Introduction on Artificial Intelligence®

We call ourselves Homo sapiens®—man the wise—because our mental capacities are
so important to us. For thousands of years, we have tried to understand how we think; per-
ceive, understand, predict. The field of artificial intelligence, or Al, goes further
still ; it attempts not just to understand but also to build intelligent entities.

Al is one of the newest sciences. Work started in earnest soon after World War II.
Along with molecular biology, Al is regularly cited as the “field I would most like to be in”
by scientists in other disciplines. A student in physics might reasonably feel that all the good
ideas have already been taken by Galileo, Newton, Einstein, and the rest. Al, on the other
hand, still has openings for several full-time Einsteins.

Al currently encompasses® a huge variety of subfields, ranging from general-purpose
areas, such as learning and perception® to such specific tasks as playing chess, proving
mathematical theorems, writing poetry, and diagnosing diseases. Al systematizes® and au-
tomates intellectual tasks and is therefore potentially relevant to any sphere® of human intel-

lectual activity. In this sense, it is truly a universal field.
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Section 1 What is Al?

We have claimed that Al is exciting, but we have not said what it is. Definitions of arti-
ficial intelligence according to eight textbooks are shown in Figure 5-1. These definitions va-
ry along two main dimensions. Roughly, the ones on top are concerned with thought proces-
ses and reasoning, whereas the ones on the bottom address behavior. The definitions on the
left measure success in terms of fidelity to human performance, whereas the ones on the right
measure against an ideal concept of intelligence, which we will call rationality®. A system

is rational if it does the “right thing,” given what it knows.

Systems that think like humans

Systems that think rationally

“The exciting new effort to make computers
think... machines with minds, in the full and
literal sense.”(Haugeland, 1985) “[The
automation of | activities that we associate
with human thinking, activities such as
decision-making, problem solving, learning
...”(Bellman, 1978)

“The study of mental faculties through the
use of computational models.”
(Charniak and McDermott, 1985)

“The study of the computations that make
it possible to perceive, reason, and act.”
(Winston, 1992)

Systems that act like humans

Systems that act rationally

“The art of creating machines that perform
functions that require intelligence when
performed by people.”(Kurzweil, 1990)
“The study of how to make computers do
things at which, at the moment, people are
better.”(Rich and Knight, 1991)

“Computational Intelligence is the study of
the design of intelligent agents.”(Poole et
al., 1998)

“Al ...is concerned with intelligent behavior
in artifacts.”(Nilsson, 1998)

Figure 5-1 Some definitions of artificial intelligence, organized into four categories

A human-centered approach must be an empirical® science, involving hypothesis and
experimental confirmation. A rationalist approach involves a combination of mathematics and

engineering. Let us look at the four approaches in more detail.
1. Acting humanly: the Turing test approach

The Turing test, proposed by Alan Turing, was designed to provide a satisfactory op-

erational definition of intelligence. Rather than proposing a long and perhaps controversial®
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list of qualifications required for intelligence, he suggested a test based on indistinguish-
ability® from undeniably intelligent entities-human beings. The computer passes the test if a
human interrogator®, after posing some written questions, cannot tell whether the written
responses come from a person or not. For now, we note that programming a computer to
pass the test provides plenty to work on. The computer would need to possess the following
capabilities ;

e natural language processing: to enable it to communicate successfully in English;

e knowledge representation; to store what it knows or hears;

e automated reasoning; to use the stored information to answer questions and to draw

new conclusions;

e machine learning: to adapt to new circumstances and to detect and extrapolate®

patterns.

Turing’s test deliberately avoided direct physical interaction® between the interrogator
and the computer, because physical simulation of a person is unnecessary for intelligence.
However, the so-called total Turing Test includes a video signal so that the interrogator can
test the subject’s perceptual abilities, as well as the opportunity for the interrogator to pass
physical objects “through the hatch. ” To pass the total Turing Test, the computer will need :

® computer vision; to perceive objects, and

® robotics: to manipulate objects and move about.

