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446 Lagrange Multiplier Algorithms Chap. 5

In this chapter, we consider several computational methods for problems
with equality and inequality constraints. All of these methods use some
form of Lagrange multiplier estimates and typically provide in the limit not
just stationary points of the original problem but also associated Lagrange
multipliers. Additional methods using Lagrange multipliers will also be
discussed in the next two chapters after the development of duality theory.

The methods of this chapter are based on one of the following two
ideas:

(a) Using a penalty or a barrier function. Here a constrained problem
is converted into a sequence of unconstrained problems, which in-
volve an added high cost either for infeasibility or for approaching
the boundary of the feasible region via its interior. These meth-
ods are discussed in Sections 5.1-5.3, and include interior point linear
programming methods based on the logarithmic barrier function, aug-
mented Lagrangian methods, and sequential quadratic programming.

(b) Solving the necessary optimality conditions , viewing them as a sys-
tem of equations and/or inequalities in the problem variables and the
associated Lagrange multipliers. These methods are first discussed in
Section 5.1.2 in a specialized linear programming context, and later
in Section 5.4. For nonlinear programming problems, they guarantee
only local convergence in their pure form; that is, they converge only
when a good solution estimate is initially available. However, their
convergence region can be enlarged by using various schemes that
involve penalty and barrier functions.

The methods based on these two ideas turn out to be quite intercon-
nected, and as an indication of this, we note the derivations of optimality
conditions using penalty and augmented Lagrangian techniques in Chapter
4. Generally, the methods of this chapter are particularly well-suited for
nonlinear constraints, because, contrary to the feasible direction methods
of Chapter 3, they do not involve projections or direction finding sub-
problems, which tend to become more difficult when the constraints are
nonlinear. Still, however, some of the methods of this chapter are very well
suited for linear and quadratic programming problems, thus illustrating the
power of blending descent, penalty/barrier, and Lagrange multiplier ideas
within a common algorithmic framework.

5.1 BARRIER AND INTERIOR POINT METHODS

Barrier methods apply to inequality constrained problems of the form

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(5.1)
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Figure 5.1.1. Form of a barrier function.

where X is a closed set, and f : �n �→ � and gj : �n �→ � are given
functions, with f continuous. The interior (relative to X) of the set defined
by the inequality constraints is

S =
{
x ∈ X | gj(x) < 0, j = 1, . . . , r

}
.

We assume that S is nonempty and that any feasible point that is not in
S can be approached arbitrarily closely by a vector from S; that is, given
any feasible x and any δ > 0, there exists x̃ ∈ S such that ‖x̃ − x‖ ≤ δ.
This property holds automatically if X and the constraint functions gj are
convex, as can be seen using the line segment principle [Prop. B.7(a) in
Appendix B].

In barrier methods, we add to the cost a function B(x) that is defined
in the interior set S. This function, called the barrier function, is contin-
uous and goes to ∞ as any one of the constraints gj(x) approaches 0 from
negative values. The two most common examples of barrier functions are:

B(x) = −
r∑

j=1

ln
{−gj(x)

}
, logarithmic,

B(x) = −
r∑

j=1

1

gj(x)
, inverse.

Note that both of these barrier functions are convex if all the constraint
functions gj are convex. Figure 5.1.1 illustrates the form of B(x).

The barrier method is defined by introducing a parameter sequence
{εk} with

0 < εk+1 < εk, k = 0, 1, . . . , εk → 0.



448 Lagrange Multiplier Algorithms Chap. 5

It consists of finding

xk ∈ argmin
x∈S

{
f(x) + εkB(x)

}
, k = 0, 1, . . .

Since the barrier function is defined only on the interior set S, the successive
iterates of any method used for this minimization must be interior points.
If X = �n, one may use unconstrained methods such as Newton’s method
with the stepsize properly selected to ensure that all iterates lie in S; an
initial interior point can be obtained as discussed in Section 3.2. Note
that the barrier term εkB(x) goes to zero for all interior points x ∈ S as
εk → 0. Thus the barrier term becomes increasingly inconsequential as far
as interior points are concerned, while progressively allowing xk to get closer
to the boundary of S (as it should if the solutions of the original constrained
problem lie on the boundary of S). Figure 5.1.2 illustrates the convergence
process, and the following proposition gives the main convergence result.

Proposition 5.1.1: Every limit point of a sequence {xk} generated
by a barrier method is a global minimum of the original constrained
problem (5.1).

Proof: Let {x̄} be the limit of a subsequence {xk}k∈K . If x̄ ∈ S, we have
limk→∞, k∈K εkB(xk) = 0, while if x̄ lies on the boundary of S, we have by
assumption limk→∞, k∈K B(xk) = ∞. In either case we obtain

lim inf
k→∞

εkB(xk) ≥ 0,

which implies that

lim inf
k→∞, k∈K

{
f(xk) + εkB(xk)

}
= f(x̄) + lim inf

k→∞, k∈K

{
εkB(xk)

} ≥ f(x̄). (5.2)

The vector x̄ is a feasible point of the original problem (5.1), since xk ∈ S
and X is a closed set. If x̄ were not a global minimum, there would exist a
feasible vector x∗ such that f(x∗) < f(x̄). Therefore, using the continuity
of f and our assumption that x∗ can be approached arbitrarily closely
through the interior set S, there would also exist an interior point x̂ ∈ S
such that f(x̂) < f(x̄). We now have by the definition of xk,

f(xk) + εkB(xk) ≤ f(x̂) + εkB(x̂), k = 0, 1, . . . ,

which by taking the limit as k → ∞ and k ∈ K, implies together with Eq.
(5.2), that f(x̄) ≤ f(x̂). This is a contradiction, thereby proving that x̄ is
a global minimum of the original problem. Q.E.D.
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Figure 5.1.2. The convergence process of the barrier method for the problem

minimize f(x) = 1
2

(
x2
1 + x2

2

)
subject to 2 ≤ x1,

with optimal solution x∗ = (2, 0). For the case of the logarithmic barrier function
B(x) = − ln (x1 − 2), we have

xk ∈ arg min
x1>2

{
1
2

(
x2
1 + x2

2

)
− εk ln (x1 − 2)

}
=

(
1 +

√
1 + εk , 0

)
,

so as εk is decreased, the unconstrained minimum xk approaches the constrained
minimum x∗ = (2, 0). The figure shows the equal cost surfaces of

f(x) + εB(x)

for ε = 0.3 (left side) and ε = 0.03 (right side).

The logarithmic barrier function has been central to much research on
methods that generate successive iterates lying in the interior set S. These
methods are generically referred to as interior point methods , and have
been extensively applied to linear and quadratic programming problems
following the influential paper [Kar84]. We proceed to discuss the linear
programming case in detail, using two different approaches based on the
logarithmic barrier.
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5.1.1 Path Following Methods for Linear Programming

In this section we consider the linear programming problem

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

where c ∈ �n and b ∈ �m are given vectors, and A is an m × n matrix
of rank m. We will adapt the logarithmic barrier method to this problem.
We assume that the problem has at least one optimal solution, and from
the theory of Section 4.4.2, we have that the dual problem, given by

maximize b′λ

subject to A′λ ≤ c,
(DP)

also has an optimal solution. Furthermore, the optimal values of the primal
and the dual problem are equal.

The method involves finding for various ε > 0,

x(ε) ∈ argmin
x∈S

Fε(x), (5.3)

where

Fε(x) = c′x− ε

n∑
i=1

lnxi,

and S is the interior set

S = {x | Ax = b, x > 0},
where x > 0 means that all the coordinates of x are strictly positive. We
assume that S is nonempty and bounded. Since − lnxi grows to ∞ as
xi → 0, this assumption can be used together with Weierstrass’ theorem
(Prop. A.8 in Appendix A) to show that there exists at least one global
minimum of Fε(x) over S, which must be unique because the function Fε

can be seen to be strictly convex. Therefore, for each ε > 0, x(ε) is uniquely
defined by Eq. (5.3).

