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2 Convex Optimization Models: An Overview Chap. 1

In this chapter we provide an overview of some broad classes of convex
optimization models. Our primary focus will be on large challenging prob-
lems, often connected in some way to duality. We will consider two types
of duality. The first is Lagrange duality for constrained optimization, which
is obtained by assigning dual variables to the constraints. The second is
Fenchel duality together with its special case, conic duality, which involves
a cost function that is the sum of two convex function components. Both
of these duality structures arise often in applications, and in Sections 1.1
and 1.2 we provide an overview, and discuss some examples.†

In Sections 1.3 and 1.4, we discuss additional model structures in-
volving a large number of additive terms in the cost, or a large number
of constraints. These types of problems also arise often in the context of
duality, as well as in other contexts such as machine learning and signal
processing with large amounts of data. In Section 1.5, we discuss the exact
penalty function technique, whereby we can transform a convex constrained
optimization problem to an equivalent unconstrained problem.

1.1 LAGRANGE DUALITY

We start our overview of Lagrange duality with the basic case of nonlin-
ear inequality constraints, and then consider extensions involving linear
inequality and equality constraints. Consider the problem‡

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(1.1)

where X is a nonempty set,

g(x) =
(

g1(x), . . . , gr(x)
)′
,

and f : X 7→ ℜ and gj : X 7→ ℜ, j = 1, . . . , r, are given functions. We refer
to this as the primal problem, and we denote its optimal value by f

∗. A
vector x satisfying the constraints of the problem is referred to as feasible.
The dual of problem (1.1) is given by

maximize q(µ)

subject to µ ∈ ℜr
,

(1.2)

† Consistent with its overview character, this chapter contains few proofs,

and refers frequently to the literature, and to Appendix B, which contains a full

list of definitions and propositions (without proofs) relating to nonalgorithmic

aspects of convex optimization. This list reflects and summarizes the content

of the author’s “Convex Optimization Theory” book [Ber09]. The proposition

numbers of [Ber09] have been preserved, so all omitted proofs of propositions in

Appendix B can be readily accessed from [Ber09].

‡ Appendix A contains an overview of the mathematical notation, terminol-

ogy, and results from linear algebra and real analysis that we will be using.
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where the dual function q is

q(µ) =

{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise,

and L is the Lagrangian function defined by

L(x, µ) = f(x) + µ
′
g(x), x ∈ X, µ ∈ ℜr;

(cf. Section 5.3 of Appendix B).
Note that the dual function is extended real-valued, and that the

effective constraint set of the dual problem is

{

µ ≥ 0
∣

∣

∣ inf
x∈X

L(x, µ) > −∞

}

.

The optimal value of the dual problem is denoted by q
∗
.

The weak duality relation, q∗ ≤ f
∗, always holds. It is easily shown

by writing for all µ ≥ 0, and x ∈ X with g(x) ≤ 0,

q(µ) = inf
z∈X

L(z, µ) ≤ L(x, µ) = f(x) +
r
∑

j=1

µjgj(x) ≤ f(x),

so that
q
∗ = sup

µ∈ℜr
q(µ) = sup

µ≥0
q(µ) ≤ inf

x∈X, g(x)≤0
f(x) = f

∗
.

We state this formally as follows (cf. Prop. 4.1.2 in Appendix B).

Proposition 1.1.1: (Weak Duality Theorem) Consider problem
(1.1). For any feasible solution x and any µ ∈ ℜr, we have q(µ) ≤ f(x).
Moreover, q∗ ≤ f

∗
.

When q
∗ = f

∗, we say that strong duality holds. The following propo-
sition gives necessary and sufficient conditions for strong duality, and pri-
mal and dual optimality (see Prop. 5.3.2 in Appendix B).

Proposition 1.1.2: (Optimality Conditions) Consider problem
(1.1). There holds q∗ = f

∗, and (x∗
, µ

∗) are a primal and dual optimal
solution pair if and only if x∗ is feasible, µ∗ ≥ 0, and

x
∗ ∈ argmin

x∈X
L(x, µ∗), µ

∗
jgj(x

∗) = 0, j = 1, . . . , r.
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Both of the preceding propositions do not require any convexity as-
sumptions on f , g, and X . However, generally the analytical and algo-
rithmic solution process is simplified when strong duality (q∗ = f

∗) holds.
This typically requires convexity assumptions, and in some cases conditions
on ri(X), the relative interior of X , as exemplified by the following result,
given in Prop. 5.3.1 in Appendix B. The result delineates the two principal
cases where there is no duality gap in an inequality-constrained problem.

Proposition 1.1.3: (Strong Duality – Existence of Dual Opti-
mal Solutions) Consider problem (1.1) under the assumption that
the set X is convex, and the functions f , and g1, . . . , gr are convex.
Assume further that f

∗ is finite, and that one of the following two
conditions holds:

(1) There exists x ∈ X such that gj(x) < 0 for all j = 1, . . . , r.

