
Unit 1
Finding My

Niche

Have the courage to follow your heart and intuition.

They somehow know what you truly want to become.

	 ― Steve Jobs

Most people overestimate what they can do in one year

and underestimate what they can do in ten years.

	 ― Bill Gates

2

English Reading and Writing  1
英语 读 写 教 程 1 高级

Advanced

Pr
ev

ie
w INFORMATION TECHNOLOGY continues to change the way we live, play,

and do business. The dominance of the IT job market is due in part to numerous
factors, including the prolific growth of the Internet and e-commerce, lower
hardware and software prices that allow more businesses to upgrade their technology,
increased demand for information security specialists spurred by the escalating
frequency and sophistication of cyber-crimes, the advent of smarter applications that
enable companies to analyze data and develop unprecedented business intelligence,
and the dawn of the mobile computing era. However, despite rapid growth and
increased opportunity, simply showing up will not guarantee success. The IT job
market will continue to get more competitive as people go where the money and jobs
are. This is why it’s important to clearly identify your career objectives and develop
a learning plan with the necessary skills, computer training and IT certifications to
build a competitive edge and achieve your goals.

Section

A
Pre-reading Activities
1.	 Check (√) the statements which you think are important for programmers.

  a) Math skills

  b) Good design

  c) Attention to details

  d) Patience

  e) Self-learning skills

  f) Logical, precise, rigorous thinking

  g) Problem-solving skills

  h) Good communication skills

2.	 Work in pairs and discuss the following questions.

a) What job in IT field attracts you most? Why?

b) What should you do before you choose your career?

c) Why do IT majors need to learn math?

3

Finding My NicheUnit 1

What Does It Take to Be a Programmer?
1. Many people want to know if they have what it takes to be a good programmer. There’s

no simple, check-these-boxes answer to the question, but there are some helpful traits that you
may have or that you can develop.

2. Do I need to know Math? First, let me eliminate a myth: some people think that math
skills are important, but I’ve seen great mathematicians who are mediocre programmers and lots
of great programmers who are certainly not mathematicians (and probably never expected to be).

3. Programming is more of a designer’s task—to be a good programmer, having an eye for
style and good design is extremely helpful. I don’t mean the type of style that governs where you
put pieces of syntax. For instance, in C, there are several places where you can put curly braces1
to surround blocks of code, and while there are heated debates about whether

if (...) {

}
  is better than 

if (...)

{

}

4. These are small points of little consequence, and as long as you are consistent,
this trait will eventually come naturally. What I really mean by style is that you have to
have a good sense for discriminating between “good” and “bad” approaches to attacking problems.

5. Design is important. When you first sit down to write a program, you probably don’t know
exactly what it should do (or how to do it). If you’re disciplined about it, you’ll take some time
to plan things out on paper and figure out more or less what you’d like your program to do. That’s
great, but it won’t substitute for having actually used the program and noticed that, yes, it would be
fantastic to add this one little feature here.

6. The secret is that adding little features can be very hard! This seems surprising to someone
who’s never programmed before: all you need to do is have it print2 this one piece of data, or take
this one type of input, etc. The problem is that inside the program, the architecture might not
be designed to support that kind of information. For instance, let’s say that you wanted to move
a button from one place to another on a simple graphical user interface3. If the program has
been well-designed, this shouldn’t be too much of a problem, but if it hasn’t, well, consider this
possibility: the position of the button is governed by its location in pixels. All button locations are
hard-coded4 into the program. Now, if you move one button, you may have to go back and change
where every single button is located both in the routine to draw the buttons and in the routine to
accept the input. This can be quite a hassle!

7. Clearly, you want some way of having a notion of button positions that isn’t quite so hard
to change. But if you started out your program and didn’t consider that it would be nice to be able

Text	A

4

English Reading and Writing  1
英语 读 写 教 程 1 高级

Advanced

to move the buttons around, you have to go back and change possibly 20 or more lines of code (say,
two for each button) just to move one of ten buttons. And if you make a mistake with one button,
you’re likely to see unforeseen results whose cause is hard to discover.