The Central Path

For given A, b, and c, as ε is reduced towards 0, x(ε) follows a trajectory
that is known as the central path. Figure 5.1.3 illustrates the central path
for various values of the cost vector c. Note the following:

(a) For fixed A and b, the central paths corresponding to different cost
vectors c start at the same vector x∞. This is the unique minimizing
point over S of

−
n∑

i=1

lnxi,



Sec. 5.1 Barrier and Interior Point Methods 451

Point x(ε) on
central path

S
x∞

c

x∗ (ε = 0)
Figure 5.1.3. Central path trajecto-

ries
{
x(ε) | 0 < ε < ∞

}
corresponding

to ten different values of the cost vector

c. All central paths start at the same
vector, the analytic center x∞, which
corresponds to ε = ∞,

x∞ ∈ argmin
x∈S

{
−

n∑
i=1

lnxi

}
,

and end at optimal solutions of (LP).

corresponding to ε = ∞, and is known as the analytic center of S.

(b) If c is such that (LP) has a unique optimal solution x∗, the central
path ends at x∗ [i.e., limε→0 x(ε) = x∗]. This follows from Prop.
5.1.1, which implies that for every sequence {εk} with εk → 0, the
corresponding sequence

{
x(εk)

}
converges to x∗.

(c) If c is such that (LP) has multiple optimal solutions, it can be shown
that the central path ends at one of the optimal solutions [i.e., limε→0 x(ε)
exists and is equal to some optimal solution of (LP)]. We will not prove
this fact (see the end-of-chapter references).

Following Approximately the Central Path

The most straightforward way to implement the logarithmic barrier method
is to use some iterative algorithm to minimize the function Fεk for each εk

in a sequence {εk} with εk ↓ 0. This is equivalent to finding a sequence{
x(εk)

}
of points on the central path. However, this approach is inefficient

because it requires an infinite number of iterations to compute each point
x(εk).

It turns out that a far more efficient approach is possible, whereby
each minimization is done approximately through a few iterations (possibly
only one) of the constrained version of Newton’s method that was given in
Section 3.3. For a fixed ε and a given x ∈ S, this method replaces x by

x̃ = x+ α(x̄− x),

where x̄ is the pure Newton iterate defined as the optimal solution of the
quadratic program in the vector z

minimize ∇Fε(x)′(z − x) + 1
2 (z − x)′∇2Fε(x)(z − x)

subject to Az = b, z ∈ �n,
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and α is a stepsize selected by some rule. We have

∇Fε(x) = c− εx−1, ∇2Fε(x) = εX−2,

where x−1 denotes the vector with coordinates (xi)−1 and X denotes the
diagonal matrix with the coordinates xi along the diagonal:

X =

⎛
⎜⎝

x1 0 · · · 0
0 x2 · · · 0
· · · · · · · · · · · ·
0 0 · · · xn

⎞
⎟⎠ .

We can obtain an expression for x̄ by using the formula for the projection
on a linear manifold given in Example 3.1.5 of Section 3.1. We have that
the pure Newton iterate is

x̄ = x− ε−1X2 (c− εx−1 −A′λ) ,

where
λ = (AX2A′)−1AX2 (c− εx−1) .

These formulas can also be written as

x̄ = x−Xq(x, ε), (5.4)

where

q(x, ε) =
Xz

ε
− e, (5.5)

with e and z being the vectors

e =

⎛
⎝ 1

...
1

⎞
⎠ , z = c−A′λ, (5.6)

and
λ = (AX2A′)−1AX

(
Xc− εe

)
. (5.7)

Based on Eq. (5.4), we have q(x, ε) = X−1(x̄−x), so we may view the
vector q(x, ε) as a transformed version of the Newton increment (x−x̄) using
the transformation matrix X−1 that maps the vector x into the vector e.
Since x̄ is the Newton step approximation to x(ε), we can consider

∥∥q(x, ε)∥∥
as a measure of proximity of the current point x to the point x(ε) on the
central path. In particular, it can be seen that we have q(x, ε) = 0 if and
only if x = x(ε).

The key result to be shown shortly is that for convergence of the
logarithmic barrier method, it is sufficient to stop the minimization of Fεk

and decrease εk to εk+1 once the current iterate xk satisfies∥∥q(xk, εk)
∥∥ < 1.
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S

x∗

Central path

x∞

x0

x1

x2

x(ε0)

x(ε1)

x(ε2)

Set {x | ‖q(x, ε0)‖ < 1}
( ) ( )

Figure 5.1.4. Following approximately
the central path. For each εk, it is suf-
ficient to carry out the minimization of

Fεk up to where
∥∥q(x, εk)∥∥ < 1.

Another way to phrase this result is that if a sequence of pairs
{
(xk, εk)

}
satisfies∥∥q(xk, εk)

∥∥ < 1, 0 < εk+1 < εk, k = 0, 1, . . . , εk → 0,

then every limit point of {xk} is an optimal solution of (LP); see Fig. 5.1.4.
The following proposition establishes this result.

Proposition 5.1.2: If x > 0, Ax = b, and ‖q(x, ε)‖ < 1, then

c′x− f∗ ≤ c′x− b′λ ≤ ε
(
n+

∥∥q(x, ε)∥∥√n
) ≤ ε

(
n+

√
n
)
, (5.8)

where λ is given by Eq. (5.7), and f∗ is the optimal value of (LP), i.e.,

f∗ = min
Ay=b, y≥0

c′y.

Proof: Using the definition (5.5)-(5.7) of q, we can write the hypothesis∥∥q(x, ε)∥∥ < 1 as ∥∥∥∥X(c−A′λ)

ε
− e

∥∥∥∥ < 1. (5.9)

Thus the coordinates of
(
X(c − A′λ)/ε

) − e must lie between -1 and 1,
implying that the coordinates ofX(c−A′λ) are positive. Since the diagonal
elements of X are positive, it follows that the coordinates of c − A′λ are
also positive. Hence c ≥ A′λ, and for any optimal solution x∗ of (LP), we
obtain (using the fact x∗ ≥ 0)

f∗ = c′x∗ ≥ λ′Ax∗ = λ′b. (5.10)
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On the other hand, since ||e|| = √
n, we have using Eq. (5.9),

e′
(
X(c−A′λ)

ε
− e

)
≤ ||e||

∥∥∥∥X(c−A′λ)

ε
− e

∥∥∥∥ =
√
n
∥∥q(x, ε)∥∥ ≤ √

n,

(5.11)
and by using also Eq. (5.10),

e′
(
X(c−A′λ)

ε
− e

)
=

x′(c−A′λ)

ε
− n =

c′x− b′λ

ε
− n ≥ c′x− f∗

ε
− n.

(5.12)
By combining Eqs. (5.11) and (5.12), the result follows. Q.E.D.

Note that from Eq. (5.8), c′x − b′λ provides a readily computable
upper bound to the (unknown) cost error c′x − f∗. What is happening
here is that x and λ are feasible solutions to the primal and dual problems
(LP) and (DP), respectively, and the common optimal value f∗ lies between
the corresponding primal and dual costs c′x and b′λ.

Path-Following by Using Newton’s Method

Since in order to implement the termination criterion
∥∥q(x, ε)∥∥ < 1, we

must calculate the pure Newton iterate x̄ = x −Xq(x, ε), it is natural to
use a convergent version of Newton’s method for approximate minimization
of Fε. This method replaces x by

x̃ = x+ α(x̄− x),

where α is a stepsize selected by the minimization rule or the Armijo rule
(with unit initial stepsize) over the range of positive stepsizes such that
x̃ is an interior point. We expect that for x sufficiently close to x(ε), the
stepsize α can be taken equal to 1, so that the pure form of the method
is used and a quadratic rate of convergence is obtained. The following
proposition shows that the “termination set”

{
x | ‖q(x, ε)‖ < 1

}
is part of

the region of quadratic convergence of the pure form of Newton’s method.

Proposition 5.1.3: If x > 0, Ax = b, and
∥∥q(x, ε)∥∥ < 1, then the

pure Newton iterate x̄ = x −Xq(x, ε) is an interior point, i.e., x̄ ∈ S.
Furthermore, we have

∥∥q(x̄, ε)∥∥ < 1 and in fact

∥∥q(x̄, ε)∥∥ ≤ ∥∥q(x, ε)∥∥2
. (5.13)

Proof: Let us define

p = Xz/ε = X(c−A′λ)/ε,
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so that q(x, ε) = p−e [cf. Eqs. (5.4) and (5.5)]. Since ‖p−e‖ < 1, we see that
the coordinates of p satisfy 0 < pi < 2 for all i. We have x̄ = x−X(p− e),
so that

x̄i = (2− pi)xi > 0

for all i, and since also Ax̄ = b, it follows that x̄ is an interior point.
It can be shown (Exercise 5.1.3) that the vector λ̄ corresponding to

x̄ in the manner of Eq. (5.7) satisfies

λ̄ ∈ arg min
ξ∈�m

∥∥∥∥X̄(c−A′ξ)

ε
− e

∥∥∥∥ ,
where X̄ is the diagonal matrix with x̄i along the diagonal. Hence,

∥∥q(x̄, ε)∥∥ =

∥∥∥∥X̄(c−A′λ̄)

ε
− e

∥∥∥∥ ≤
∥∥∥∥X̄(c−A′λ)

ε
− e

∥∥∥∥ = ‖X̄X−1p− e‖.