(2) The functions gj, j = 1, . . . , r, are affine, and there exists x ∈

ri(X) such that g(x) ≤ 0.

Then q
∗ = f

∗ and there exists at least one dual optimal solution.
Under condition (1) the set of dual optimal solutions is also compact.

Convex Programming with Inequality and Equality Constraints

Let us consider an extension of problem (1.1), with additional linear equal-
ity constraints. It is our principal constrained optimization model under
convexity assumptions, and it will be referred to as the convex programming

problem. It is given by

minimize f(x)

subject to x ∈ X, g(x) ≤ 0, Ax = b,

(1.3)

where X is a convex set, g(x) =
(

g1(x), . . . , gr(x)
)′
, f : X 7→ ℜ and

gj : X 7→ ℜ, j = 1, . . . , r, are given convex functions, A is an m×n matrix,
and b ∈ ℜm.

The preceding duality framework may be applied to this problem by
converting the constraint Ax = b to the equivalent set of linear inequality
constraints

Ax ≤ b, −Ax ≤ −b,

with corresponding dual variables λ
+ ≥ 0 and λ

− ≥ 0. The Lagrangian
function is

f(x) + µ
′
g(x) + (λ+ − λ

−)′(Ax− b),

and by introducing a dual variable

λ = λ
+ − λ

−
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with no sign restriction, it can be written as

L(x, µ, λ) = f(x) + µ
′
g(x) + λ

′(Ax− b).

The dual problem is

maximize inf
x∈X

L(x, µ, λ)

subject to µ ≥ 0, λ ∈ ℜm
.

In this manner, Prop. 1.1.3 under condition (2), together with Prop. 1.1.2,
yield the following for the case where all constraint functions are linear.

Proposition 1.1.4: (Convex Programming – Linear Equality
and Inequality Constraints) Consider problem (1.3).

(a) Assume that f
∗ is finite, that the functions gj are affine, and

that there exists x ∈ ri(X) such that Ax = b and g(x) ≤ 0. Then
q
∗ = f

∗ and there exists at least one dual optimal solution.

(b) There holds f
∗ = q

∗, and (x∗
, µ

∗
, λ

∗) are a primal and dual
optimal solution pair if and only if x∗ is feasible, µ∗ ≥ 0, and

x
∗ ∈ argmin

x∈X
L(x, µ∗

, λ
∗), µ

∗
jgj(x

∗) = 0, j = 1, . . . , r.

In the special case where there are no inequality constraints:

minimize f(x)

subject to x ∈ X, Ax = b,

(1.4)

the Lagrangian function is

L(x, λ) = f(x) + λ
′(Ax − b),

and the dual problem is

maximize inf
x∈X

L(x, λ)

subject to λ ∈ ℜm
.

The corresponding result, a simpler special case of Prop. 1.1.4, is given in
the following proposition.
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Proposition 1.1.5: (Convex Programming – Linear Equality
Constraints) Consider problem (1.4).

(a) Assume that f
∗ is finite and that there exists x ∈ ri(X) such

that Ax = b. Then f
∗ = q

∗ and there exists at least one dual
optimal solution.

(b) There holds f∗ = q
∗, and (x∗

, λ
∗) are a primal and dual optimal

solution pair if and only if x∗ is feasible and

x
∗ ∈ argmin

x∈X
L(x, λ∗).

The following is an extension of Prop. 1.1.4(a) to the case where the
inequality constraints may be nonlinear. It is the most general convex
programming result relating to duality in this section (see Prop. 5.3.5 in
Appendix B).

Proposition 1.1.6: (Convex Programming – Linear Equality
and Nonlinear Inequality Constraints) Consider problem (1.3).
Assume that f

∗ is finite, that there exists x ∈ X such that Ax = b

and g(x) < 0, and that there exists x̃ ∈ ri(X) such that Ax̃ = b. Then
q
∗ = f

∗ and there exists at least one dual optimal solution.

Aside from the preceding results, there are alternative optimality con-
ditions for convex and nonconvex optimization problems, which are based
on extended versions of the Fritz John theorem; see [BeO02] and [BOT06],
and the textbooks [Ber99] and [BNO03]. These conditions are derived us-
ing a somewhat different line of analysis and supplement the ones given
here, but we will not have occasion to use them in this book.

Discrete Optimization and Lower Bounds

The preceding propositions deal mostly with situations where strong du-
ality holds (q∗ = f

∗). However, duality can be useful even when there is
duality gap, as often occurs in problems that have a finite constraint set
X . An example is integer programming, where the components of x must
be integers from a bounded range (usually 0 or 1). An important special
case is the linear 0-1 integer programming problem

minimize c
′
x

subject to Ax ≤ b, xi = 0 or 1, i = 1, . . . , n,
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where x = (x1, . . . , xn).
A principal approach for solving discrete optimization problems with

a finite constraint set is the branch-and-bound method , which is described
in many sources; see e.g., one of the original works [LaD60], the survey
[BaT85], and the book [NeW88]. The general idea of the method is that
bounds on the cost function can be used to exclude from consideration
portions of the feasible set. To illustrate, consider minimizing F (x) over
x ∈ X , and let Y1, Y2 be two subsets of X . Suppose that we have bounds

F 1 ≤ min
x∈Y1

f(x), F 2 ≥ min
x∈Y2

f(x).