8. This kind of program design is brittle: it can work at first, but when you need to change
something, it’s not flexible. Each button depends on every other button and relies on the
programmer to make the changes. A much better approach would be one in which the positions of
buttons when they’re drawn and when they’re clicked on are linked—changing one wouldn’t mean
you have to change the other.

9. The more willing you are to put in the up-front thinking before designing your program,
the easier you will find the actual writing of code. This is not to say that when you’re first learning
you shouldn’t just write some simple programs without worrying too much about these issues. But
you should be prepared to pay attention to these things and what problems your first programs did have.

10. The second trait that you need is patience. At some point in your programming career, you
will certainly make small mistakes that cost you hours of debugging only to realize that you were
misspelling a variable name so the compiler thought it was another variable. These things happen
even to good programmers—and the better you get as you practice, the more you find that your
bugs are interesting—but still hard to find. If you’re not willing to patiently work through possible
hypotheses and test each one in turn, you’re probably going to find programming to be frustrating
as much as it is exhilarating.

11. If you’re looking to eventually have a programming job full-time, you’ll want to acquire
exceptional patience because you’ll almost certainly be expected to spend a great deal of time
working on documenting your code for other programmers and possibly even hunting bugs in
someone else’s code.

12. The benefit of all of this is that you gain an eye for small details that can have ripple
effects and you become much better at the process of asking yourself what could go wrong and
how you can test it. Finally, you have a lot of tools at your disposal to help mitigate the problems;
you can use the compiler to find syntax errors and debuggers to find runtime errors5. Life is not
bleak: not all of your time will be spent finding bugs!

13. Third, you need to be able to think in a logical, precise, rigorous way—you have to be
willing and able to specify all of the details in a process and understand exactly what goes into
it. This can lead to some amazing realizations—for instance, you will understand almost anything
better once you’ve written a program to actually do it. One story goes that a group of programmers
discovered a flaw in a state law passed by the legislature when trying to program the logic of the
law—it turned out two paragraphs made contradictory statements! Nobody noticed until they tried
to make it easy enough so that a computer could understand it. It means that you need to have
the ability to eventually understand the entirety of a process at the level of detail required for a
computer to be able to mechanically reproduce it.

5

Finding My NicheUnit 1

14. At the same time, you must be capable of framing problems the right way and be or
become a good problem solver. While your program may need to accomplish a certain task, don’t
get caught up in the first way you tried to solve the problem. For instance, if you need to store 20
phone numbers, it might make more sense to use an array than 20 separate variables. Even though
you could eventually write the program that way, it would be much better to write it with the array.
It would be a shorter program and an easier program to maintain. Often, restating the problem is a
good way of reframing it. This is a skill you’ll learn over time; you don’t need to have mastered it
before you start programming.

15. If you are persistent, willing to pay attention to issues of design and focus on both
problem solving and precise solutions to problems, you will go as far as a programmer. If not, a
programming career may turn out to be exhausting and tedious.

(Adapted from Alex Allain’s “What Does It Take to Be a Programmer?”
on Cprogramming.com, Dec. 2011)

  New Words
trait /treɪt/	 n.	 �[C] element in sb’s personality; distinguishing characteristic 人的个性；

显著的特点；特征

eliminate /ɪ'lɪmɪneɪt/	 vt.	 �~ sb/sth (from sth) to remove (esp. sb/sth that is not wanted or needed)
消除；清除；排除（尤指不必要或不需要的某人 / 某物）

myth /mɪθ/	 n.	 �1. [C] a story from ancient times, especially one that was told to explain
natural events or to describe the early history of a people 神话  2. [C]
something that many people believe but that does not exist or is false 很
多人相信却不存在或不真实的事或想法

mediocre /miːdɪ'əʊkə(r)/	 adj.	 �not very good; second-rate; moderate; inferior in quality 不太好的；平