Since x̄ = 2x−Xp, we have

X̄X−1p = (2X −XP )X−1p = 2p− Pp,

where P is the diagonal matrix with pi along the diagonal. The last two
relations yield

∥∥q(x̄, ε)∥∥2 ≤ ‖2p− Pp− e‖2 ≤
n∑

i=1

(
2pi − p2i − 1

)2
=

n∑
i=1

(pi − 1)4

≤
(

n∑
i=1

(pi − 1)2

)2

= ‖p− e‖4 =
∥∥q(x, ε)∥∥4.

This proves the result. Q.E.D.

The preceding proposition shows that if
∥∥q(x, ε)∥∥ is substantially less

than 1, then a single pure Newton step, changing x to x̄, reduces
∥∥q(x, ε)∥∥

by a substantial factor [cf. Eq. (5.13)]. Thus, we expect that if ε̄ is not much
smaller than ε and

∥∥q(x, ε)∥∥ is substantially less than 1, then
∥∥q(x̄, ε̄)∥∥ will

also be substantially less than 1. This means that by carefully selecting
the ε-reduction factor εk+1/εk in combination with an appropriately small
termination tolerance for the first minimization of Fε (k = 0), we can
execute all the subsequent approximate minimizations of Fεk (k ≥ 1) in a
single pure Newton step; see Fig. 5.1.5. One possibility is, given εk and xk

such that ∥∥q(xk, εk)
∥∥ ≤ 1,

to obtain xk+1 by a single Newton step and then to select εk+1 so that∥∥q(xk+1, εk+1)
∥∥ is minimized. This minimization can be done in closed
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Central path

S

x∗

xk

xk+1

x(εk)

x(εk+1)

x∞

Set {x | ‖q(x, εk)‖ < 1}

Set {x | ‖q(x, εk+1)‖ < 1}

Figure 5.1.5. Following approximately
the central path by using a single New-
ton step for each εk. If εk is close to
εk+1 and xk is close to the central path,
one expects that xk+1 obtained from
xk by a single pure Newton step will
also be close to the central path.

form because
∥∥q(x, ε)∥∥ is quadratic in 1/ε [cf. Eq. (5.5)]. Another possibility

is shown in the next proposition.

Proposition 5.1.4: Suppose that x > 0, Ax = b, and that ‖q(x, ε)‖ ≤
γ for some γ < 1. For any δ ∈ (0, n1/2), let ε̄ = (1− δn−1/2)ε. Then

∥∥q(x̄, ε̄)∥∥ ≤ γ2 + δ

1− δn−1/2
.

In particular, if

δ ≤ γ(1− γ)

1 + γ
, (5.14)

we have ‖q(x̄, ε̄)‖ ≤ γ.

Proof: Let θ = δn−1/2. We have using Eq. (5.5)

q(x̄, ε̄) =
X̄z

ε̄
− e =

X̄z

(1− θ)ε
− e =

q(x̄, ε) + e

1− θ
− e =

1

1− θ

(
q(x̄, ε) + θe

)
.

Thus, using also Eq. (5.13),

∥∥q(x̄, ε̄)∥∥ ≤ 1

1− θ

(∥∥q(x̄, ε)∥∥+ θ‖e‖)
=

1

1− θ

(∥∥q(x̄, ε)∥∥+ θn1/2
)

≤ 1

1− θ

(∥∥q(x, ε)∥∥2
+ δ

)
≤ γ2 + δ

1− θ
.
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Central pathCentral path

SSxk
xk

xk+1
xk+1

xk+2

xk+2

x∞
x∞

x∗
x∗

x(εk)x(εk)
x(εk+1)

x(εk+1)
x(εk+2)

x(εk+2)

(a) Short-step method (b) Long-step method

Figure 5.1.6. Following approximately the central path by decreasing εk slowly
as in (a) or quickly as in (b). In (a) a single Newton step is required in each
approximate minimization at the expense of a large number of approximate min-
imizations.

Finally, Eq. (5.14) can be written as (γ2 + δ)/(1 − δ) ≤ γ, which, in com-
bination with the relation just proved, implies that

∥∥q(x̄, ε̄)∥∥ ≤ γ. Q.E.D.

Note that in the preceding proposition one can maintain x very close
to the central path (γ << 1) provided one takes δ to be very small [cf.
Eq. (5.14)], or equivalently, one uses an ε-reduction factor 1− δn−1/2 that
is very close to 1. Unfortunately, even when γ is close to 1, in order to
guarantee the single-step attainment of the tolerance

∥∥q(x, ε)∥∥ < γ, it is
still necessary to decrease ε very slowly. In particular, since we must take
δ < 1 in order for

∥∥q(x̄, ε̄)∥∥ < γ [cf. Eq. (5.14)], the reduction factor ε̄/ε
must exceed 1 − n−1/2, which is very close to 1. This means that, even
though each approximate minimization after the first will require a single
Newton step, a very large number of approximate minimizations will be
needed to attain an acceptable accuracy. Thus, it may be more efficient in
practice to decrease εk at a faster rate, while accepting the possibility of
multiple Newton steps before switching from εk to εk+1, as illustrated in
Fig. 5.1.6.

The preceding results form the basis for worst-case estimates of the
number of Newton iterations required to reduce the error c′xk − f∗ below
some tolerance, where xk is obtained by approximate minimization of Fεk

using different termination criteria and reduction factors εk+1/εk. Exercise
5.1.5 provides a sample of this type of analysis. Many researchers consider
a low estimate of number of iterations a good indicator of algorithmic
performance. We note, however, that the worst-case estimates that have
been obtained for interior point methods are so unrealistically high that
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they are entirely meaningless if taken literally.
One may hope that these estimates are meaningful in a comparative

sense, i.e., the practical performance of two algorithms would compare con-
sistently with the corresponding worst-case estimates of required numbers
of iterations. Unfortunately, this does not turn out to be true in practice.
In particular, we note that the lowest estimates of the required number of
iterations have been obtained for the so-called short-step methods , where
εk is reduced very slowly so that the corresponding approximate mini-
mization can be done in a single Newton step (cf. Prop. 5.1.4). The best
practical performance, however, has been obtained with the so-called long-
step methods , where εk is reduced at a much faster rate. Thus one should
view worst-case analyses of the required number of iterations of interior
point methods with some skepticism; they may be primarily considered as
an analytical vehicle for understanding better the corresponding methods.

Quadratic and Convex Programming

The logarithmic barrier method in conjunction with Newton’s method can
also be fruitfully applied to the convex programming problem

minimize f(x)

subject to Ax = b, x ≥ 0,

where f : �n �→ � is a convex function. The implementation of the method
benefits from the extensive experience that has been accumulated from the
linear programming case. For the special case of the quadratic program-
ming problem

minimize c′x+ 1
2x

′Qx

subject to Ax = b, x ≥ 0,

with Q positive semidefinite, the performance and the analysis of the
method are similar to that for linear programs. We refer to the end-of-
chapter references for a detailed treatment.

5.1.2 Primal-Dual Methods for Linear Programming

We will now discuss an alternative interior point method for solving the
linear program

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

and its dual problem,
maximize b′λ

subject to A′λ ≤ c.
(DP)

Here as in the preceding section, c ∈ �n and b ∈ �m are given vectors, and
A is an m× n matrix of rank m.
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The logarithmic barrier method of the preceding section involves the
sequential minimization of

Fεk (x) = c′x− εk
n∑

i=1

lnxi,

where S is the interior set

S =
{
x | Ax = b, x > 0

}
,

and {εk} is a sequence that decreases to 0. This minimization is done
approximately, using one or more Newton iterations.

