
Chapter 1

Some Fundamentals of
Dispersed Multiphase Flows

1.1 PARTICLE/SPRAY BASIC PROPERTIES

To characterize gas-particle or gas-spray flows, it is necessary first to

describe the particle/spray basic properties [1�4] as follows.

1.1.1 Particle/Droplet Size and Its Distribution

The particle/droplet size distribution is frequently expressed by the semiem-

pirical Rosin�Rammler formula as:

RðdkÞ5 exp½2 ðdk=dÞn� ð1:1Þ
where R(dk) is the weight fraction of particles with sizes larger than dk, n is

the index of nonuniformness, and d is a characteristic size. Both n and d are

determined by experiments. The derivative of R(dk) is

dR

dðdkÞ
5 nðdkÞn21ðdÞ2nexp 2 ðdk=dÞn

� � ð1:2Þ

which expresses the differential particle size distribution, and R(dk) is the

integral size distribution. The mean particle sizes can be defined as:
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where d10; d20; d30; and d32 are diameter-averaged, surface-averaged,

volume-averaged, and Sauter mean sizes, respectively. The Sauter diameter

is most widely used in engineering. The typical particle sizes are:

Coal particles in fluidized beds 1�10 mm
Liquid spray 10�200 μm
Pulverized coal 1�100 μm
Soot particles 1�5 μm
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1.1.2 Apparent Density and Volume Fraction

For gas-particle/droplet flows there are differently defined densities. The

relationships among them are:

ρm 5 ρ1 ρp 5 ρ1
X

ρk 5 ρ1
X

nkπd3k=6
� �

ρp ð1:4Þ

where ρm; ρ; ρp; ρk; and ρp are mixture density, fluid apparent density, parti-

cle total apparent density, k-th size particle apparent density and particle

material density, respectively. The particle volume fraction and fluid volume

fraction are defined as:

αp 5 ρp=ρp; αf 5 12αp 5 12 ρp=ρp ð1:5Þ
For dilute gas-particle flows we have:

ρ5 ρð12 ρp=ρpÞ � ρ

where ρ is the fluid material density. Obviously, the fluid apparent density in

dilute gas-particle flows is almost equal to the fluid material density. The so-

called mass loading, which is the ratio of particle mass flux to fluid mass

flux, is defined as ρp0up0=ðρ0u0Þ.When the fluid initial velocity is equal to

the particle initial velocity, the mass loading is equal to the ratio of apparent

densities. For example, in spray or pulverized-coal flames the typical value

of the mass loading is:

ρp=ρ5 1=155
ρp
ρ

αp

12αp

� 1000
αp

12αp

namely, αp, 0.01%, hence the spray flame and pulverized-coal flame are

dilute gas-particle flows. Other examples are: pneumatic transport αp� 0.1%

(mass loading� 1), fluidized beds and flows in gun barrels αp� 0.8�1. It

can be seen that when αp5 0.1%, due to 15 1000nπd3/6, the average inter-

particle size will be:

Δ � n21=3 5 ð1000π=6Þ1=3dp 5 8:1dp: Δ. 20dp

1.2 PARTICLE DRAG, HEAT, AND MASS TRANSFER

For different ranges of particle Reynolds number the particle drag is given as:

Newton drag formula: cd 5 0:44 ðRep . 1000Þ
Wallis�Kliachko drag formula: cd 5 ð11Re2=3p =6Þ24=Repð1,Rep, 1000Þ

Stokes drag formula: cd 5 24=RepðRep , 1Þ ð1:6Þ
where Rep is the particle Reynolds number of particle motion relative to

fluid. When the particle temperature is higher than the gas temperature, the
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particle drag will increase according to the so-called 1/3 law. The gas viscos-

ity in the particle Reynolds number will be:

ν5 νp=31 2νg=3 ð1:7Þ
where the subscripts p and g denote the gas viscosity under the particle tem-

perature and gas temperature, respectively. The particle mass loss due to

evaporation, devolatilization, or heterogeneous combustion will reduce the

particle drag to:

cd 5 cd0lnð11BÞ=B ð1:8Þ
where B is a dimensionless parameter given by

lnð11BÞ5 _m=ðπdpNuDρÞ ð1:9Þ
The particle heat and mass transfer are given by the Ranz�Marshell

formula:

Nu5 21 0:6Re0:5p Pr0:33

Sh5 21 0:6Re0:5p Sc0:33
ð1:10Þ

where Nu, Sh, Re, Pr, and Sc are the Nusselt number, Shewood number,

Reynolds number, Prandtl number, and Schmidt number, respectively. The

droplet mass, diameter, and temperature change during evaporation and

solid-fuel particle mass and temperature change during moisture evaporation,

devolatilization, and char combustion are given in the combustion theory,

see Chapter 3, Fundamentals of Combustion.

1.3 SINGLE-PARTICLE DYNAMICS

Consider the single-particle motion in a known simple flow field and neglect

the effect of particles on the fluid flow; this is single-particle dynamics [6].

For turbulent gas-particle flows single-particle dynamics is a basic phenome-

non observed in practical cases.

