Unit 1
FInding My
Niche

Have the courage to follow your heart and intuition.

They somehow know what you truly want to become.

— Steve Jobs

Most people overestimate what they can do in one year

and underestimate what they can do in ten years.

— Bill Gates

L an=

Advance(y English Reading and Writing 1
=R J &5 CEEXX

INFORMATION TECHNOLOGY continues to change the way we live, play,
and do business. The dominance of the IT job market is due in part to numerous
factors, including the prolific growth of the Internet and e-commerce, lower
hardware and software prices that allow more businesses to upgrade their technology,
increased demand for information security specialists spurred by the escalating
frequency and sophistication of cyber-crimes, the advent of smarter applications that
enable companies to analyze data and develop unprecedented business intelligence,
and the dawn of the mobile computing era. However, despite rapid growth and
increased opportunity, simply showing up will not guarantee success. The IT job
market will continue to get more competitive as people go where the money and jobs
are. This is why it’s important to clearly identify your career objectives and develop
a learning plan with the necessary skills, computer training and IT certifications to

build a competitive edge and achieve your goals.

Section

Pre-reading Activities
1. Check (V) the statements which you think are important for programmers.

[] a) Math skills

[J b) Good design

[] c) Attention to details

[J d) Patience

[e) Self-learning skills

[) Logical, precise, rigorous thinking

[] g) Problem-solving skills

] h) Good communication skills

2. Work in pairs and discuss the following questions.

a) What job in IT field attracts you most? Why?
b) What should you do before you choose your career?

¢) Why do IT majors need to learn math?

Unit 1 Finding My Niche

1 TextIN

1. Many people want to know if they have what it takes to be a good programmer. There’s

What Does It Take to Be a Programmer?

no simple, check-these-boxes answer to the question, but there are some helpful traits that you

may have or that you can develop.

2. Do I need to know Math? First, let me eliminate a myth: some people think that math
skills are important, but I’ve seen great mathematicians who are mediocre programmers and lots

of great programmers who are certainly not mathematicians (and probably never expected to be).

3. Programming is more of a designer’s task—to be a good programmer, having an eye for
style and good design is extremely helpful. I don’t mean the type of style that governs where you
put pieces of syntax. For instance, in C, there are several places where you can put curly braces'

to surround blocks of code, and while there are heated debates about whether

if (...)
if (...) {)
\ is better than | {

}

4. These are small points of little consequence, and as long as you are consistent,
this trait will eventually come naturally. What I really mean by style is that you have to

have a good sense for discriminating between “good” and “bad” approaches to attacking problems.

5. Design is important. When you first sit down to write a program, you probably don’t know
exactly what it should do (or how to do it). If you're disciplined about it, you’ll take some time
to plan things out on paper and figure out more or less what you’d like your program to do. That’s
great, but it won’t substitute for having actually used the program and noticed that, yes, it would be

fantastic to add this one little feature here.

6. The secret is that adding little features can be very hard! This seems surprising to someone
who’s never programmed before: all you need to do is have it print’ this one piece of data, or take
this one type of input, etc. The problem is that inside the program, the architecture might not
be designed to support that kind of information. For instance, let’s say that you wanted to move
a button from one place to another on a simple graphical user interface®. If the program has
been well-designed, this shouldn’t be too much of a problem, but if it hasn’t, well, consider this
possibility: the position of the button is governed by its location in pixels. All button locations are
hard-coded® into the program. Now, if you move one button, you may have to go back and change
where every single button is located both in the routine to draw the buttons and in the routine to

accept the input. This can be quite a hassle!

7. Clearly, you want some way of having a notion of button positions that isn’t quite so hard

to change. But if you started out your program and didn’t consider that it would be nice to be able

Advance(y English Reading and Writing 1
=R J &5 CEEXX

to move the buttons around, you have to go back and change possibly 20 or more lines of code (say,
two for each button) just to move one of ten buttons. And if you make a mistake with one button,

you’re likely to see unforeseen results whose cause is hard to discover.

8. This kind of program design is brittle: it can work at first, but when you need to change
something, it’s not flexible. Each button depends on every other button and relies on the
programmer to make the changes. A much better approach would be one in which the positions of
buttons when they’re drawn and when they’re clicked on are linked—changing one wouldn’t mean

you have to change the other.

9. The more willing you are to put in the up-front thinking before designing your program,
the easier you will find the actual writing of code. This is not to say that when you’re first learning
you shouldn’t just write some simple programs without worrying too much about these issues. But

you should be prepared to pay attention to these things and what problems your first programs did have.