We will now consider a related approach: applying Newton’s method
for solving the system of optimality conditions of the problem of minimizing
Fεk(·) over S. The salient features of this approach are:

(a) Only one Newton iteration is carried out for each value of εk.

(b) The Newton iterations generate a sequence of primal and dual solution
pairs (xk, λk), corresponding to a sequence of barrier parameters εk

that converge to 0.

(c) For every k, the pair (xk, λk) is such that xk is an interior point of
the positive orthant, i.e., xk > 0, while λk is an interior point of the
dual feasible region, i.e.,

c−A′λk > 0.

(However, xk need not be primal-feasible, i.e., it need not satisfy the
equation Ax = b as it does in the path-following approach of Section
5.1.1.)

(d) Global convergence is enforced by using as merit function the expres-
sion

P k = xk′zk + ‖Axk − b‖, (5.15)

where zk is the vector
zk = c−A′λk.

The expression (5.15) consists of two nonnegative terms: the first
term is xk ′zk, which is positive (since xk > 0 and zk > 0) and can be
written as

xk′zk = xk′(c−A′λk) = c′xk − b′λk + (b −Axk)′λk.

Thus when xk is primal-feasible (Axk = b), xk′zk is equal to the dual-
ity gap, that is, the difference between the primal and the dual costs,
c′xk − b′λk. The second term is the norm of the primal constraint
violation ‖Axk − b‖. In the method to be described, neither of the
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terms xk′zk and ‖Axk − b‖ may increase at each iteration, so that
P k+1 ≤ P k (and typically P k+1 < P k) for all k. If we can show that
P k → 0, then asymptotically both the duality gap and the primal
constraint violation will be driven to zero. Thus every limit point of{
(xk, λk)

}
will be a pair of primal and dual optimal solutions, in view

of the duality relation

min
Ax=b, x≥0

c′x = max
A′λ≤c

b′λ,

shown in Section 4.4.2.

Let us write the necessary and sufficient conditions for (x, λ) to be a
(global) minimum-Lagrange multiplier pair for the problem of minimizing
the barrier function Fε(x) subject to Ax = b. They are

c− εx−1 − A′λ = 0, Ax = b, (5.16)

where x−1 denotes the vector with coordinates (xi)−1. Let z be the vector

z = c−A′λ,

and note that λ is dual feasible if and only if z ≥ 0.
Using the vector z, we can write the first condition of Eq. (5.16) as

z − εx−1 = 0 or, equivalently, XZe = εe, where X and Z are the diagonal
matrices with the coordinates of x and z, respectively, along the diagonal,
and e is the vector with unit coordinates:

X =

⎛
⎜⎝

x1 0 · · · 0
0 x2 · · · 0
· · · · · · · · · · · ·
0 0 · · · xn

⎞
⎟⎠ , Z =

⎛
⎜⎝

z1 0 · · · 0
0 z2 · · · 0
· · · · · · · · · · · ·
0 0 · · · zn

⎞
⎟⎠ , e =

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ .

Thus the optimality conditions (5.16) can be written in the equivalent
form

XZe = εe, (5.17)

Ax = b, (5.18)

z +A′λ = c. (5.19)

Given (x, λ, z) satisfying z + A′λ = c, and such that x > 0 and z > 0, a
Newton iteration for solving this system is

x(α, ε) = x+ αΔx, (5.20)

λ(α, ε) = λ+ αΔλ,

z(α, ε) = z + αΔz,
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where α is a stepsize such that 0 < α ≤ 1 and

x(α, ε) > 0, z(α, ε) > 0,

and the pure Newton step (Δx,Δλ,Δz) solves the linearized version of the
system (5.17)-(5.19)

XΔz + ZΔx = −v, (5.21)

AΔx = b−Ax, (5.22)

Δz +A′Δλ = 0, (5.23)

with v defined by
v = XZe− εe. (5.24)

After a straightforward calculation, it can be verified that the solution
of the linearized system (5.21)-(5.23) can be written as

Δλ =
(
AZ−1XA′

)
−1(

AZ−1v + b−Ax
)
, (5.25)

Δz = −A′Δλ, (5.26)

Δx = −Z−1v − Z−1XΔz.

Note that λ(α, ε) is dual feasible, since from Eq. (5.23) and the condition
z + A′λ = c, we see that z(α, ε) + A′λ(α, ε) = c. Note also that if α = 1,
i.e., a pure Newton step is used, x(α, ε) is primal feasible, since from Eq.
(5.22) we have A(x+Δx) = b.

Merit Function Improvement

We will now evaluate the changes in the constraint violation and the merit
function induced by the Newton iteration. By using Eqs. (5.20)and (5.22),
the new constraint violation is given by

Ax(α, ε)−b = Ax+αAΔx−b = Ax+α(b−Ax)−b = (1−α)(Ax−b). (5.27)

Thus, since 0 < α ≤ 1, the new norm of constraint violation
∥∥Ax(α, ε)− b

∥∥
is always no larger than the old one. Furthermore, if x is primal-feasible
(Ax = b), the new iterate x(α, ε) is also primal-feasible.

The inner product
g = x′z (5.28)

after the iteration becomes

g(α, ε) = x(α, ε)′z(α, ε)

= (x+ αΔx)′(z + αΔz)

= x′z + α(x′Δz + z′Δx) + α2Δx′Δz.

(5.29)
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From Eqs. (5.22) and (5.26) we have

Δx′Δz = (Ax − b)′Δλ,

while by premultiplying Eq. (5.21) with e′ and using the definition (5.24)
for v, we obtain

x′Δz + z′Δx = −e′v = nε− x′z.

By substituting the last two relations in Eq. (5.29) and by using also the
expression (5.28) for g, we see that

g(α, ε) = g − α(g − nε) + α2(Ax − b)′Δλ. (5.30)

Let us now denote by P and P (α, ε) the value of the merit function
(5.15) before and after the iteration, respectively. We have by using the
expressions (5.27) and (5.30),

P (α, ε) = g(α, ε) +
∥∥Ax(α, ε) − b

∥∥
= g − α(g − nε) + α2(Ax − b)′Δλ+ (1− α)‖Ax − b‖,

or
P (α, ε) = P − α

(
g − nε+ ‖Ax− b‖)+ α2(Ax− b)′Δλ.

Thus if ε is chosen to satisfy

ε <
g

n

and α is chosen to be small enough so that the second order term α2(Ax−
b)′Δλ is dominated by the first order term α(g − nε), the merit function
will be improved as a result of the iteration.

A General Class of Primal-Dual Algorithms

Let us consider now the general class of algorithms of the form

xk+1 = x(αk, εk), λk+1 = λ(αk, εk), zk+1 = z(αk, εk),

where αk and εk are positive scalars such that

xk+1 > 0, zk+1 > 0, εk <
gk

n
,

where gk is the inner product

gk = xk′zk + (Axk − b)′λk,

and αk is such that the merit function P k is reduced. Initially we must
have x0 > 0, and z0 = c − A′λ0 > 0 (such a point can often be easily
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found; otherwise an appropriate reformulation of the problem is necessary
for which we refer to the specialized literature). These methods have been
called primal-dual . As we have seen, they are really Newton-like methods
for approximate solution of the system of optimality conditions (5.16), sup-
plemented by a stepsize procedure that guarantees that the merit function
P k is improved at each iteration.

It can be shown that it is possible to choose αk and εk so that the
merit function is not only reduced at each iteration, but also converges
to zero. Furthermore, with suitable choices of αk and εk, algorithms with
good theoretical properties, such as polynomial complexity and superlinear
convergence, can be derived. The main convergence analysis ideas rely on
a primal-dual version of the central path discussed in Section 5.1.1, and
some of the associated path following concepts. We refer to the research
monograph [Wri97a] for a detailed discussion.

With properly chosen sequences αk and εk, and appropriate imple-
mentation, the practical performance of the primal-dual methods has been
shown to be excellent. The choice

εk =
gk

n2
,

leading to the relation

gk+1 = (1− αk + αk/n)gk

for feasible xk, has been suggested as a good practical rule. Usually, when
xk has already become feasible, αk is chosen as θα̃k, where θ is a factor very
close to 1 (say 0.999), and α̃k is the maximum stepsize α that guarantees
that x(α, εk) ≥ 0 and z(α, εk) ≥ 0

α̃k = min

{
min

i=1,...,n

{
xk
i

−Δxi

∣∣∣ Δxi < 0

}
, min
i=1,...,n

{
zki

−Δzi

∣∣∣ Δzi < 0

}}
.