These six disciplines compose most of Al, and Turing deserves credit for designing a
test that remains relevant 50 years later. Yet Al researchers have devoted little effort to pass-
ing the Turing test, believing that it is more important to study the underlying principles of

intelligence than to duplicate an exemplar®. The quest for “artificial flight” succee-

ded when the Wright brothers and others stopped imitating birds and learned

about aerodynamics. Aeronautical engineering texts do not define the goal of

their field as making “machines that fly so exactly like pigeons that they can

fool even other pigeons. '

2. Thinking humanly: The cognitive® modeling approach

If we are going to say that a given program thinks like a human, we must have some

way of determining how humans think. We need to get inside the actual workings of human
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minds. There are two ways to do this: through introspection® ( trying to catch our own
thoughts as they go by) and through psychological experiments. Once we have a suffi-

ciently precise theory of the mind, it becomes possible to express the theory as

a computer program". If the program’s input/output and timing behaviors match corre-

sponding human behaviors, that is evidence that some of the program’s mechanisms could al-
so be operating in humans. For example, Allen Newell and Herbert Simon, who
developed GPS, the “General Problem Solver” Neve! sndsimon 191 = were not content® to
have their program solve problems correctly. They were more concerned with comparing the
trace of its reasoning steps to traces® of human subjects solving the same problems. The in-
terdisciplinary® field of cognitive science brings together computer models from Al and
experimental techniques from psychology® to try to construct precise and testable theories
of the workings of the human mind.

Cognitive science is a fascinating field, worthy of an encyclopedia® in it-
gelf! Wison and Kell. 1997 e will not attempt to describe what is known of human cognition. We
will occasionally comment on similarities or difierences between Al techniques and human
cognition. Real cognitive science, however, is necessarily based on experimental investiga-
tion of actual humans or animals.

In the early days of Al there was often confusion between the approaches:

an author would argue that an algorithm performs well on a task and that it is

therefore a good model of human performance, or vice versa.” Modern authors

separate the two kinds of claims; this distinction has allowed both Al and cognitive science to
develop more rapidly. The two fields continue to fertilize each other, especially in the areas
of vision and natural language. Vision in particular has recently made advances via an inte-

grated approach that considers neurophysiological® evidence and computational models.
3. Thinking rationally: The “laws of thought” approach

The Greek philosopher Aristotle was one of the first to attempt to codify “right think-
ing,” that is, irrefutable® reasoning processes. His syllogisms® provided patterns for ar-

gument structures that always yielded correct conclusions when given correct premises®
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for example, “Socrates is a man; all men are mortal®; therefore, Socrates is mortal. ”
These laws of thought were supposed to govern the operation of the mind; their study initia-
ted the field called logic.

Logicians in the 19th century developed a precise notation for statements® about
all kinds of things in the world and about the relations among them. By 1965, programs

existed that could, in principle, solve any solvable problem described in logical

notation"™. The so-called logicist tradition within artificial intelligence hopes to build on
such programs to create intelligent systems.

There are two main obstacles to this approach. First, it is not easy to take informal

knowledge and state it in the formal terms required by logical notation, partic-

ularly when the knowledge is less than 100 % certain’. Second, there is a big differ-

ence between being able to solve a problem “in principle” and doing so in practice. Even

problems with just a few dozen facts can exhaust the computational resources of

any computer unless it has some guidance as to which reasoning steps to try

first”. Although both of these obstacles apply to any attempt to build computational reason-

ing systems, they appeared first in the logicist tradition.
4. Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). But
computer agents are expected to have other attributes that distinguish them from mere “pro-
grams,” such as operating under autonomous control, perceiving their environment, persis-
ting over a prolonged time period®, adapting to change, and being capable of taking
on another’s goals. A rational agent is one that acts so as to achieve the best outcome or,
when there is uncertainty, the best expected outcome.

In the “laws of thought” approach to Al, the emphasis was on correct inferences®.
Making correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to reason logically to the conclusion that a given action will achieve one’s goals
and then to act on that conclusion. On the other hand, correct inference is not all of rationali-
ty, because there are often situations where there is no provably® correct thing to do, yet

something must still be done. There are also ways of acting rationally that cannot be

said to involve inference". For example, recoiling® from a hot stove is a reflex action
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that is usually more successful than a slower action taken after careful deliberation®.
All the skills needed for the Turing Test are there to allow rational actions. Thus, we
need the ability to represent knowledge and reason with it® because this enables us to reach

good decisions in a wide variety of situations. We need to be able to generate compre-

hensible sentences in natural language because saying those sentences helps us

get by in a complex society”". We need learning not just for erudition® but because

having a better idea of how the world works enables us to generate more effective strategies
for dealing with it. We need visual perception not just because seeing is fun, but to get a bet-

ter idea of what an action might achieve—for example, being able to see a tasty mor-

sel helps one to move toward it™.