10. The second trait that you need is patience. At some point in your programming career, you
will certainly make small mistakes that cost you hours of debugging only to realize that you were
misspelling a variable name so the compiler thought it was another variable. These things happen
even to good programmers—and the better you get as you practice, the more you find that your
bugs are interesting—but still hard to find. If you’re not willing to patiently work through possible
hypotheses and test each one in turn, you’re probably going to find programming to be frustrating

as much as it is exhilarating.

1. If you’re looking to eventually have a programming job full-time, you’ll want to acquire
exceptional patience because you’ll almost certainly be expected to spend a great deal of time
working on documenting your code for other programmers and possibly even hunting bugs in

someone else’s code.

12. The benefit of all of this is that you gain an eye for small details that can have ripple
effects and you become much better at the process of asking yourself what could go wrong and
how you can test it. Finally, you have a lot of tools at your disposal to help mitigate the problems;
you can use the compiler to find syntax errors and debuggers to find runtime errors®. Life is not

bleak: not all of your time will be spent finding bugs!

13. Third, you need to be able to think in a logical, precise, rigorous way—you have to be
willing and able to specify all of the details in a process and understand exactly what goes into
it. This can lead to some amazing realizations—for instance, you will understand almost anything
better once you’ve written a program to actually do it. One story goes that a group of programmers
discovered a flaw in a state law passed by the legislature when trying to program the logic of the
law—it turned out two paragraphs made contradictory statements! Nobody noticed until they tried
to make it easy enough so that a computer could understand it. It means that you need to have
the ability to eventually understand the entirety of a process at the level of detail required for a

computer to be able to mechanically reproduce it.

Unit 1 Finding My Niche

14. At the same time, you must be capable of framing problems the right way and be or
become a good problem solver. While your program may need to accomplish a certain task, don’t
get caught up in the first way you tried to solve the problem. For instance, if you need to store 20
phone numbers, it might make more sense to use an array than 20 separate variables. Even though
you could eventually write the program that way, it would be much better to write it with the array.
It would be a shorter program and an easier program to maintain. Often, restating the problem is a
good way of reframing it. This is a skill you’ll learn over time; you don’t need to have mastered it

before you start programming.

15. If you are persistent, willing to pay attention to issues of design and focus on both
problem solving and precise solutions to problems, you will go as far as a programmer. If not, a

programming career may turn out to be exhausting and tedious.

(Adapted from Alex Allain’s “What Does It Take to Be a Programmer?”

on Cprogramming.com, Dec. 2011)

©® New Words

trait /trert/ n. [C] element in sb’s personality; distinguishing characteristic A A4~ ;
R E RHE

eliminate /I'limmert/ vt. ~sb/sth (from sth) to remove (esp. sb/sth that is not wanted or needed)
HBR; 1EBR; HERR (JUIEALBESATERIEN /)

myth /mi6/ n. 1. [C] a story from ancient times, especially one that was told to explain

natural events or to describe the early history of a people # i 2. [C]
something that many people believe but that does not exist or is false f}
2 NGRS S0 Ak

mediocre /midr'auka(r)/ adj. not very good; second-rate; moderate; inferior in quality ANKIFHT; P
s SRR

govern /'gavn/ vt. 1.(grammar) to require to be in a certain grammatical case, voice, or
mood L ; FRE; T2 2. to influence (sth/sb) decisively; determine
B L Y N

v. to rule (a country, etc.); control or direct the public affairs of (a city,

country, etc.) Zgif (%5) 3 =, M, JA#, BFE (W,
REMAILFS)

syntax /'sintaks/ n. 1. [U] (linguistics) (rules for the) arrangement of words into phrases and
phrases into sentences 1) j%; 1 1) 45 #) 2. [U] (computer science)
the rules that describe how words and phrases are used in a computer
language [i1 1181, —FRFIIHE S IBES RISCE

discriminate /dr'skrrmmert/ vi. ~ between A and B; ~ A from B to see or make a difference (between

two things) 7351, B, X5 (i)

Advanced

=

architecture /'a:kitekt[a(r)/

graphical /'grefik(o)l/

pixel /'piksal/

routine /ru:'tim/

hassle /hesl/

brittle /'britl/

up-front /'apfrant/
debug /di'bag/

variable /'vearobl/

compiler /kom'paila(r)/

exhilarating /1g'zilorertm/
exceptional /ik'sepfonl/
document /'dokjumont/

VI.

=

VL.

adj.

Vi.