When xk is not feasible, the choice of αk must also be such that the merit
function is improved. In some works, a different stepsize for the x update
than for the (λ, z) update has been suggested. The stepsize for the x
update is near the maximum stepsize α that guarantees x(α, εk) ≥ 0, and
the stepsize for the (λ, z) update is near the maximum stepsize α that
guarantees z(α, εk) ≥ 0. There are a number of additional practical issues
related to implementation, for which we refer to the specialized literature.

Predictor-Corrector Variants

We mentioned briefly in Section 1.4.3 the variation of Newton’s method
where the Hessian is evaluated periodically every p > 1 iterations in order
to economize in iteration overhead. When p = 2 and the problem is to
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solve the system g(x) = 0, where g : �n �→ �n, this variation of Newton’s
method takes the form

x̂k = xk − (∇g(xk)′
)
−1

g(xk), (5.31)

xk+1 = x̂k − (∇g(xk)′
)
−1

g(x̂k). (5.32)

Thus, given xk, this iteration performs a regular Newton step to ob-
tain x̂k, and then an approximate Newton step from x̂k, using, however,

the already available Jacobian inverse
(∇g(xk)′

)
−1

. It can be shown that
if xk → x∗, the order of convergence of the error ‖xk − x∗‖ is cubic, i.e.,

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖3 < ∞,

under the same assumptions that the ordinary Newton’s method (p = 1)
attains a quadratic order of convergence; see [OrR70], p. 315. Thus, the
price for the 50% saving in Jacobian evaluations and inversions is a small
degradation of the convergence rate over the ordinary Newton’s method
(which attains a quartic order of convergence when two successive ordinary
Newton steps are counted as one).

Two-step Newton methods such as the iteration (5.31), (5.32), when
applied to the system of optimality conditions (5.17)-(5.19) for the linear
program (LP) are known as predictor-corrector methods (the name comes
from their similarity with predictor-corrector methods for solving differen-
tial equations). They operate as follows:

Given (x, z, λ) with

x > 0, z = c−A′λ > 0,

the predictor iteration [cf. Eq. (5.31)], solves for
(
Δx̂,Δẑ,Δλ̂

)
the system

XΔẑ + ZΔx̂ = −v̂, (5.33)

AΔx̂ = b−Ax, (5.34)

Δẑ +A′Δλ̂ = 0, (5.35)

with v̂ defined by
v̂ = XZe− ε̂e, (5.36)

[cf. Eqs. (5.21)-(5.24)].
The corrector iteration [cf. Eq. (5.32)], solves for

(
Δx̄,Δz̄,Δλ̄

)
the

system
XΔz̄ + ZΔx̄ = −v̄, (5.37)

AΔx̄ = b−A(x+Δx̂), (5.38)
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Δz̄ +A′Δλ̄ = 0, (5.39)

with v̄ defined by

v̄ = (X +ΔX̂)(Z +ΔẐ)e− ε̄e, (5.40)

where ΔX̂ and ΔẐ are the diagonal matrices with the components of Δx̂
and Δẑ along the diagonal, respectively. Here ε̂ and ε̄ are the barrier
parameters corresponding to the two iterations.

The composite Newton direction is

Δx = Δx̂+Δx̄,

Δz = Δẑ +Δz̄,

Δλ = Δλ̂+Δλ̄,

and the corresponding iteration is

x(α, ε) = x+ αΔx,

λ(α, ε) = λ+ αΔλ,

z(α, ε) = z + αΔz,

where α is a stepsize such that 0 < α ≤ 1 and

x(α, ε) > 0, z(α, ε) > 0.

Adding Eqs. (5.33)-(5.35)and Eqs. (5.37)-(5.39), we obtain

X(Δẑ +Δz̄)z + Z(Δx̂+Δx̄) = −v̂ − v̄, (5.41)

A(Δx̂+Δx̄)x = b −Ax+ b−A(x+Δx̂), (5.42)

Δẑ +Δz̄ +A′(Δλ̂ +Δλ̄) = 0, (5.43)

We now use the fact

b−A(x +Δx̂) = 0

[cf. Eq. (5.34)], and we also use Eqs. (5.40) and (5.33) to write

v̄ = (X +ΔX̂)(Z +ΔẐ)e − ε̄e

= XZe+ΔX̂Ze+XΔẐe+ΔX̂ΔẐe− ε̄e

= XZe+ ZΔx̂+XΔẑ +ΔX̂ΔẐe− ε̄e

= XZe− v̂ +ΔX̂ΔẐe − ε̄e.
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Substituting in Eqs. (5.41)-(5.43), we see that the composite Newton di-
rection

(Δx,Δz,Δλ) = (Δx̂ +Δx̄,Δẑ +Δz̄,Δλ̂+Δλ̄)

is obtained by solving the following system of equations:

XΔz + ZΔx = −XZe−ΔX̂ΔẐe+ ε̄e, (5.44)

AΔx = b−Ax, (5.45)

Δz +A′Δλ = 0. (5.46)

To implement the predictor-corrector method, we need to solve the
system (5.33)-(5.36) for some value of ε̂ to obtain

(
ΔX̂,ΔẐ

)
, and then to

solve the system (5.44)-(5.46) for some value of ε̄ to obtain
(
Δx,Δz,Δλ

)
.

It is important to note here that most of the work needed for the first
system, namely the factorization of the matrix

AZ−1XA′

in Eq. (5.25), need not be repeated when solving the second system, so
that solving both systems requires relatively little extra work over solving
the first one.

In an implementation that has proved successful in practice, ε̂ is taken
to be zero. Furthermore, ε̄ is chosen on the basis of the solution of the first
system according to the formula

ε̄ =

(
ĝ

x′z

)2
ĝ

n
,

where ĝ is the duality gap that would result from a feasibility-restricted
primal-dual step given by

ĝ = (x+ αPΔx̂)′(z + αDΔẑ),

where

αP = θ min
i=1,...,n

{
xk
i

−Δxi

∣∣∣ Δxi < 0

}
,

αD = θ min
i=1,...,n

{
zki

−Δzi

∣∣∣ Δzi < 0

}
.

and θ is a factor very close to 1 (say 0.999). We refer to the specialized
literature for further details [Meh92], [LMS92], [Wri97a], [Ye97].
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E X E R C I S E S

5.1.1

Consider the linear program

minimize x1 + 2x2 + 3x3

subject to x1 + x2 + x3 = 1, x ≥ 0.

(a) Sketch on paper the central path. Write a computer program to implement
a short-step and a long-step path-following method based on Newton’s
method for this problem. Compare the number of Newton steps for a
given solution accuracy for the starting points x0 = (.8, .15, .05) and x0 =
(.1, .2, .7).

(b) Write a computer program to implement a primal-dual interior point method
and its predictor-corrector variant, and solve the problem for λ0 = 0 and
x0 as in part (a).

5.1.2

Given x, show how to find an ε > 0 that minimizes
∥∥q(x, ε)∥∥ [cf. Eq. (5.5)]. How

would you use this idea to accelerate convergence in a short-step path-following
method?

5.1.3

Show that the vector λ of Eq. (5.7) satisfies

λ ∈ arg min
ξ∈�m

∥∥∥∥X(c−A′ξ)

ε
− e

∥∥∥∥ .

5.1.4

Let δ =
∥∥q(x, ε)∥∥, where q(x, ε) is the scaled Newton step defined by Eq. (5.5),

and assume that δ < 1. Show that∥∥X−1(x− x(ε))
∥∥ ≤ δ

1− δ
,

Fε(x)− Fε

(
x(ε)

)
≤ δ2

1− δ2
,

∣∣c′x− c′x(ε)
∣∣ ≤ δ(1 + δ)ε

1− δ

√
n.
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5.1.5 (Complexity of the Short-Step Method [Tse89])

The purpose of this exercise is to show that the number of iterations required by
the short-step logarithmic barrier method to achieve a given accuracy is propor-
tional to

√
n. Consider the linear programming problem (LP), a vector x0 ∈ S,

and a sequence {εk} such that
∥∥q(x0, ε0)

∥∥ ≤ 1/2 and εk+1 = (1 − θ)εk, where

θ = 1/(6n1/2) (cf. Prop. 5.1.4). Let xk+1 be generated from xk by a pure Newton
step aimed at minimizing Fεk . For a given integer r, let k̄ be the smallest integer
k such that − ln(nεk) ≥ r and let r0 = − ln(nε0). Show that

k̄ ≤ 6(r − r0)
√
n

and

c′xk̄ − f∗ ≤ 3

2
e−r.