For these reasons, the study of Al as rational-agent design has at least two advantages.
First, it is more general® than the “laws of thought” approach, because correct inference is

just one of several possible mechanisms for achieving rationality. Second, it is more ame-

nable to scientific development than approaches based on human behavior or

human thought because the standard of rationality is clearly defined and com-

pletely general®. Human behavior, on the other hand, is well-adapted for one specific en-

vironment and is the product, in part, of a complicated and largely unknown evolutionary

process that still is far from® producing perfection.
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Section 2 The History of Artificial Intelligence (Part I)

1. The gestation® of artificial intelligence (1943—1955)

The first work that is now generally recognized as Al was done by Warren
McCulloch and Walter Pitts (1943). They drew on three sources; knowledge of the
basic physiology and function of neurons in the brain; a formal analysis of propositional®
logic due to Russell and Whitehead; and Turing’s theory of computation. They proposed a
model of artificial neurons in which each neuron is characterized as being “on” or “off,”
with a switch to “on” occurring in response to stimulation by a sufficient number of neigh-

boring neurons. The state of a neuron was conceived of as “factually equivalent to

a proposition which proposed its adequate stimulus. "™ They showed, for example,

that any computable function could be computed by some network of connected neurons, and
that all the logical connectives (and, or, not, etc. ) could be implemented by simple
net structures. McCulloch and Pitts also suggested that suitably defined networks could learn.
Donald Hebb (1949) demonstrated a simple updating rule for modifying the connection
strengths between neurons. His rule, now called Hebbian learning, remains an influential
model to this day.

Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built
the first neural network computer in 1950. The SNARC, as it was called, used 3000 vacuum
tubes and a surplus automatic pilot mechanism® from a B-24 bomber to simulate a net-
work of 40 neurons. Later, at Princeton, Minsky studied universal computation in neural
networks. His Ph. D. committee was skeptical® about whether this kind of work should be
considered mathematics, but von Neumann reportedly said, “If it isn’t now, it will be some-

day.” Minsky was later to prove influential theorems showing the limitations of

neural network research. ™

There were a number of early examples of work that can be characterized as AI, but it
was Alan Turing who first articulated a complete vision of Al in his 1950 article “Computing
Machinery and Intelligence. ” Therein, he introduced the Turing test, machine learning, ge-
netic algorithms, and reinforcement learning.

2. The birth of artificial intelligence (1956)

Princeton was home to another influential figure in AI, John McCarthy. After gradua-
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tion, McCarthy moved to Dartmouth College, which was to become the official birthplace of
the field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help
him bring together U. S. researchers interested in automata® theory, neural nets, and the
study of intelligence. They organized a two-month workshop at Dartmouth in the summer of
1956. There were 10 attendees in all, including Trenchard More from Princeton, Arthur
Samuel from IBM, and Ray Solomonoff and Oliver Selfridge from MIT.

Two researchers from Carnegie Tech, Allen Newell and Herbert Simon,

xiii

rather stole the show™". Although the others had ideas and in some cases programs for

particular applications such as checkers, Newell and Simon already had a reasoning program,

the Logic Theorist (LT), about which Simon claimed, “We have invented a com-

puter program capable of thinking non-numerically, and thereby solved the

9 Xiv

venerable mind-body problem. .

The Dartmouth workshop did not lead to any new breakthroughs®, but it did intro-
duce all the major figures to each other. For the next 20 years, the field would be dominated
by these people and their students and colleagues at MIT, CMU, Stanford, and IBM. Per-
haps the longest-lasting thing to come out of the workshop was an agreement to adopt
McCarthy’s new name for the field; artificial intelligence. Perhaps “computational rationali-
ty” would have been better, but “Al” has stuck®.

Looking at the proposal® for the Dartmouth workshop, we can see why it was neces-
sary for Al to become a separate field. Why couldn’t all the work done in Al have taken
place under the name of control theory, or operations research® or decision theory,
which, after all, have objectives similar to those of AI? Or why isn’t Al a branch of mathe-

matics? The first answer is that Al from the start embraced the idea of duplicating

human faculties like creativity, self-improvement, and language use™. None of

the other fields were addressing these issues. The second answer is methodology®. AI is
the only one of these fields that is clearly a branch of computer science (although operations
research does share an emphasis on computer simulations) , and Al is the only field to at-
tempt to build machines that will function autonomously® in complex, changing environ-

ments.
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3. Early enthusiasm®, great expectations®(1952—1969)

The early years of Al were full of successes in a limited way. Given the primitive com-
puters and programming tools of the time, and the fact that only a few years earlier comput-
ers were seen as things that could do arithmetic and no more, it was astonishing whenever a
computer did anything remotely® clever. The intellectual establishment, by and large®,

preferred to believe that “a machine can never do X.”. Al researchers naturally re-

sponded by demonstrating one X after another™. John McCarthy referred to

this period as the “Look, Ma, no hands!” era.