庸的；第二流的

govern /'gʌvn/	 vt.	 �1.(grammar) to require to be in a certain grammatical case, voice, or
mood 支配；限定；需要 2. to influence (sth/sb) decisively; determine
支配某事物 / 某人；决定 

	 v.	 �to rule (a country, etc.); control or direct the public affairs of (a city,
country, etc.) 统治（国家等）；控制，支配，治理，管辖（城市﹑国

家等的公共事务）

syntax /'sɪntæks/	 n.	 �1. [U] (linguistics) (rules for the) arrangement of words into phrases and
phrases into sentences 句 法； 语 句 结 构  2. [U] (computer science)
the rules that describe how words and phrases are used in a computer
language [计] 语法，一种程序设计语言的拼写和文法

discriminate /dɪ'skrɪmɪneɪt/	 vt.	 �~ between A and B; ~ A from B to see or make a difference (between
two things) 分别， 辨别， 区分（两事物）

6

English Reading and Writing  1
英语 读 写 教 程 1 高级

Advanced

	 vi.	 �~ against sb/in favour of sb to treat (one person or group) worse/better
than others 歧视或偏袒（某人或某些人）

architecture /'ɑːkɪtektʃə(r)/	 n.	 �1. [C] (computer science) the structure and organization of a
computer’s hardware or system software [计] 体系结构；架构  2. [U]
the discipline dealing with the principles of design and construction
and ornamentation of fine buildings 建筑学；设计建造结构的科学

graphical /'græfɪk(ə)l/	 adj.	�1. relating to or presented by a graph 图解的  2. written or drawn or
engraved 绘画的；生动的

pixel /'pɪksəl/	 n.	 �[C] the smallest discrete component of an image or picture on a CRT
screen (usually a colored dot) （显示器或电视机图像的）像素

routine /ruː'tiːn/	 n.	 �1. [C, U] an unvarying or habitual method or procedure（日常）程

序；例行程式  2. [C] a computer program, or part of a program, that
performs a specific function [计] 程序

hassle /'hæsl/	 n.	 �1. [C, U] (informal) difficulty; trouble 麻烦；困难  2. [C] (informal)
disorderly fighting; dispute 激战；争吵 

	 vt.	 �(informal) to annoy continually or chronically 使……烦恼；搅扰

brittle /'brɪtl/	 adj.	�1. hard but easily broken; fragile 硬而易碎的；脆弱的；(fig.) easily
damaged; insecure 容易损坏的；不安全的 2. (of a sound) unpleasantly
hard and sharp （指声音）尖利的 3. (of a person) lacking in warmth;
hard （指人）冷淡的；难相处的

up-front /'ʌpfrʌnt/	 adj.	advance; frank and honest 提前的；预先的；坦率的

debug /ˌdiː'bʌg/	 vt.	 �1. (informal) to find and remove defects in (a computer program, machine,
etc.) 检测并排除（计算机程序﹑机器等）中的故障  2. (informal)
to find and remove hidden microphones from (a room, house, etc.) 从

（房屋等）中找出并去除窃听器

variable /'veərɪəbl/	 adj.	�1. varying; changeable 变化的；可变的；易变的 2. (astronomy) (of
a star) periodically varying in brightness（指星星）亮度周期变化的

	 n.	 �1. [C] (often pl.) variable thing or quantity 可变的事物；可变的量 
2. [C] (technical) a mathematical quantity which can represent several
different amounts 变量

compiler /kəm'paɪlə(r)/	 n.	 �1. [C] someone who collects different pieces of information to be used
in a book, report, or list 编辑者 2. [C] (technical) a set of instructions in
a computer that changes a computer language known to the computer
user into the form needed by the computer 从高级语言原始码制造程

序的程序；编译器

exhilarating /ɪg'zɪləreɪtɪŋ/	 adj.	very exciting and enjoyable 使人高兴的；令人振奋的

exceptional /ɪk'sepʃənl/	 adj.	�very unusual; outstanding 异常的；罕见的；特殊的；杰出的；突出的

document /'dɒkjʊmənt/	 n.	 �[C] paper, form, book, etc. giving information about sth; evidence or
proof of sth 文件；公文；文献

	 vt.	 �1. to prove or support (sth) with documents 用文件证实或证明（某

事） 2. to record the details of an event, a process, etc. 记录；纪实性

7

Finding My NicheUnit 1

地描述

mitigate /'mɪtɪgeɪt/	 vt.	 �(formal) to make (sth) less severe, violent or painful; moderate 使（某