Then, if F 2 ≤ F 1, the solutions in Y1 may be disregarded since their cost
cannot be smaller than the cost of the best solution in Y2. The lower bound
F 1 can often be conveniently obtained by minimizing f over a suitably
enlarged version of Y1, while for the upper bound F 2, a value f(x), where
x ∈ Y2, may be used.

Branch-and-bound is often based on weak duality (cf. Prop. 1.1.1) to
obtain lower bounds to the optimal cost of restricted problems of the form

minimize f(x)

subject to x ∈ X̃, g(x) ≤ 0,
(1.5)

where X̃ is a subset of X ; for example in the 0-1 integer case where X

specifies that all xi should be 0 or 1, X̃ may be the set of all 0-1 vectors
x such that one or more components xi are fixed at either 0 or 1 (i.e., are
restricted to satisfy xi = 0 for all x ∈ X̃ or xi = 1 for all x ∈ X̃). These
lower bounds can often be obtained by finding a dual-feasible (possibly
dual-optimal) solution µ ≥ 0 of this problem and the corresponding dual
value

q(µ) = inf
x∈X̃

{

f(x) + µ
′
g(x)

}

, (1.6)

which by weak duality, is a lower bound to the optimal value of the re-
stricted problem (1.5). In a strengthened version of this approach, the
given inequality constraints g(x) ≤ 0 may be augmented by additional in-
equalities that are known to be satisfied by optimal solutions of the original
problem.

An important point here is that when X̃ is finite, the dual function
q of Eq. (1.6) is concave and polyhedral. Thus solving the dual problem
amounts to minimizing the polyhedral function −q over the nonnegative
orthant. This is a major context within which polyhedral functions arise
in convex optimization.

1.1.1 Separable Problems – Decomposition

Let us now discuss an important problem structure that involves Lagrange
duality and arises frequently in applications. Here x has m components,
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x = (x1, . . . , xm), with each xi being a vector of dimension ni (often ni =
1). The problem has the form

minimize

m
∑

i=1

fi(xi)

subject to
m
∑

i=1

gij(xi) ≤ 0, xi ∈ Xi, i = 1, . . . ,m, j = 1, . . . , r,

(1.7)

where fi : ℜni 7→ ℜ and gij : ℜni 7→ ℜr are given functions, and Xi are
given subsets of ℜni . By assigning a dual variable µj to the jth constraint,
we obtain the dual problem [cf. Eq. (1.2)]

maximize

m
∑

i=1

qi(µ)

subject to µ ≥ 0,

(1.8)

where

qi(µ) = inf
xi∈Xi







fi(xi) +

r
∑

j=1

µjgij(xi)







,

and µ = (µ1, . . . , µr).
Note that the minimization involved in the calculation of the dual

function has been decomposed into m simpler minimizations. These min-
imizations are often conveniently done either analytically or computation-
ally, in which case the dual function can be easily evaluated. This is the key
advantageous structure of separable problems: it facilitates computation of
dual function values (as well as subgradients as we will see in Section 3.1),
and it is amenable to decomposition and distributed computation.

Let us also note that in the special case where the components xi

are one-dimensional, and the functions fi and sets Xi are convex, there
is a particularly favorable duality result for the separable problem (1.7):
essentially, strong duality holds without any qualifications such as the lin-
earity of the constraint functions, or the Slater condition of Prop. 1.1.3; see
[Tse09].

Duality Gap Estimates for Nonconvex Separable Problems

The separable structure is additionally helpful when the cost and/or the
constraints are not convex, and there is a duality gap. In particular, in this
case the duality gap turns out to be relatively small and can often be shown

to diminish to zero relative to the optimal primal value as the number m of

separable terms increases . As a result, one can often obtain a near-optimal
primal solution, starting from a dual-optimal solution, without resorting
to costly branch-and-bound procedures.
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The small duality gap size is a consequence of the structure of the set
S of constraint-cost pairs of problem (1.7), which in the case of a separable
problem, can be written as a vector sum of m sets, one for each separable
term, i.e.,

S = S1 + · · ·+ Sm,

where
Si =

{(

gi(xi), fi(xi)
)

| xi ∈ Xi

}

,

and gi : ℜni 7→ ℜr is the function gi(xi) =
(

gi1(xi), . . . , gim(xi)
)