Note: We have assumed here that a vector x0 with
∥∥q(x0, ε0)

∥∥ ≤ 1/2 is available.
It is possible to show that such a point can be found in a number of Newton steps
that is proportional to

√
n.

5.1.6 (The Dual Problem as an Equality Constrained Problem)

Consider the dual problem

maximize b′λ

subject to A′λ ≤ c,
(DP)

and its equivalent version

maximize b′λ

subject to A′λ+ z = c, z ≥ 0,

that involves the vector of additional variables z. Let PA be the matrix that
projects a vector x onto the nullspace of the matrix A, and note that using the
analysis of Example 3.1.5 in Section 3.1, we have

PA = I − A′(AA′)−1A.

Show that the dual linear program (DP) is equivalent to the linear program

minimize x̄′z

subject to PAz = PAc, z ≥ 0,
(5.47)

where x̄ is any primal feasible vector, i.e., Ax̄ = b, x̄ ≥ 0.
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5.1.7 (Dual Central Path)

Consider the dual problem (DP). Using its equivalent reformulation (5.47) of
Exercise 5.1.6, it is seen that the appropriate definition of the central path of the
dual problem is

z(ε) ∈ arg min
PAz=PAc, z>0

{
x̄′z −

n∑
i=1

ln zi

}
,

where x̄ is any primal feasible vector. Show that the primal and dual central
paths are related by

z(ε) = εx(ε)−1,

and that the corresponding duality gap satisfies

c′x(ε)− b′λ(ε) = nε,

where λ(ε) is any vector such that A′λ(ε) = c− z(ε).

5.2 PENALTY AND AUGMENTED LAGRANGIAN METHODS

The basic idea in penalty methods is to eliminate some or all of the con-
straints and add to the cost function a penalty term that prescribes a high
cost to infeasible points. Associated with these methods is a penalty pa-
rameter c that determines the severity of the penalty and as a consequence,
the extent to which the resulting unconstrained problem approximates the
original constrained problem. As c takes higher values, the approximation
becomes increasingly accurate. We focus attention primarily on the pop-
ular quadratic penalty function. Some other penalty functions, including
the exponential, are discussed in Section 5.2.5.

Consider first the equality constrained problem

minimize f(x)

subject to h(x) = 0, x ∈ X,
(5.48)

where f : �n �→ �, h : �n �→ �m are given functions, and X is a given
subset of �n. Much of our analysis in this section will focus on the case
where X = �n, and x∗ together with a Lagrange multiplier vector λ∗

satisfies the sufficient optimality conditions of Prop. 4.2.1. At the center of
our development is the augmented Lagrangian function Lc : �n×�m �→ �,
introduced in Section 4.2 and given by

Lc(x, λ) = f(x) + λ′h(x) +
c

2

∥∥h(x)∥∥2
,

where c is a positive penalty parameter.
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There are two mechanisms by which unconstrained minimization of
Lc(·, λ) can yield points close to x∗:

(a) By taking λ close to λ∗. Indeed, as shown in Section 4.2.1, if c is
higher than a certain threshold, then for some γ > 0 and ε > 0 we
have

Lc(x, λ∗) ≥ Lc(x∗, λ∗) +
γ

2
‖x− x∗‖2, ∀ x with ‖x− x∗‖ < ε,

so that x∗ is a strict unconstrained local minimum of the augmented
Lagrangian Lc(·, λ∗) corresponding to λ∗. This suggests that if λ
is close to λ∗, a good approximation to x∗ can be found by uncon-
strained minimization of Lc(·, λ).

(b) By taking c large. Indeed for high c, there is high cost for infeasibility,
so the unconstrained minima of Lc(·, λ) will be nearly feasible. Since
Lc(x, λ) = f(x) for feasible x, we expect that Lc(x, λ) ≈ f(x) for
nearly feasible x. Therefore, we can also expect to obtain a good
approximation to x∗ by unconstrained minimization of Lc(·, λ) when
c is large.

Example 5.2.1

Consider the two-dimensional problem

minimize f(x) = 1
2
(x2

1 + x2
2)

subject to x1 = 1,

with optimal solution x∗ = (1, 0) and corresponding Lagrange multiplier λ∗ =
−1. The augmented Lagrangian is

Lc(x, λ) =
1
2
(x2

1 + x2
2) + λ(x1 − 1) + c

2
(x1 − 1)2,

and by setting its gradient to zero we can verify that its unique unconstrained
minimum x(λ, c) has coordinates given by

x1(λ, c) =
c− λ

c+ 1
, x2(λ, c) = 0. (5.49)

Thus, we have for all c > 0,

lim
λ→λ∗

x1(λ, c) = x1(−1, c) = 1 = x∗
1, lim

λ→λ∗
x2(λ

∗, c) = 0 = x∗
2,

showing that as λ is chosen close to λ∗, the unconstrained minimum of Lc(·, λ)
approaches the constrained minimum (see Fig. 5.2.1).

Using Eq. (5.49), we also have for all λ,

lim
c→∞

x1(λ, c) = 1 = x∗
1, lim

c→∞
x2(λ, c) = 0 = x∗

2,

showing that as c increases, the unconstrained minimum of Lc(·, λ) approaches
the constrained minimum (see Fig. 5.2.2).
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x1x1

x2 x2

00 1 11/21/2 3/4

c = 1 c = 1
λ = −1/2λ = 0

Figure 5.2.1. Equal cost surfaces of the augmented Lagrangian

Lc(x, λ) =
1
2
(x2

1 + x2
2) + λ(x1 − 1) + c

2
(x1 − 1)2,

of Example 5.2.1, for c = 1 and two different values of λ. The unconstrained
minimum of Lc(·, λ) approaches the constrained minimum x∗ = (1, 0) as λ →
λ∗ = −1.

0 0

x2 x2

x1 x1

c = 1 c = 10

λ = 0 λ = 0

1 11/2
10/11

Figure 5.2.2. Equal cost surfaces of the augmented Lagrangian

Lc(x, λ) =
1
2
(x2

1 + x2
2) + λ(x1 − 1) + c

2
(x1 − 1)2,

of Example 5.2.1, for λ = 0 and two different values of c. The unconstrained
minimum of Lc(·, λ) approaches the constrained minimum x∗ = (1, 0) as c → ∞.

5.2.1 The Quadratic Penalty Function Method

The quadratic penalty function method is motivated by the preceding con-
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siderations. It consists of solving a sequence of problems of the form

minimize Lck(x, λ
k)

subject to x ∈ X,

where {λk} is a sequence in �m and {ck} is a penalty parameter sequence.
In the original version of the penalty method introduced in the early

60s, the multipliers λk were taken to be equal to zero. The idea of using
λk that are “good” approximations to a Lagrange multiplier vector was
not known at that time. In our development here, we allow λk to change
in the course of the algorithm, but for the moment we give no rule for
updating λk. Thus the method depends for its validity on increasing ck

to ∞, and applies even if the problem has no Lagrange multiplier. The
following proposition is the basic convergence result.

Proposition 5.2.1: Assume that f and h are continuous functions,
that X is a closed set, and that the constraint set

{
x ∈ X | h(x) = 0

}
is nonempty. For k = 0, 1, . . ., let xk be a global minimum of the
problem

minimize Lck(x, λ
k)

subject to x ∈ X,

where {λk} is bounded, 0 < ck < ck+1 for all k, and ck → ∞. Then
every limit point of the sequence {xk} is a global minimum of the
original problem (5.48).

Proof: Let x̄ be a limit point of {xk}. We have by definition of xk

Lck(x
k, λk) ≤ Lck(x, λ

k), ∀ x ∈ X. (5.50)

Let f∗ denote the optimal value of the original problem (5.48). We have

f∗ = inf
h(x)=0, x∈X

f(x)

= inf
h(x)=0, x∈X

{
f(x) + λk′h(x) +

ck

2

∥∥h(x)∥∥2
}

= inf
h(x)=0, x∈X

Lck(x, λ
k).