=

VL.

nglish Reading and Writing 1

‘JE
/ HiE CIEE TN

~ against sb/in favour of sb to treat (one person or group) worse/better
than others IS RiFEL (FEABHELEN)

1. [C] (computer science) the structure and organization of a
computer’s hardware or system software [i1 {8 R 454 ; 284 2. [U]
the discipline dealing with the principles of design and construction
and ornamentation of fine buildings #5524 ; Wit L5 AARlE

j. 1. relating to or presented by a graph [£|ff#f") 2. written or drawn or

engraved 1) ; HEFI)

[C] the smallest discrete component of an image or picture on a CRT
screen (usually a colored dot) (i R#s B EEAIHLIERIY)) 155

1. [C, U] an unvarying or habitual method or procedure (H %) T2
F; BF7RER. 2. [C] a computer program, or part of a program, that
performs a specific function [i1] 2%

1. [C, U] (informal) difficulty; trouble FRX5i; [RI¥E 2. [C] (informal)
disorderly fighting; dispute J#fk; GV

(informal) to annoy continually or chronically f§i------4Fiipi; ik

1. hard but easily broken; fragile fifi] 5 % f); Jifi 55 19 ; (fig.) easily
damaged; insecure 28 SR ; ANZE4) 2. (of a sound) unpleasantly

hard and sharp (87535) 2% 3. (of a person) lacking in warmth;

hard (F8N) ¥3IRE; MEAHALE)

. advance; frank and honest $i£ 1Y ; TSGR ; HZEN)

1. (informal) to find and remove defects in (a computer program, machine,
ete.) FrlIIFHERR CIFEMURRT . PLER%) ifkhE 2. (informal)
to find and remove hidden microphones from (a room, house, etc.) M

(%) IR RIRGIVTas

. 1. varying; changeable Z5{b [; BJZSH); 578 H) 2. (astronomy) (of

A==

a star) periodically varying in brightness (1858) 72 FEIHAALT
1. [C] (often pl.) variable thing or quantity 1] A% f{) ZE4y; W] A5 fY) 15
2. [C] (technical) a mathematical quantity which can represent several

different amounts A% i

1. [C] someone who collects different pieces of information to be used
in a book, report, or list Zw#E# 2. [C] (technical) a set of instructions in
a computer that changes a computer language known to the computer
user into the form needed by the computer M & 2% i85 IR GRS EfE
FPHIRER s dwidds

j. very exciting and enjoyable fdi AT 241; 4 AIREH
j. very unusual; outstanding S5 105 ZEUA; FERED; ZSHED; 28T

[C] paper, form, book, etc. giving information about sth; evidence or

proof of sth 34 25305 SCik

1. to prove or support (sth) with documents FH SCA-IFSZEIERA (3
) 2. torecord the details of an event, a process, etc. JC5%; 2055

mitigate /'mrtigert/

debugger /di:'bago/

runtime/rantarm/
bleak /blik/

rigorous /'rigoras/

legislature /'ledzislertfo/

entirety /in'tarorati/
mechanically /mr'kenikly/

frame /frerm/

array /a'rer/

reframe /r1'fremm/

persistent /po'sistont/

exhausting /1g'zo:sti/

Unit 1 Finding My Niche

BUETHPUN

vt. (formal) to make (sth) less severe, violent or painful; moderate fii (&
) WiER, FZZ; Vi

n. [C] a computer program that helps to find and correct mistakes in
other programs J&IAFEF, HEFEFRET (WIS BIK HHIF 05 A RE
JPH RS R)

n. [U] the period during which a computer program is executing iZ47H}

adj. 1. (of a landscape) bare; exposed; wind-swept (854) FE i,
MEEERY, JBTRFMY 2. (of the weather) cold and dreary (8RS) %
iy, BHUTH) 3. (fig.) not hopeful or encouraging; dismal; gloomy
TEBAH) s BHARHY; BHRH

adj. done carefully and with a lot of attention to detail 4%) ; FFZIHY;
PR R

n. [C] (formal) a group of people who have the power to make and
change laws 3T VAN ; STiEBE; S

n. [U] the state of being total and complete 27F; &4

adv.in a mechanical manner; by a mechanism; in a machinelike manner;

without feeling HUAS 7 HiHL; 732 FHL; LA
n. [C] a structure supporting or containing something HE4H

vt. 1. to express (sth) in words; compose or formulate (| 3%) £ ik
() AlE; B, HZE 2. to putor build a frame round (sth)
(A5) HEHE; (235) SE 3. (fig.) to give more information
about the setting of sth, eg. a problem (in order to define, locate, or
analyze it) ZE5 25 E. (LIGIE)@)

n. 1. [C] (computer science) collection of data arranged so that it can be
extracted by means of a special program [i1] £%4H., F45 (v 2K Fih
B —RPEHE) 2. [C] impressive display or series 1 ;
W BEY); —&%5 3. [U] (formal) clothes; clothing 7<HR ; ARZE

vt. [esp. passive] (formal) to place (esp. armed forces, troops, etc.) in
battle order #%# (Jufaf 1%)

vt. 1. to support or enclose (a picture, photograph, etc.) in a new or
different frame FE#)EE (45 X FFRHESE) 2. to look at, present,
or think of (beliefs, ideas, relationships, etc.) in a new or different way
FOrHT LS

adj. persevering; never-ceasing; continually recurring to the mind "2H§ ;
TR s U

adj. having a debilitating effect; producing exhaustion % JIRK); i
FEIRL

® Phrases and Expressions
have what it takes to have the qualities that are needed for success T K F) BT T T 1Y) i oE