Newell and Simon’s early success was followed up with the General Problem Solver, or
GPS®. Unlike Logic Theorist, this program was designed from the start to imitate human
problem-solving protocols. GPS was probably the first program to embody the “thinking hu-
manly” approach. The success of GPS and subsequent programs as models of cognition®
led Newell and Simon to formulate the famous “physical symbol system” hypothesis®,

1

which states that “a physical symbol system has the necessary and sufficient

xvii »

means for general intelligent action. What they meant is that any system (human

or machine) exhibiting intelligence must operate by manipulating data structures composed of
symbols. We will see this hypothesis has been challenged from many directions.

At IBM, Nathaniel Rochester and his colleagues produced some of the first Al pro-
grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover®  which
was able to prove theorems that many students of mathematics would find quite tricky. Start-
ing in 1952, Arthur Samuel wrote a series of programs for checkers that eventually learned to
play at a strong amateur level. Along the way, he disproved® the idea that computers can
do only what they are told to: his program quickly learned to play a better game than its
creator. The program was demonstrated on television in February 1956, creating a very

xviii

strong impression. Like Turing, Samuel had trouble finding computer time

Working at night, he used machines that were still on the testing floor at IBM’s manufactur-
ing plant.

John McCarthy moved from Dartmouth to MIT and there made three crucial contribu-
tions in one historic year; 1958. In MIT AI Lab Memo No. 1, McCarthy defined the high-

enthusiasm: n. #IE, R

expectation; n. 22

remotely ; adv. fIiCHb (anything remotely clever; {T-{a]— s 5 BEBH () 3545 )

by and large: KA

GPS ;3 JT] [ BESR ik

cognition: n. NS g AN T e A A A

hypothesis: n. fRi%

Geometry Theorem Prover: L5 BHIFBAHL, U2 AN T4 BB MY —A> 520
disprove: v. B, JEBH------ HiER

000060306



Chapter Introduction on Artificial Inteligence

79

level language Lisp, which was to become the dominant Al programming language. Lisp is
the second-oldest major high-level language in current use, one year younger than
FORTRAN. With Lisp, McCarthy had the tool he needed, but access to scarce® and ex-
pensive computing resources was also a serious problem. In response, he and others at MIT
invented time sharing. Also in 1958, McCarthy published a paper entitled Programs with
Common Sense, in which he described the Advice Taker, a hypothetical program that
can be seen as the first complete Al system. Like the Logic Theorist and Geometry Theorem
Prover, McCarthy’s program was designed to use knowledge to search for solutions to prob-
lems. But unlike the others, it was to embody general knowledge of the world. For exam-

ple, he showed how some simple axioms would enable the program to generate a

plan to drive to the airport to catch a plane™™. The program was also designed so that

it could accept new axioms® in the normal course of operation, thereby allowing it to a-

chieve competence in new areas without being reprogrammed™. The Advice Tak-

er thus embodied the central principles of knowledge representation and reasoning: that it is
useful to have a formal, explicit representation of the world and of the way an agent’s actions
affect the world and to be able to manipulate these representations with deductive® proces-
ses. It is remarkable how much of the 1958 paper remains relevant even today.

1958 also marked the year that Marvin Minsky moved to MIT. His initial collaboration
with McCarthy did not last, however. McCarthy stressed representation and reasoning in for-
mal logic®, whereas Minsky was more interested in getting programs to work and eventual-
ly developed an anti-logical outlook®. In 1963, McCarthy started the AI lab at Stanford.
His plan to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson’s
discovery of the resolution® method (a complete theorem-proving algorithm for first-order
logic). Work at Stanford emphasized general-purpose methods for logical reasoning.

Minsky supervised a series of students who chose limited problems that ap-

peared to require intelligence to solve™. These limited domains became known as mi-

croworlds. James Slagle’s SAINT program was able to solve closed-form calculus inte-
gration problems® typical of first-year college courses. Tom Evans’s ANALOGY program
solved geometric analogy problems that appear in IQ tests. Daniel Bobrow’s STUDENT pro-

gram solved algebra story problems, such as the following. “If the number of customers

Tom gets is twice the square of 20 percent of the number of advertisements he
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