. It can
be shown that the duality gap is related to how much S “differs” from
its convex hull (a geometric explanation is given in [Ber99], Section 5.1.6,
and [Ber09], Section 5.7). Generally, a set that is the vector sum of a
large number of possibly nonconvex but roughly similar sets “tends to
be convex” in the sense that any vector in its convex hull can be closely
approximated by a vector in the set. As a result, the duality gap tends to
be relatively small. The analytical substantiation is based on a theorem
by Shapley and Folkman (see [Ber99], Section 5.1, or [Ber09], Prop. 5.7.1,
for a statement and proof of this theorem). In particular, it is shown in
[AuE76], and also [BeS82], [Ber82a], Section 5.6.1, under various reasonable
assumptions, that the duality gap satisfies

f
∗ − q

∗ ≤ (r + 1) max
i=1,...,m

ρi,

where for each i, ρi is a nonnegative scalar that depends on the structure of
the functions fi, gij , j = 1, . . . , r, and the setXi (the paper [AuE76] focuses
on the case where the problem is nonconvex but continuous, while [BeS82]
and [Ber82a] focus on an important class of mixed integer programming
problems). This estimate suggests that as m → ∞ and |f∗| → ∞, the
duality gap is bounded, while the “relative” duality gap (f∗ − q

∗)/|f∗|

diminishes to 0 as m → ∞.
The duality gap has also been investigated in the author’s book

[Ber09] within the more general min common-max crossing framework
(Section 4.1 of Appendix B). This framework includes as special cases
minimax and zero-sum game problems. In particular, consider a function
φ : X×Z 7→ ℜ defined over nonempty subsets X ⊂ ℜn and Z ⊂ ℜm. Then
it can be shown that the gap between “infsup” and “supinf” of φ can be
decomposed into the sum of two terms that can be computed separately:
one term can be attributed to the lack of convexity and/or closure of φ
with respect to x, and the other can be attributed to the lack of concavity
and/or upper semicontinuity of φ with respect to z. We refer to [Ber09],
Section 5.7.2, for the analysis.

1.1.2 Partitioning

It is important to note that there are several different ways to introduce
duality in the solution of large-scale optimization problems. For example a
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strategy, often called partitioning, is to divide the variables in two subsets,
and minimize first with respect to one subset while taking advantage of
whatever simplification may arise by fixing the variables in the other subset.

As an example, the problem

minimize F (x) +G(y)

subject to Ax+By = c, x ∈ X, y ∈ Y,

can be written as

minimize F (x) + inf
By=c−Ax, y∈Y

G(y)

subject to x ∈ X,

or
minimize F (x) + p(c−Ax)

subject to x ∈ X,

where p is given by
p(u) = inf

By=u, y∈Y
G(y).

In favorable cases, p can be dealt with conveniently (see e.g., the book
[Las70] and the paper [Geo72]).

Strategies of splitting or transforming the variables to facilitate al-
gorithmic solution will be frequently encountered in what follows, and in
a variety of contexts, including duality. The next section describes some
significant contexts of this type.

1.2 FENCHEL DUALITY AND CONIC PROGRAMMING

Let us consider the Fenchel duality framework (see Section 5.3.5 of Ap-
pendix B). It involves the problem

minimize f1(x) + f2(Ax)

subject to x ∈ ℜn
,

(1.9)

where A is an m× n matrix, f1 : ℜn 7→ (−∞,∞] and f2 : ℜm 7→ (−∞,∞]
are closed proper convex functions, and we assume that there exists a
feasible solution, i.e., an x ∈ ℜn such that x ∈ dom(f1) and Ax ∈ dom(f2).†

The problem is equivalent to the following constrained optimization
problem in the variables x1 ∈ ℜn and x2 ∈ ℜm:

minimize f1(x1) + f2(x2)

subject to x1 ∈ dom(f1), x2 ∈ dom(f2), x2 = Ax1.
(1.10)

† We remind the reader that our convex analysis notation, terminology, and

nonalgorithmic theory are summarized in Appendix B.
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Viewing this as a convex programming problem with the linear equality
constraint x2 = Ax1, we obtain the dual function as

q(λ) = inf
x1∈dom(f1), x2∈dom(f2)

{

f1(x1) + f2(x2) + λ
′(x2 −Ax1)

}

= inf
x1∈ℜn

{

f1(x1)− λ
′
Ax1

}

+ inf
x2∈ℜm

{

f2(x2) + λ
′
x2

}

.

The dual problem of maximizing q over λ ∈ ℜm, after a sign change to
convert it to a minimization problem, takes the form

minimize f
⋆
1 (A

′
λ) + f

⋆
2 (−λ)

subject to λ ∈ ℜm
,

(1.11)

where f⋆
1 and f

⋆
2 are the conjugate functions of f1 and f2. We denote by f

∗

and q
∗ the corresponding optimal primal and dual values [q∗ is the negative

of the optimal value of problem (1.11)].
The following Fenchel duality result is given as Prop. 5.3.8 in Ap-

pendix B. Parts (a) and (b) are obtained by applying Prop. 1.1.5(a) to
problem (1.10), viewed as a problem with x2 = Ax1 as the only linear
equality constraint. The first equation of part (c) is a consequence of Prop.
1.1.5(b). Its equivalence with the last two equations is a consequence of
the Conjugate Subgradient Theorem (Prop. 5.4.3, App. B), which states
that for a closed proper convex function f , its conjugate f

⋆, and any pair
of vectors (x, y), we have

x ∈ arg min
z∈ℜn

{

f(z)− z
′
y

}

iff y ∈ ∂f(x) iff x ∈ ∂f
⋆(y),

with all of these three relations being equivalent to x
′
y = f(x) + f

⋆(y).
Here ∂f(x) denotes the subdifferential of f at x (the set of all subgradients
of f at x); see Section 5.4 of Appendix B.