事物）减轻，和缓；节制

debugger /diː'bʌgə/	 n.	 �[C] a computer program that helps to find and correct mistakes in
other programs 调试程序，排错程序（可帮助找出并修正其他程

序中的错误）

runtime/'rʌntaɪm/	 n.	 [U] the period during which a computer program is executing 运行时

bleak /bliːk/	 adj.	�1. (of a landscape) bare; exposed; wind-swept（指景物）荒凉的，

裸露的，光秃秃的 2. (of the weather) cold and dreary（指天气）寒

冷的，阴沉的 3. (fig.) not hopeful or encouraging; dismal; gloomy
无望的；阴郁的；黯淡的	

rigorous /'rɪgərəs/	 adj.	�done carefully and with a lot of attention to detail 严格的；苛刻的；

严厉的；严酷的

legislature /'ledʒɪsleɪtʃə/	 n.	 �[C] (formal) a group of people who have the power to make and
change laws 立法机构；立法院；议会

entirety /ɪn'taɪərətɪ/	 n.	 �[U] the state of being total and complete 全部；完全

mechanically /mɪ'kænɪklɪ/	 adv.	�in a mechanical manner; by a mechanism; in a machinelike manner;
without feeling 机械方面地；物理上地；机械地

frame /freɪm/	 n.	 �[C] a structure supporting or containing something 框架

	 vt.	 �1. to express (sth) in words; compose or formulate （用文字）表达

（某事）；创作；拟定；制定   2. to put or build a frame round (sth)
（给某物）镶框；（给某物）做框 3. (fig.) to give more information
about the setting of sth, eg. a problem (in order to define, locate, or
analyze it) 综合更多信息（以锁定问题）

array /ə'reɪ/	 n.	 �1. [C] (computer science) collection of data arranged so that it can be
extracted by means of a special program [计] 数组，阵列（可经某种

程序取出的一系列数据） 2. [C] impressive display or series 展示；
显示；陈列；一系列 3. [U] (formal) clothes; clothing 衣服；服装 

	 vt.	 �[esp. passive] (formal) to place (esp. armed forces, troops, etc.) in
battle order 部署（尤指兵力等）

reframe /rɪ'freɪm/	 vt.	 �1. to support or enclose (a picture, photograph, etc.) in a new or
different frame 再构造（给……装上新框架） 2. to look at, present,
or think of (beliefs, ideas, relationships, etc.) in a new or different way
重新审视或思考

persistent /pə'sɪstənt/	 adj.	�persevering; never-ceasing; continually recurring to the mind 坚持的；

持续的；固执的

exhausting /ɪg'zɔːstɪŋ/	 adj.	�having a debilitating effect; producing exhaustion 使筋疲力尽的；使

耗尽的

  Phrases and Expressions
have what it takes	 to have the qualities that are needed for success 拥有达到成功所需的品质

8

English Reading and Writing  1
英语 读 写 教 程 1 高级

Advanced

have an eye for	 to have a taste or an inclination for someone or something 对……有鉴别力

have a good sense for	 to have an ability to make reasonable judgements 对……有很好的判别能力

be disciplined about	 possessing or indicative of discipline 受过训练的；遵守规则的

go into	 to start to be in a particular state or condition 进入……状态

get/be caught up in	 to be absorbed or involved in sth 被卷入或陷入某事物中

Terms and Notes
1. curly brace	� 花括号，大括号

2. print	� 输出；显示。这是一个基本的编程语言命令。

3. graphical user interface	� 图形用户界面，指采用图形方式显示的计算机操作环境用户接口

4. hard-coded	� 硬编码的；写死的。在计算机程序或文本编辑中，指将可变变

量用一个固定值来代替的方法。用这种方法编译后，如果以后

需要更改此变量将非常困难。

5. runtime error	� 运行时错误

Structure Analysis of the Text

Part I

The Question About What It Takes to Be a Good Programmer    （Para.  )