Hence, by taking the infimum of the right-hand side of Eq. (5.50) over
x ∈ X , h(x) = 0, we obtain

Lck(x
k, λk) = f(xk) + λk′h(xk) +

ck

2

∥∥h(xk)
∥∥2 ≤ f∗.
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The sequence {λk} is bounded and hence it has a limit point λ̄. Without
loss of generality, we may assume that λk → λ̄. By taking upper limit in
the relation above and by using the continuity of f and h, we obtain

f(x̄) + λ̄′h(x̄) + lim sup
k→∞

ck

2

∥∥h(xk)
∥∥2 ≤ f∗. (5.51)

Since
∥∥h(xk)

∥∥2 ≥ 0 and ck → ∞, it follows that h(xk) → 0 and

h(x̄) = 0, (5.52)

for otherwise the left-hand side of Eq. (5.51) would equal ∞, while f∗ < ∞
(since the constraint set is assumed nonempty). Since X is a closed set,
we also obtain that x̄ ∈ X . Hence, x̄ is feasible, and since from Eqs. (5.51)
and (5.52) we have f(x̄) ≤ f∗, it follows that x̄ is optimal. Q.E.D.

Lagrange Multiplier Estimates – Inexact Minimization

The preceding convergence result assumes implicitly that the minimum
of the augmented Lagrangian is found exactly. On the other hand, un-
constrained minimization methods are usually terminated when the cost
gradient is sufficiently small, but not necessarily zero. In particular, when
X = �n, and f and h are differentiable, the algorithm for solving the
unconstrained problem

minimize Lck(x, λ
k)

subject to x ∈ �n,

will typically be terminated at a point xk satisfying∥∥∇xLck(x
k, λk)

∥∥ ≤ εk,

where εk is some small scalar. We address this situation in the next propo-
sition, where we show in addition that we can usually obtain a Lagrange
multiplier vector as a by-product of the computation.

Proposition 5.2.2: Assume that X = �n, and f and h are continu-
ously differentiable. For k = 0, 1, . . ., let xk satisfy

∥∥∇xLck(x
k, λk)

∥∥ ≤ εk,

where {λk} is bounded, and {εk} and {ck} satisfy

0 < ck < ck+1, ∀ k, ck → ∞,

0 ≤ εk, ∀ k, εk → 0.
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Assume that a subsequence {xk}K converges to a vector x∗ such that
∇h(x∗) has rank m. Then

{
λk + ckh(xk)

}
K

→ λ∗,

where λ∗ is a vector satisfying, together with x∗, the first order nec-
essary conditions

∇f(x∗) +∇h(x∗)λ∗ = 0, h(x∗) = 0.

Proof: Without loss of generality we assume that the entire sequence {xk}
converges to x∗. Define for all k

λ̃k = λk + ckh(xk).

We have

∇xLck(x
k, λk) = ∇f(xk) +∇h(xk)

(
λk + ckh(xk)

)
= ∇f(xk) +∇h(xk)λ̃k.

(5.53)
Since ∇h(x∗) has rank m, ∇h(xk) has rank m for all k that are sufficiently
large. Without loss of generality, we assume that ∇h(xk) has rank m for
all k. Then, by multiplying Eq. (5.53) with

(∇h(xk)′∇h(xk)
)
−1∇h(xk)′,

we obtain

λ̃k =
(∇h(xk)′∇h(xk)

)
−1∇h(xk)′

(∇xLck(x
k, λk)−∇f(xk)

)
. (5.54)

The hypothesis implies that ∇xLck(x
k, λk) → 0, so Eq. (5.54) yields

λ̃k → λ∗,

where
λ∗ = −(∇h(x∗)′∇h(x∗)

)
−1∇h(x∗)′∇f(x∗).

Using again the fact ∇xLck(x
k, λk) → 0 and Eq. (5.53), we see that

∇f(x∗) +∇h(x∗)λ∗ = 0.

Since {λk} is bounded and λk + ckh(xk) → λ∗, it follows that
{
ckh(xk)

}
is bounded. Since ck → ∞, we must have h(xk) → 0 and we conclude that
h(x∗) = 0. Q.E.D.
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Practical Behavior – Ill-Conditioning

Let us now consider the practical behavior of the quadratic penalty method,
assuming that X = �n, and f and h are continuously differentiable. Sup-
pose that the kth unconstrained minimization of Lck(x, λ

k) is terminated
when ∥∥∇xLck(x

k, λk)
∥∥ ≤ εk, (5.55)

where εk → 0. There are three possibilities:

(a) The method breaks down because an xk satisfying the condition (5.55)
cannot be found.

(b) A sequence {xk} satisfying the condition (5.55) for all k is obtained,
but it either has no limit points, or for each of its limit points x∗ the
matrix ∇h(x∗) has linearly dependent columns.

(c) A sequence {xk} satisfying the condition (5.55) for all k is found
and it has a limit point x∗ such that ∇h(x∗) has rank m. Then,
by Prop. 5.2.2, x∗ together with λ∗ [the corresponding limit point
of

{
λk + ckh(xk)

}
] satisfies the first order necessary conditions for

optimality.

Possibility (a) usually occurs when Lck(·, λk) is unbounded below as
discussed following Prop. 5.2.1.

Possibility (b) usually occurs when Lck(·, λk) is bounded below, but
the original problem has no feasible solution. Typically then the penalty
term dominates as k → ∞, and the method usually converges to an infea-

sible vector x∗, which is a stationary point of the function
∥∥h(x)∥∥2

. This
means that

∇h(x∗)h(x∗) = 1
2∇

{‖h(x∗)‖2} = 0,

implying that ∇h(x∗) has linearly dependent columns.
Possibility (c) is the normal case, where the unconstrained minimiza-

tion algorithm terminates successfully for each k and {xk} converges to
a feasible vector, which is also regular. It is of course possible (although
unusual in practice) that {xk} converges to a local minimum x∗, which is
not regular. Then, if there is no Lagrange multiplier vector corresponding
to x∗, the sequence

{
λk + ckh(xk)

}
diverges and has no limit point.

Extensive practical experience shows that the penalty function method
is on the whole quite reliable and usually converges to at least a local min-
imum of the original problem. Whenever it fails, this is usually due to the
increasing difficulty of the minimization

minimize Lck(x, λ
k)

subject to x ∈ X,

as ck → ∞. In particular, let us assume thatX = �n, and f and h are twice
differentiable. Then, according to the convergence rate analysis of Section
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1.3, the degree of difficulty depends on the ratio of largest to smallest
eigenvalue (the condition number) of the Hessian matrix ∇2

xxLck(x
k, λk),

and this ratio tends to increase with ck. We illustrate this by means of an
example. A proof is outlined in Exercise 5.2.8; see also [Ber82a], p. 102.

Example 5.2.2

Consider the problem of Example 5.2.1:

minimize f(x) = 1
2
(x2

1 + x2
2)

subject to x1 = 1.

The augmented Lagrangian is

Lc(x, λ) =
1
2
(x2

1 + x2
2) + λ(x1 − 1) + c

2
(x1 − 1)2,

and its Hessian is

∇2
xxLc(x, λ) = I + c

(
1
0

)
( 1 0 ) =

(
1 + c 0
0 1

)
.

The ratio of largest to smallest eigenvalue of the Hessian is 1+ c and tends to
∞ as c → ∞. The associated ill-conditioning can also be observed from the
narrow level sets of the augmented Lagrangian for large c in Fig. 5.2.2.

To overcome ill-conditioning, it is recommended to use a Newton-like
method for minimizing Lck(·, λk), as well as double precision arithmetic to
deal with roundoff errors. It is common to adopt as a starting point for
minimizing Lck(·, λk) the last point xk−1 of the previous minimization. In
order, however, for xk−1 to be near a minimizing point of Lck(·, λk), it is
necessary that ck is close to ck−1. This in turn requires that the rate of
increase of the penalty parameter ck should be relatively small. There is
a basic tradeoff here. If ck is increased at a fast rate, then {xk} converges
faster, but the likelihood of ill-conditioning is greater. Usually, a sequence
{ck} generated by ck+1 = βck with β in the range [4, 10] works well if a
Newton-like method is used for minimizing Lck(·, λk); otherwise, a smaller
value of β may be needed. Some trial and error may be needed to choose
the initial penalty parameter c0, since there is no safe guideline on how to
determine this value. For an indication of this, note that if the problem
functions f and h are scaled by multiplication with a scalar s > 0, then
c0 should be divided by s to maintain the same condition number for the
Hessian of the augmented Lagrangian.