Proposition 1.2.1: (Fenchel Duality) Consider problem (1.9).

(a) If f
∗ is finite and

(

A · ri
(

dom(f1)
))

∩ ri
(

dom(f2)
)

6= Ø, then
f
∗ = q

∗ and there exists at least one dual optimal solution.

(b) If q∗ is finite and ri
(

dom(f⋆
1 )
)

∩
(

A
′ · ri

(

− dom(f⋆
2 )
))

6= Ø, then
f
∗ = q

∗ and there exists at least one primal optimal solution.

(c) There holds f
∗ = q

∗, and (x∗
, λ

∗) is a primal and dual opti-
mal solution pair if and only if any one of the following three
equivalent conditions hold:

x
∗ ∈ arg min

x∈ℜn

{

f1(x)−x
′
A

′
λ
∗
}

and Ax
∗ ∈ arg min

z∈ℜm

{

f2(z)+z
′
λ
∗
}

,

(1.12)
A

′
λ
∗ ∈ ∂f1(x∗) and − λ

∗ ∈ ∂f2(Ax∗), (1.13)

x
∗ ∈ ∂f

⋆
1 (A

′
λ
∗) and Ax

∗ ∈ ∂f
⋆
2 (−λ

∗). (1.14)
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Minimax Problems

Minimax problems involve minimization over a set X of a function F of
the form

F (x) = sup
z∈Z

φ(x, z),

where X and Z are subsets of ℜn and ℜm, respectively, and φ : ℜn×ℜm 7→

ℜ is a given function. Some (but not all) problems of this type are related
to constrained optimization and Fenchel duality.

Example 1.2.1: (Connection with Constrained Optimization)

Let φ and Z have the form

φ(x, z) = f(x) + z′g(x), Z = {z | z ≥ 0},

where f : ℜn 7→ ℜ and g : ℜn 7→ ℜm are given functions. Then it is seen that

F (x) = sup
z∈Z

φ(x, z) =
{

f(x) if g(x) ≤ 0,
∞ otherwise.

Thus minimization of F over x ∈ X is equivalent to solving the constrained
optimization problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0.
(1.15)

The dual problem is to maximize over z ≥ 0 the function

F (z) = inf
x∈X

{

f(x) + z′g(x)
}

= inf
x∈X

φ(x, z),

and the minimax equality

inf
x∈X

sup
z∈Z

φ(x, z) = sup
z∈Z

inf
x∈X

φ(x, z) (1.16)

is equivalent to problem (1.15) having no duality gap.

Example 1.2.2: (Connection with Fenchel Duality)

Let φ have the special form

φ(x, z) = f(x) + z′Ax− g(z),

where f : ℜn 7→ ℜ and g : ℜm 7→ ℜ are given functions, and A is a given
m× n matrix. Then we have

F (x) = sup
z∈Z

φ(x, z) = f(x) + sup
z∈Z

{

(Ax)′z − g(z)
}

= f(x) + ĝ⋆(Ax),
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where ĝ⋆ is the conjugate of the function

ĝ(z) =
{

g(z) if z ∈ Z,
∞ otherwise.

Thus the minimax problem of minimizing F over x ∈ X comes under the
Fenchel framework (1.9) with f2 = ĝ⋆ and f1 given by

f1(x) =
{

f(x) if x ∈ X,
∞ if x /∈ X.

It can also be verified that the Fenchel dual problem (1.11) is equivalent to
maximizing over z ∈ Z the function F (z) = infx∈X φ(x, z). Again having no
duality gap is equivalent to the minimax equality (1.16) holding.

Finally note that strong duality theory is connected with minimax
problems primarily when X and Z are convex sets, and φ is convex in x

and concave in z. When Z is a finite set, there is a different connection
with constrained optimization that does not involve Fenchel duality and
applies without any convexity conditions. In particular, the problem

minimize max
{

g1(x), . . . , gr(x)
}

subject to x ∈ X,

where gj : ℜn 7→ ℜ are any real-valued functions, is equivalent to the
constrained optimization problem

minimize y

subject to x ∈ X, gj(x) ≤ y, j = 1, . . . , r,

where y is an additional scalar optimization variable. Minimax problems
will be discussed further later, in Section 1.4, as an example of problems
that may involve a large number of constraints.

Conic Programming

An important problem structure, which can be analyzed as a special case of
the Fenchel duality framework is conic programming. This is the problem

minimize f(x)

subject to x ∈ C,

(1.17)

where f : ℜn 7→ (−∞,∞] is a closed proper convex function and C is a
closed convex cone in ℜn.