Advanced

=

=g

have an eye for

have a good sense for
be disciplined about
gointo

get/be caught up in

Terms and Notes

1. curly brace
2. print
3. graphical user interface

4. hard-coded

5. runtime error

English Reading and Writing 1
5 % E 1

to have a taste or an inclination for someone or something X ---++ HEMNT
to have an ability to make reasonable judgements i} --+++- AARFHA5EE S
possessing or indicative of discipline ZZ i3 IZkA; LK)

to start to be in a particular state or condition HEN---+-- IRTS

to be absorbed or involved in sth ##5 N akFEN LIy

S, K5

s R, XA —MEARRGREE S Y.

B s, R BT A Bm i A R RS e
WEGRSE) s HAEH) . TR RNV FP OO g, R AR AR
B AREEEDRARI Tk . P EGRE, RS
i 2 S A AR SR AR T

BT R

(Structure Analysis of the [[5)

The Question About What It Takes to Be a Good Programmer

(Para.)

. 4

The Elimination of a Myth Whether Maths Skills Are Important

(Para.)

. 4
e]

The Helpful Traits of a Successful Programmer (Paras.)
)) Logical, Precise and Be Capable of Framing
Good Design Patience) o)
Rigorous Thinking and Solving Problems
(Paras.) (Paras.)
— — (Para.) (Paras.)

Unit 1 Finding My Niche

{ Comprehension of the [I371)

A

©° N

0 N N W B~ W

. If you plan out everything, you will not need to make any change.

. Good designer should take some time to plan things out on paper.

(
(
. If the program has been well-designed, moving a button may result in a big problem. (
. Compilers can be used to find syntax errors. (

(

. Up-front thinking before designing your program makes code writing easier.

Answer the questions on the content.

What are the helpful traits of a successful programmer?

What does “having an eye for style and good design” mean in the 3rd paragraph?
What does the author really mean by “style”?

Why can it be very hard to add little features?

If all button locations are hard-coded into the program, what do you have to do when you want

to move one button?

How to avoid the situation in Question 5?

Why is patience so important to a programmer?

What’s the benefit of patiently documenting your code and debugging?

How did the group of programmers find the flaw in the state law?

. If you need to store 20 phone numbers, will it be better to use an array or 20 separate

variables? Why?

Write T (true) or F (false) for the following statements according to
the passage.

. To be a programmer, you must be very good at math. ()

. Where to put pieces of syntax shows whether the programmer has a good sense of good

design. (

)
)
)
)
)
)

. If you are a full-time programmer, you will hardly spend any time hunting bugs in someone

else’s code. ()

. Good programmers need to be able to think in a logical, precise, rigorous way. ()

10.

Restating and reframing a problem is a skill you need to possess before you become a

programmer. ()

Fill in the blanks with the information given in the text.

. It is extremely helpful for a good programmer to have an eye for and

10

Advanced

/ English Reading and Writing 1
J &5 CEEXX

. The real meaning of style is that you have to have a good sense for discriminating between

=

10.

“good” and “bad” approaches to

. Adding little features can be very hard because the might not be designed to support that

kind of information.

Moving one button can be quite a hassle because you may have to go back and change where every

single button is located both in the routine to and in the routine to

Changing one button wouldn’t mean change others, if the button positions are

The actual writing of code will be easier if you are willing to put in the before designing
your program.
In your programming career, you will certainly make small mistakes that cost you hours of

debugging only to realize that you were so the compiler thought it was another variable.
Full-time programmers must be patient because they will spend a great deal of time working
on for other programmers and possibly even in someone else’s code.
Thinking in a logical, precise and rigorous way means that you have to be willing and able
to in a process and understand exactly what goes into it.

A successful programmer must be capable of the right way and be or become a good

problem solver.

(Vocabulary G

1.

IV. Fill in the blanks with the given words. You may not use any of the

words more than once. Change the form if necessary.

A.
mediocre rigorous hypothesis hassle logical
bleak eliminate mitigate persistent govern
discriminate reframe caught brittle myth
disciplined take exhausting trait variable
How well a person recovers from stroke is highly and highly individual.

2. In his 200 interviews, Belk found that the most obsessive collectors had one overwhelming

3.

in common: loneliness.

It was so clear that everything was carefully planned; we the possibility that it could

have been an accident.