1.3.1 Single-Particle Motion Equation

Taking into consideration only the drag and gravitational forces, the simplest

single-particle motion equation can be given as:

dvpi

dtp
5 ðvi 2 vpiÞ=τr 1 gi ð1:11Þ

where τr is the particle relaxation time, expressing the ratio of particle inertia

to particle drag, determined by the drag law.
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1.3.2 Motion of a Single Particle in a Uniform Flow Field

Assuming a particle with initial velocity vP0 and Stokes’ drag law, moving

in a uniform flow field (Fig. 1.1), when neglecting the gravitational force,

the particle momentum equation in the x direction is

dup

dt
5 ðuN 2 upÞ=τr ð1:12Þ

where τr 5 d2pρp=ð18μÞ. Integration of Eq. (1.12) with an initial condition of

up5 up0 at t5 0 gives the particle longitudinal velocity

up 5 uN 2 ðuN 2 up0Þ expð2 t=τrÞ ð1:13Þ
The particle lateral velocity can be obtained in a similar way as

vp 5 vp0 expð2 t=τrÞ ð1:14Þ
Integration of Eqs. (1.13) and (1.14) with respect to t gives the particle

trajectory equations as

xp 5 uNt2 ðuN 2 up0Þτrð12 e2t=τr Þ
yp 5 vp0τrð12 e2t=τr Þ

ð1:15Þ

Similar equations can also be derived for non-Stokes’ particle drag.

Eqs. (1.13, 1.14, 1.15) point out that as the time approaches N, the particle longi-

tudinal velocity approaches the fluid velocity, the particle lateral velocity

approaches zero and the particle lateral displacement approaches y5 vp0τr. When

t5 τr, we have vp 5 vp0=τr. Hence the physical meaning of the particle relaxa-

tion time is the time needed for the fluid-particle velocity slip to decrease to 1/e

of its initial value. It expresses the easiness with which particles follow the fluid.

1.3.3 Particle Gravitational Deposition

For an initially stagnant particle acting only by Stokes’ drag and gravity, the

motion equation is:

dvp

dt
1

vp

τr
2 g5 0 ð1:16Þ

FIGURE 1.1 Motion of a single particle in uniform flow field.
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For the initial condition of vp05 0 at t5 0, its solution is:

vp 5 τrgð12 e2t=τr Þ ð1:17Þ
As the time approaches infinity, vp approaches τrg5 vpr, the particle

acceleration becomes zero and the gravity and drag force will be in equilib-

rium. In this case the particle velocity is called the terminal velocity.

1.3.4 Forces Acting on Particles in Nonuniform Flow Field

1.3.4.1 Magnus Force

As a nonspherical particle moves in the flow field with velocity gradient, in

particular after its impact on the wall, it may rotate, causing a lifting force

perpendicular to the direction of relative velocity, called the Magnus force.

Its magnitude is:

FM 5πd3pρjv2 vpjjωp 2Ωj ð1:18Þ
where ωp is the angular velocity of particle rotation, and Ω is the half

of fluid vorticity. It has been estimated that the ratio of Magnus force

to the drag force is 0.04 for a 1-μm particle and 3 for a 10-μm particle.

However, experimental studies have shown that in most regions of the

flow field, particles do not rotate due to fluid viscosity. Therefore,

except in the region adjacent to the wall, the Magnus force is not

important.

1.3.4.2 Saffman Force

If the particle is sufficiently large and there is a large velocity gradient in the

flow field (for example, near the wall), there will be a particle-lifting force

called the Saffman force. Its magnitude is

Fs 5 1:6ðμρÞ1=2d2p
����v2 vp

����@v@y
����
1=2

ð1:19Þ

The ratio of the Saffman force to the Magnus force is much greater than

unity; hence the Saffman force may play an important role, in particular in

the region of a large velocity gradient, such as in the recirculation region and

the near-wall region.

1.3.4.3 Particle Thermophoresis, Electrophoresis,
and Photophoresis

Tiny particles smaller than 1 μm may move under the effects of so-called

“thermophoresis,” “electrophoresis,” and “photophoresis,” caused by a large
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temperature gradient, electric field gradient, and nonuniform light radiation,

respectively. The forces of thermophoresis and electrophoresis can be

estimated by

FTj 52 4:5ν2ðρ=TÞdp λð2λ1λpÞ
� �@T

@xj

FE 5 ðπ=6Þρpd3pqE
ð1:20Þ

where λ and λp are the gas and particle thermoconductivities, respectively,

and E and q are electric field strength and particle electric charge, respec-

tively. All of these forces are significant merely for submicron or ultrafine

particles.