Indeed, let us apply Fenchel duality with A equal to the identity and
the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
∞ if x /∈ C.
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The corresponding conjugates are

f
⋆
1 (λ) = sup

x∈ℜn

{

λ
′
x− f(x)

}

, f
⋆
2 (λ) = sup

x∈C

λ
′
x =

{

0 if λ ∈ C
∗,

∞ if λ /∈ C
∗,

where

C
∗ = {λ | λ′

x ≤ 0, ∀ x ∈ C}

is the polar cone of C (note that f⋆
2 is the support function of C; cf. Section

1.6 of Appendix B). The dual problem is

minimize f
⋆(λ)

subject to λ ∈ Ĉ,

(1.18)

where f⋆ is the conjugate of f and Ĉ is the negative polar cone (also called
the dual cone of C):

Ĉ = −C
∗ = {λ | λ′

x ≥ 0, ∀ x ∈ C}.

Note the symmetry between primal and dual problems. The strong duality
relation f

∗ = q
∗ can be written as

inf
x∈C

f(x) = − inf
λ∈Ĉ

f
⋆(λ).

The following proposition translates the conditions of Prop. 1.2.1(a),
which guarantees that there is no duality gap and that the dual problem
has an optimal solution.

Proposition 1.2.2: (Conic Duality Theorem) Assume that the
primal conic problem (1.17) has finite optimal value, and moreover
ri
(

dom(f)
)

∩ ri(C) 6= Ø. Then, there is no duality gap and the dual
problem (1.18) has an optimal solution.

Using the symmetry of the primal and dual problems, we also obtain
that there is no duality gap and the primal problem (1.17) has an optimal
solution if the optimal value of the dual conic problem (1.18) is finite and
ri
(

dom(f⋆)
)

∩ ri(Ĉ) 6= Ø. It is also possible to derive primal and dual op-
timality conditions by translating the optimality conditions of the Fenchel
duality framework [Prop. 1.2.1(c)].
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c Affine set b + S x

Cone C
x
∗

) c

X y 0

Figure 1.2.1. Illustration of a linear-conic problem: minimizing a linear function
c′x over the intersection of an affine set b+ S and a convex cone C.

1.2.1 Linear-Conic Problems

An important special case of conic programming, called linear-conic prob-

lem, arises when dom(f) is an affine set and f is linear over dom(f), i.e.,

f(x) =

{

c
′
x if x ∈ b+ S,

∞ if x /∈ b+ S,

where b and c are given vectors, and S is a subspace. Then the primal
problem can be written as

minimize c
′
x

subject to x− b ∈ S, x ∈ C;
(1.19)

see Fig. 1.2.1.
To derive the dual problem, we note that

f
⋆(λ) = sup

x−b∈S

(λ− c)′x

= sup
y∈S

(λ − c)′(y + b)

=

{

(λ− c)′b if λ− c ∈ S
⊥,

∞ if λ− c /∈ S
⊥.

It can be seen that the dual problem min
λ∈Ĉ

f
⋆(λ) [cf. Eq. (1.18)], after

discarding the superfluous term c
′
b from the cost, can be written as

minimize b
′
λ

subject to λ− c ∈ S
⊥
, λ ∈ Ĉ,

(1.20)
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where Ĉ is the dual cone:

Ĉ = {λ | λ′
x ≥ 0, ∀ x ∈ C}.

By specializing the conditions of the Conic Duality Theorem (Prop. 1.2.2)
to the linear-conic duality context, we obtain the following.

Proposition 1.2.3: (Linear-Conic Duality Theorem) Assume
that the primal problem (1.19) has finite optimal value, and moreover
(b+S)∩ri(C) 6= Ø. Then, there is no duality gap and the dual problem
has an optimal solution.

Special Forms of Linear-Conic Problems

The primal and dual linear-conic problems (1.19) and (1.20) have been
placed in an elegant symmetric form. There are also other useful formats
that parallel and generalize similar formats in linear programming. For
example, we have the following dual problem pairs:

min
Ax=b, x∈C

c
′
x ⇐⇒ max

c−A′λ∈Ĉ

b
′
λ, (1.21)

min
Ax−b∈C

c
′
x ⇐⇒ max

A′λ=c, λ∈Ĉ

b
′
λ, (1.22)

where A is an m× n matrix, and x ∈ ℜn, λ ∈ ℜm, c ∈ ℜn, b ∈ ℜm.
To verify the duality relation (1.21), let x be any vector such that

Ax = b, and let us write the primal problem on the left in the primal conic
form (1.19) as

minimize c
′
x

subject to x− x ∈ N(A), x ∈ C,

where N(A) is the nullspace of A. The corresponding dual conic problem
(1.20) is to solve for µ the problem

minimize x
′
µ

subject to µ− c ∈ N(A)⊥, µ ∈ Ĉ.

