time 0.0

(=l Processing Time Random.Uniform(0.65,0.70)
Units Minutes

Buffer Capacity

Reliability Logic

State Assignments

Secondary Resources

Finandials

Add-On Process Triggers

Advanced Options
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+l

[

&
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Process Logic
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FIGURE 3.20
Properties of the Machine_Part object.
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FIGURE 3.21
Design view for specifying an experiment.

were desired, then they would be specified under the “Reliability Logic” category. The
“Financials” category can be used to specify usage rates for activity-based costing.

We do not show the Property Editor for the Inspect_Part object, where the in-
spection times are specified to be uniformly distributed on the interval [0.75, 0.80]
minute. The two connectors leaving Inspect_Part (see Fig. 3.19) have link weights
of 0.9 and 0.1, respectively, and use a routing rule on its exit node that is based on
“By Link Weight.”

Figure 3.21 shows the specification of and partial results from a simple experiment
for our model, which says to make 30 replications of the simulation and to observe the
average time in system of a part for a run length of 100,000 minutes. Note that the aver-
age time in system over the 30 replications was 4.55 minutes.

These same results are shown in Figure 3.22 in the form of a SMORE plot. This
plot shows a point estimate (“dot’’) and a 95 percent confidence interval (“small”
shaded rectangle over the dot) for the expected average time in system. Super-
imposed over this is a box plot showing the minimum, 25th percentile, median, 75th
percentile, and maximum of the 30 observed values of average time in system.
Finally, the two outer shaded rectangles are 95 percent confidence intervals for the
25th and 75th percentiles.

A standard report that is automatically produced by a simulation model can
potentially contain a large amount of output statistics, which can make it difficult to
find the information that is really of interest. To help alleviate this problem, Simio
presents the simulation results in the form of a “Pivot Grid” (similar to a pivot table
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FIGURE 3.22
SMORE plot for average time in system.

in Excel), which can easily be customized to display the statistics of interest in an
appropriate format. A Pivot Grid for the simulation results produced by the 30 rep-
lications is shown in Figure 3.23. Note that the machine and inspector had a utiliza-
tion of 0.75 and 0.86, respectfully.

leI “ Mnimum ” Masamum ” Half width | Scenario =
|Object Type « || Object Hame ~ || Data Source - 7 || Category ~ 7| Data e~ 7 || Statienc « "||average  [mmimum | mmamum [ Half wion|
ModelEntity Default€ntity [Fopulation] Content NumberInSystem | Avernge 4.5548 4.3925 47878 0.0436
Maxamum 335000  27.0000 43.0000  1.6370
FlowTime T  Aversge (Minutes) 4.5497 4.3988 47710 0.0393
Masmum (Minutes) 69.2576  45.7114 90,1023 35776
Minimum (Minutes) 1.4005 1.4001 14012 0.0001
Server Machine_Part [Resource] Capacity UnitsLitlized Average — 0.7508 0.7465 07574 0.0009
Maximum 1.0000 1.0000 10000  0,0000
InputBuffer Content NumberlnStation | Avernge 1.1666 1.1284 12200 0.0098
Maxmum 19.1333  15.0000 26,0000  0.8589
MoldingTime | T Average ( ) 10487 1.0204 10622 0.0078
Masimum (Minutes) 12,5002 98503 173396 0.5748
Minimum (Minutes) 0.0000 0.0000 00000 0.0000
Mspect Fan | [Resourca] Tcapscty | Unitsutized | Average 0.8620 0.8571 08607  0.0011
Maxmum 1.0000 1.0000 10000  0.0000
Inputsutfer Content NumberinStation | Average 17754 1.6449 19691 00338
Mamum 262667 200000 350000  1.4308
HaldingTime | Ti Average 1.5959 1.4820 17654 0.0290
Maamum (Minutes) 19.9031  14.6897 68397 11073
Minimum (Minutas) 00000/ 0.0000 0.0000 00000
Sink Fart_ Jbjects] | FlowTime T Averags 4.5497 4.3988 47710 0.0393
Idmrrmm (r-umnns) 69.2576] 457114 90.1023 35776
Minimum (Minutes) 1.4005 1.4001 14012 0.0001
Observations 100,102.6333| 99,482.0000 100,878.0000 1181014

FIGURE 3.23

Simulation results displayed in a Pivot Grid.
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3.5.4 Other General-Purpose Simulation Packages

There are several other well-known, general-purpose simulation packages, including
AnyLogic [AnyLogic (2013)], SIMULS8 [SIMULS (2013)], and SLX [Wolverine
(2013)].