1.3.5 Generalized Particle Motion Equation

Eq. (1.11) is a very simple particle motion equation. C.M. Tchen [7], using

a method of intuitive superposition of various possible forces, proposed a

generalized particle motion equation, with Stoke drag and accounting for

the Magnus force, Saffman force, thermophoresis, and electrophoresis

forces, as

mp

dvpi

dtp
5Fdi 1Fvmi 1Fpi 1FBi 1FMi 1Fsi 1FTi 1FEi 1

. . .:5 3πdpμðvi 2 vpiÞ1 0:5ðπd3p=6Þρ
d

dtp
ðvi 2 vpiÞ1

ðπd3p=6Þρ
dvi

dt
1 1:5ðπρμÞ1=2d2p

ðt
2N

d

dτ
ðvi 2 vpiÞðτ2 tÞdτ1

FMi 1Fsi 1FTi 1FEi 1 . . .:

ð1:21Þ

where the first, second, third, and fourth terms on the right-hand side of

Eq. (1.21) denote the drag force, virtual-mass force, pressure-gradient force,

and Basset force (due to unsteady flow), respectively. It should be noted that

in most cases the forces other than the drag force are of minor importance,

so the approximation made in Eq. (1.11) is still valid.

1.3.6 Recent Studies on Particle Dynamics

Sommerfeld and Kussin [8] studied the forces acting on particles of irregular

shapes. Zhang and Lin [9] studied the motion, its orientation, and forces act-

ing on elliptical particles. Bagchi and Balachandar [10] give the detailed

flow field around a single particle using direct numerical simulation (DNS).

Sundaresan and Cate [11] show the detailed flow field around several
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particles using a Lattice�Boltzmann simulation. From these simulation

results the exact forces acting on the particles can be obtained. For example,

it is found that the virtual mass force can be neglected, if the ratio of the

fluid material density to the particle material density is small. The effect of

small-scale turbulence on the forces acting on particles is also studied.

Michaelides [12,13] systematically summarized the research results of

forces and heat and mass transfer acting on particles and proposed a more

comprehensive particle motion equation. A comparison was made between

the classical analytic solutions and the recent results of DNS and

Lattice�Boltzmann simulation results. For example, the effect of particle

concentration on particle drag force was discussed.

Alternatively, in some cases the electric forces and van der Waals forces

are also considered when particles are located in the electric field and are

very near to each other. The contact force and collision forces between parti-

cles should be considered for dense gas-particle flows. For further details the

reader should refer to Refs [14,15].
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Chapter 2

Basic Concepts and Description
of Turbulence

2.1 INTRODUCTION

As this book is related to multiphase turbulent reacting flows, some knowledge

of the fundamental concepts and description of turbulence are introduced. More

than 100 years ago, Osborn Reynolds (1883�94) first indicated that flows can

be either laminar or turbulent by observing injected dyed water flow in a tube. A

parameter called the Reynolds number Re5 vd=ν (where v is the velocity, d is

the size, and ν is the kinematic viscosity) is used to identify these two flow

regimes. He first suggested the decomposition of the flow variables into time-

averaged and fluctuation quantities for mathematically analyzing turbulent flows.

Turbulent flows widely occur in nature and engineering, particular in

astronomy and natural water bodies. In engineering facilities, turbulent flows

are encountered in fluid machines, heat exchangers, and combustors, because

frequently in these facilities the fluid velocity is higher, and the geometrical

sizes are large, in other words, the Reynolds number is large. However, in

some cases, even if the Re number is not large, but there are rough walls and

flow separation by obstacles, turbulence may also be produced.

Examples of turbulent flows are the discharge of smoke from a stack, as shown

in Fig. 2.1, and a turbulent gas jet flame, as shown in Fig. 2.2. The flows of small

soot particles and combustion products show on one hand the irregular behavior of

instantaneous gas flows, but on the other hand, some organized structures—the so-

called “coherent structures.” Therefore, turbulent flows have both random and

organized structures. Fig. 2.3 shows the vorticity map of a sudden-expansion flow

by large-eddy simulation (LES). It gives the detailed turbulence structures. It can

be seen that there are different length scales of eddies in turbulent flows.

2.2 TIME AVERAGING

Let us consider a variable ~aðx; tÞ changing with time at a given spatial loca-

tion of the turbulent flow field. O. Reynolds first introduced the concept of

time averaging of a variable φ [1] as:

φðx; y; zÞ5 lim
τ-N

1
τ

ðτ
0

φðx; y; z; tÞdt ð2:1Þ
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Here φ may be any variable in the turbulent flow field, such as the veloc-

ity component vi, or temperature T (enthalpy h), or species concentration Ys.

The time-averaging period τ must be much larger in comparison with the

integral time scale of turbulent fluctuation, but should be smaller than the

macroscopic time period of unsteady flows, such as the wavy flows. The so-

called Reynolds’ expansion is defined as:

φ5φ1φ0; φ5 vi; TðhÞ; Ys

φ5φ; φ0 5 0; φ0ψ0 6¼ 0
ð2:2Þ

For compressible flows, the so-called Favre averaging or density-weighed

averaging usually is used, and is defined as:

φ5 ~φ1φv; ~φ5 ρφ=ρ φv 6¼ 0 ρφv5 0 ð2:3Þ

2.3 PROBABILITY DENSITY FUNCTION

A different description of the fluctuation of a variable is the so-called proba-

bility density function (PDF). The PDF-p(f) is defined as follows: the

FIGURE 2.2 Turbulent CH4�air flame.

FIGURE 2.3 Vorticity map of a sudden-expansion flow.

FIGURE 2.1 Stack smoke.
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