(1.23)

Since N(A)⊥ is equal to Ra(A′), the range of A′, the constraints of problem
(1.23) can be equivalently written as c−µ ∈ −Ra(A′) = Ra(A′), µ ∈ Ĉ, or

c− µ = A
′
λ, µ ∈ Ĉ,
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for some λ ∈ ℜm. Making the change of variables µ = c − A
′
λ, the dual

problem (1.23) can be written as

minimize x
′(c−A

′
λ)

subject to c−A
′
λ ∈ Ĉ.

By discarding the constant x′
c from the cost function, using the fact Ax =

b, and changing from minimization to maximization, we see that this dual
problem is equivalent to the one in the right-hand side of the duality pair
(1.21). The duality relation (1.22) is proved similarly.

We next discuss two important special cases of conic programming:
second order cone programming and semidefinite programming. These pro-
blems involve two different special cones, and an explicit definition of the
affine set constraint. They arise in a variety of applications, and their
computational difficulty in practice tends to lie between that of linear and
quadratic programming on one hand, and general convex programming on
the other hand.

1.2.2 Second Order Cone Programming

In this section we consider the linear-conic problem (1.22), with the cone

C =

{

(x1, . . . , xn)
∣

∣

∣
xn ≥

√

x
2
1 + · · ·+ x

2
n−1

}

,

which is known as the second order cone (see Fig. 1.2.2). The dual cone is

Ĉ = {y | 0 ≤ y
′
x, ∀ x ∈ C} =

{

y

∣

∣

∣ 0 ≤ inf
‖(x1,...,xn−1)‖≤xn

y
′
x

}

,

and it can be shown that Ĉ = C. This property is referred to as self-duality
of the second order cone, and is fairly evident from Fig. 1.2.2. For a proof,
we write

inf
‖(x1,...,xn−1)‖≤xn

y
′
x = inf

xn≥0

{

ynxn + inf
‖(x1,...,xn−1)‖≤xn

n−1
∑

i=1

yixi

}

= inf
xn≥0

{

ynxn − ‖(y1, . . . , yn−1)‖ xn

}

=

{

0 if ‖(y1, . . . , yn−1)‖ ≤ yn,

−∞ otherwise,

where the second equality follows because the minimum of the inner prod-
uct of a vector z ∈ ℜn−1 with vectors in the unit ball of ℜn−1 is −‖z‖.
Combining the preceding two relations, we have

y ∈ Ĉ if and only if 0 ≤ yn − ‖(y1, . . . , yn−1)‖,
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x1

x2

x3

x1

1 x2

2 x3

Figure 1.2.2. The second order cone

C =

{

(x1, . . . , xn)
∣

∣ xn ≥
√

x2
1 + · · ·+ x2

n−1

}

,

in ℜ3.

so Ĉ = C.
The second order cone programming problem (SOCP for short) is

minimize c
′
x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

(1.24)

where x ∈ ℜn, c is a vector in ℜn, and for i = 1, . . . ,m, Ai is an ni × n

matrix, bi is a vector in ℜni , and Ci is the second order cone of ℜni . It is
seen to be a special case of the primal problem in the left-hand side of the
duality relation (1.22), where

A =





A1
...

Am



 , b =





b1
...
bm



 , C = C1 × · · · × Cm.

Note that linear inequality constraints of the form a
′
ix − bi ≥ 0 can be

written as
(

0
a
′
i

)

x−

(

0
bi

)

∈ Ci,

where Ci is the second order cone of ℜ2. As a result, linear-conic problems
involving second order cones contain as special cases linear programming
problems.
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We now observe that from the right-hand side of the duality relation
(1.22), and the self-duality relation C = Ĉ, the corresponding dual linear-
conic problem has the form

maximize

m
∑

i=1

b
′
iλi

subject to

m
∑

i=1

A
′
iλi = c, λi ∈ Ci, i = 1, . . . ,m,

(1.25)

where λ = (λ1, . . . , λm). By applying the Linear-Conic Duality Theorem
(Prop. 1.2.3), we have the following.

Proposition 1.2.4: (Second Order Cone Duality Theorem)
Consider the primal SOCP (1.24), and its dual problem (1.25).

(a) If the optimal value of the primal problem is finite and there
exists a feasible solution x such that

Aix− bi ∈ int(Ci), i = 1, . . . ,m,

then there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exists
a feasible solution λ = (λ1, . . . , λm) such that

λi ∈ int(Ci), i = 1, . . . ,m,

then there is no duality gap, and the primal problem has an
optimal solution.

Note that while the Linear-Conic Duality Theorem requires a relative
interior point condition, the preceding proposition requires an interior point
condition. The reason is that the second order cone has nonempty interior,
so its relative interior coincides with its interior.

The SOCP arises in many application contexts, and significantly, it
can be solved numerically with powerful specialized algorithms that belong
to the class of interior point methods, which will be discussed in Section
6.8. We refer to the literature for a more detailed description and analysis
(see e.g., the books [BeN01], [BoV04]).