3.6
OBJECT-ORIENTED SIMULATION

In the last 20 years there has been a lot of interest in object-oriented simulation
[see, e.g., Joines and Roberts (1998) and Levasseur (1996)]. This is probably an
outgrowth of the strong interest in object-oriented programming in general.
Actually, both object-oriented simulation and programming originated from
the object-oriented simulation language SIMULA, which was introduced in
the 1960s.

In object-oriented simulation a simulated system is considered to consist of
objects (e.g., an entity or a server) that interact with each other as the simulation
evolves through time. There may be several instances of certain object types (e.g.,
entities) present concurrently during the execution of a simulation. Objects contain
data and have methods (see Example 3.1). Data describe the state of an object at a
particular point in time, while methods describe the actions that the object is capa-
ble of performing. The data for a particular object instance can only be changed by
its own methods. Other object instances (of the same or of different types) can only
view its data. This is called encapsulation.

Examples of true object-oriented simulation packages are AnyLogic, FlexSim,
and Simio. Three major features of such a simulation package are inheritance,
polymorphism, and encapsulation (defined above). Inheritance means that if one
defines a new object type (sometimes called a child) in terms of an existing object
type {the parent), then the child type “inherits” all the characteristics of the parent
type. Optionally, certain characteristics of the child can be changed or new ones
added. Polymorphism is when different object types with the same ancestry can
have methods with the same name, but when invoked may cause different behavior
in the various objects. [See Levasseur (1996) for examples of inheritance and
polymorphism. ]

EXAMPLE 3.1. In a manufacturing system, the fabrication area and the assembly
area might be considered as objects (first level of hierarchy). In turn, the fabrication
area might consist of machine, worker, and forklift-truck objects (second level of
hierarchy). Data for a forklift might include its speed and the maximum weight that
it can lift. A method for a forklift might be the dispatching rule that it uses to choose
the next job.

Some vendors claim that their simulation software is object-oriented, but in
some cases the software may not include inheritance, polymorphism, or encapsul-
ation. Furthermore, certain of the above three features are sometimes assigned
different meanings.
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The following are possible advantages of object-oriented simulation:

* [t promotes code reusability because existing objects can be reused or easily
modified.

* It helps manage complexity by breaking the system into different objects.

» It makes model changes easier when a parent object can be modified and its chil-
dren objects realize the modifications.

« It facilitates large projects with several programmers,

Possible disadvantages of the object-oriented approach are:

* Some object-oriented simulation packages may have a steep learning curve.
* One must do many projects and reuse objects to achieve its full benefits.

3.7
EXAMPLES OF APPLICATION-ORIENTED
SIMULATION PACKAGES

In this section we list some of the application-oriented simulation packages that are
currently available.

Manufacturing. AutoMod [Applied Materials (2013)], Enterprise Dynamics
[INCONTROL (2013)], FlexSim [FlexSim (2013)], Plant Simulation [Siemens
(2013)], ProModel [ProModel (2013)], and WITNESS [Lanner (2013)] (see
Sec. 14.3 for further discussion).

Communications networks. OPNET Modeler [Riverbed (2013)] and QualNet
[SCALABLE (2013)].

Health care. FlexSim Healthcare [FlexSim (2013)] and MedModel [ProModel
(2013)].

Process reengineering and services. Process Simulator [ProModel {2013)}],
ProcessModel [ProcessModel (2013)], and ServiceModel [ProModel (2013)].

Animation (stand-alone). Proof Animation [Wolverine (2013)].
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