Part II

The Elimination of a Myth Whether Maths Skills Are Important    （Para.  )

Part III

The Helpful Traits of a Successful Programmer    （Paras.  )

Good Design

(Paras.  )

Patience

(Paras.  )

Logical, Precise and
Rigorous Thinking

(Para.  )

Be Capable of Framing
and Solving Problems

(Paras.  )

9

Finding My NicheUnit 1

Comprehension of the Text

I.	 Answer the questions on the content.

1.	� What are the helpful traits of a successful programmer?

2.	� What does “having an eye for style and good design” mean in the 3rd paragraph?

3.	� What does the author really mean by “style”?

4.	� Why can it be very hard to add little features?

5.	� If all button locations are hard-coded into the program, what do you have to do when you want
to move one button?

6.	� How to avoid the situation in Question 5?

7.	� Why is patience so important to a programmer?

8.	� What’s the benefit of patiently documenting your code and debugging?

9.	� How did the group of programmers find the flaw in the state law?

10.	� If you need to store 20 phone numbers, will it be better to use an array or 20 separate
variables? Why?

II.	 Write T (true) or F (false) for the following statements according to
the passage.

  1.	� To be a programmer, you must be very good at math. � (  )

  2.	� Where to put pieces of syntax shows whether the programmer has a good sense of good
design. � (  )

  3.	� If you plan out everything, you will not need to make any change. � (  )

  4.	� Good designer should take some time to plan things out on paper. � (  )

  5.	� If the program has been well-designed, moving a button may result in a big problem. � (  )

  6.	� Compilers can be used to find syntax errors. � (  )

  7.	� Up-front thinking before designing your program makes code writing easier. � (  )

  8.	� If you are a full-time programmer, you will hardly spend any time hunting bugs in someone
else’s code. � (  )

  9.	� Good programmers need to be able to think in a logical, precise, rigorous way. � (  )

10.	� Restating and reframing a problem is a skill you need to possess before you become a
programmer. � (  )

III.	 Fill in the blanks with the information given in the text.

  1.	� It is extremely helpful for a good programmer to have an eye for      and      .

10

English Reading and Writing  1
英语 读 写 教 程 1 高级

Advanced

  2.	� The real meaning of style is that you have to have a good sense for discriminating between
“good” and “bad” approaches to      .

  3.	� Adding little features can be very hard because the      might not be designed to support that
kind of information.

  4.	� Moving one button can be quite a hassle because you may have to go back and change where every
single button is located both in the routine to      and in the routine to      .

  5.	� Changing one button wouldn’t mean change others, if the button positions are      .

  6.	� The actual writing of code will be easier if you are willing to put in the      before designing
your program.

  7.	� In your programming career, you will certainly make small mistakes that cost you hours of
debugging only to realize that you were      so the compiler thought it was another variable.

  8.	� Full-time programmers must be patient because they will spend a great deal of time working
on      for other programmers and possibly even      in someone else’s code.

  9.	� Thinking in a logical, precise and rigorous way means that you have to be willing and able
to      in a process and understand exactly what goes into it.

10.	� A successful programmer must be capable of      the right way and be or become a good
problem solver.

Vocabulary Exercise

IV.	Fill in the blanks with the given words. You may not use any of the
words more than once. Change the form if necessary.

	 A.

mediocre	 rigorous	 hypothesis	 hassle	 logical

bleak	 eliminate	 mitigate	 persistent	 govern

discriminate	 reframe	 caught	 brittle	 myth

disciplined	 take	 exhausting	 trait	 variable

  1.	� How well a person recovers from stroke is highly      and highly individual.

  2.	� In his 200 interviews, Belk found that the most obsessive collectors had one overwhelming
     in common: loneliness.

  3.	� It was so clear that everything was carefully planned; we      the possibility that it could
have been an accident.