Generally, SOCPs can be recognized from the presence of convex
quadratic functions in the cost or the constraint functions. The following
are illustrative examples. The first example relates to the field of robust
optimization, which involves optimization under uncertainty described by
set membership.
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Example 1.2.3: (Robust Linear Programming)

Frequently, there is uncertainty about the data of an optimization problem,
so one would like to have a solution that is adequate for a whole range of
the uncertainty. A popular formulation of this type, is to assume that the
constraints contain parameters that take values in a given set, and require
that the constraints are satisfied for all values in that set. This approach is
also known as a set membership description of the uncertainty and has been
used in fields other than optimization, such as set membership estimation,
and minimax control (see the textbook [Ber07], which also surveys earlier
work).

As an example, consider the problem

minimize c′x

subject to a′
jx ≤ bj , ∀ (aj , bj) ∈ Tj , j = 1, . . . , r,

(1.26)

where c ∈ ℜn is a given vector, and Tj is a given subset of ℜn+1 to which
the constraint parameter vectors (aj , bj) must belong. The vector x must
be chosen so that the constraint a′

jx ≤ bj is satisfied for all (aj , bj) ∈ Tj ,
j = 1, . . . , r.

Generally, when Tj contains an infinite number of elements, this prob-
lem involves a correspondingly infinite number of constraints. To convert the
problem to one involving a finite number of constraints, we note that

a′
jx ≤ bj , ∀ (aj , bj) ∈ Tj if and only if gj(x) ≤ 0,

where
gj(x) = sup

(aj,bj )∈Tj

{a′
jx− bj}. (1.27)

Thus, the robust linear programming problem (1.26) is equivalent to

minimize c′x

subject to gj(x) ≤ 0, j = 1, . . . , r.

For special choices of the set Tj , the function gj can be expressed in
closed form, and in the case where Tj is an ellipsoid, it turns out that the
constraint gj(x) ≤ 0 can be expressed in terms of a second order cone. To see
this, let

Tj =
{

(aj + Pjuj , bj + q′juj) | ‖uj‖ ≤ 1, uj ∈ ℜnj
}

, (1.28)

where Pj is a given n × nj matrix, aj ∈ ℜn and qj ∈ ℜnj are given vectors,
and bj is a given scalar. Then, from Eqs. (1.27) and (1.28),

gj(x) = sup
‖uj‖≤1

{

(aj + Pjuj)
′x− (bj + q′juj)

}

= sup
‖uj‖≤1

(P ′
jx− qj)

′uj + a′
jx− bj ,
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and finally
gj(x) = ‖P ′

jx− qj‖+ a′
jx− bj .

Thus,

gj(x) ≤ 0 if and only if (P ′
jx− qj , bj − a′

jx) ∈ Cj ,

where Cj is the second order cone of ℜnj+1; i.e., the “robust” constraint
gj(x) ≤ 0 is equivalent to a second order cone constraint. It follows that in
the case of ellipsoidal uncertainty, the robust linear programming problem
(1.26) is a SOCP of the form (1.24).

Example 1.2.4: (Quadratically Constrained Quadratic
Problems)

Consider the quadratically constrained quadratic problem

minimize x′Q0x+ 2q′0x+ p0

subject to x′Qjx+ 2q′jx+ pj ≤ 0, j = 1, . . . , r,

where Q0, . . . , Qr are symmetric n × n positive definite matrices, q0, . . . , qr
are vectors in ℜn, and p0, . . . , pr are scalars. We show that the problem can
be converted to the second order cone format. A similar conversion is also
possible for the quadratic programming problem where Q0 is positive definite
and Qj = 0, j = 1, . . . , r.

Indeed, since each Qj is symmetric and positive definite, we have

x′Qjx+ 2q′jx+ pj =
(

Q
1/2
j x

)′

Q
1/2
j x+ 2

(

Q
−1/2
j qj

)′

Q
1/2
j x+ pj

= ‖Q
1/2
j x+Q

−1/2
j qj‖

2 + pj − q′jQ
−1
j qj ,

for j = 0, 1, . . . , r. Thus, the problem can be written as

minimize ‖Q
1/2
0 x+Q

−1/2
0 q0‖

2 + p0 − q′0Q
−1
0 q0

subject to ‖Q
1/2
j x+Q

−1/2
j qj‖

2 + pj − q′jQ
−1
j qj ≤ 0, j = 1, . . . , r,

or, by neglecting the constant p0 − q′0Q
−1
0 q0,

minimize ‖Q
1/2
0 x+Q

−1/2
0 q0‖

subject to ‖Q
1/2
j x+Q

−1/2
j qj‖ ≤

(

q′jQ
−1
j qj − pj

)1/2
, j = 1, . . . , r.

By introducing an auxiliary variable xn+1, the problem can be written as

minimize xn+1

subject to ‖Q
1/2
0 x+Q

−1/2
0 q0‖ ≤ xn+1

‖Q
1/2
j x+Q

−1/2
j qj‖ ≤

(

q′jQ
−1
j qj − pj

)1/2
, j = 1, . . . , r.