Inequality Constraints

The simplest way to treat inequality constraints in the context of the
quadratic penalty method, is to convert them to equality constraints by
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using squared additional variables. We have already used this device in
our discussion of optimality conditions for inequality constraints in Section
4.3.2.

Consider the problem

minimize f(x)

subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) ≤ 0, . . . , gr(x) ≤ 0.

(5.56)

As discussed in Section 4.3.2, we can convert this problem to the equality
constrained problem

minimize f(x)

subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) + z21 = 0, . . . , gr(x) + z2r = 0,

(5.57)

where z1, . . . , zr are additional variables. The quadratic penalty method
for this problem involves unconstrained minimizations of the form

min
x,z

L̄c(x, z, λ, μ) = f(x) + λ′h(x) +
c

2

∥∥h(x)∥∥2

+

r∑
j=1

{
μj

(
gj(x) + z2j

)
+

c

2

∣∣gj(x) + z2j
∣∣2} ,

for various values of λ, μ, and c. This type of minimization can be done
by first minimizing L̄c(x, z, λ, μ) with respect to z, obtaining

Lc(x, λ, μ) = min
z

L̄c(x, z, λ, μ),

and then by minimizing Lc(x, λ, μ) with respect to x. A key observa-
tion is that the first minimization with respect to z can be carried out in
closed form for each fixed x, thereby yielding a closed form expression for
Lc(x, λ, μ).

Indeed, we have

min
z

L̄c(x, z, λ, μ) = f(x) + λ′h(x) +
c

2

∥∥h(x)∥∥2
+

r∑
j=1

min
zj

{
μj

(
gj(x) + z2j

)
+

c

2

∣∣gj(x) + z2j
∣∣2} ,

(5.58)
and the minimization with respect to zj in the last term is equivalent to

min
uj≥0

{
μj

(
gj(x) + uj

)
+

c

2

∣∣gj(x) + uj

∣∣2} .
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The function in braces above is quadratic in uj . Its constrained minimum
is u∗

j = max{0, ûj}, where ûj is the unconstrained minimum at which the

derivative, μj + c
(
gj(x) + ûj

)
, is zero. Thus,

u∗

j = max
{
0,−

(μj

c
+ gj(x)

)}
.

Denoting

g+j (x, μ, c) = max
{
gj(x),−μj

c

}
, (5.59)

we have gj(x)+u∗

j = g+j (x, μ, c). Substituting this expression in Eq. (5.58),

we obtain a closed form expression for Lc(x, λ, μ) = minz L̄c(x, z, λ, μ)
given by

Lc(x, λ, μ) = f(x) + λ′h(x) +
c

2

∥∥h(x)∥∥2

+

r∑
j=1

{
μjg

+
j (x, μ, c) +

c

2

(
g+j (x, μ, c)

)2}
.

(5.60)

After some calculation, left for the reader, we can also write this expression
as

Lc(x, λ, μ) = f(x) + λ′h(x) +
c

2

∥∥h(x)∥∥2

+
1

2c

r∑
j=1

{(
max

{
0, μj + cgj(x)

})2 − μ2
j

}
,

(5.61)

and we can view it as the augmented Lagrangian function for the inequality
constrained problem (5.56).

Note that the penalty term

1

2c

(
max

{
0, μj + cgj(x)

})2 − μ2
j

corresponding to the jth inequality constraint in Eq. (5.61) is continuously
differentiable in x if gj is continuously differentiable (see Fig. 5.2.3). How-
ever, its Hessian matrix is discontinuous for all x such that gj(x) = −μj/c;
this may cause some difficulties in the minimization of Lc(x, λ, μ) and moti-
vates alternative augmented Lagrangian methods for inequality constraints
(see Section 5.2.5).

To summarize, the quadratic penalty method for the inequality con-
strained problem (5.56) consists of a sequence of minimizations of the form

minimize Lck(x, λ
k, μk)

subject to x ∈ X,
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Constraint g

Slope = μ

0
−μ

c

−μ
2

2c

1

2c

{
(max{0, μ+ cg})2 − μ2

}

Figure 5.2.3. Form of the quadratic penalty function for inequality constraints.

where Lc(x, λk, μk) is given by Eq. (5.60) or Eq. (5.61), {λk} and {μk} are
sequences in �m and �r, respectively, and {ck} is a positive penalty param-
eter sequence. Since this method is equivalent to the equality-constrained
method applied to the corresponding equality-constrained problem (5.57),
our convergence result of Prop. 5.2.1 applies with the obvious modifications.

Furthermore, if X = �n, f , h, and g are continuously differentiable,
and the generated sequence {xk} converges to a local minimum x∗ which
is also regular, application of Prop. 5.2.2 to the equivalent equality con-
strained problem (5.57) shows that the sequences{

λk
i + ckhi(xk)

}
, max

{
0, μk

j + ckgj(xk)
}

(5.62)

converge to the corresponding Lagrange multipliers λ∗

i and μ∗

j [for the jth
inequality constraint, the Lagrange multiplier estimate is

μk
j + ckg+j (x

k, μk, ck),

which is equal to max
{
0, μk

j + ckgj(xk)
}
in view of the form (5.59) for g+j ].

5.2.2 Multiplier Methods – Main Ideas

Let us return to the case where X = �n and the problem has only equality
constraints,

minimize f(x)

subject to h(x) = 0.

We mentioned earlier that optimal solutions of this problem can be well ap-
proximated by unconstrained minima of the augmented Lagrangian Lc(·, λ)
under two types of circumstances:

(a) The vector λ is close to a Lagrange multiplier.
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(b) The penalty parameter c is large.

We analyzed in the previous subsection the quadratic penalty method
consisting of unconstrained minimization of Lck(·, λk) for a sequence ck →
∞. No assumptions on the sequence {λk} were made other than bounded-
ness. Still, we found that, under minimal assumptions on f and h (conti-
nuity), the method has satisfactory convergence properties (Prop. 5.2.1).

We now consider intelligent ways to update λk so that it tends to a
Lagrange multiplier. We will see that under some reasonable assumptions,
this approach is workable even if ck is not increased to ∞, thereby allevi-
ating much of the difficulty with ill-conditioning. Furthermore, even when
ck is increased to ∞, the rate of convergence is significantly enhanced by
using good updating schemes for λk.

The Method of Multipliers

A first update formula for λk in the quadratic penalty method is

λk+1 = λk + ckh(xk). (5.63)

The rationale is provided by Prop. 5.2.2, which shows that, if the generated
sequence {xk} converges to a local minimum x∗ that is regular, then

{
λk+

ckh(xk)
}
converges to the corresponding Lagrange multiplier λ∗.

The quadratic penalty method with the preceding update formula for
λk is known as the method of multipliers (also called augmented Lagrangian
method). There are a number of interesting convergence and rate of con-
vergence results regarding this method, which will be given shortly. We
first illustrate the method with some examples.

Example 5.2.3 (A Convex Problem)

Consider again the problem of Examples 5.2.1 and 5.2.2:

minimize f(x) = 1
2
(x2

1 + x2
2)

subject to x1 = 1,

with optimal solution x∗ = (1, 0) and Lagrange multiplier λ∗ = −1. The
augmented Lagrangian is

Lc(x, λ) =
1
2
(x2

1 + x2
2) + λ(x1 − 1) + c

2
(x1 − 1)2.

The vectors xk generated by the method of multipliers minimize Lck (·, λk)
and are given by

xk =

(
ck − λk

ck + 1
, 0

)
.
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Using this expression, the multiplier updating formula (5.63) can be written
as

λk+1 = λk + ck
(
ck − λk

ck + 1
− 1

)
=

λk

ck + 1
− ck

ck + 1
,

or by introducing the Lagrange multiplier λ∗ = −1,

λk+1 − λ∗ =
λk − λ∗

ck + 1
.

From this formula, it can be seen that

(a) λk → λ∗ = −1 and xk → x∗ = (1, 0) for every nondecreasing sequence
{ck} [since the scalar 1/(ck+1) multiplying λk−λ∗ in the above formula
is always less than one].

(b) The convergence rate becomes faster as ck becomes larger; in fact the
error sequence

{
|λk − λ∗|

}
converges superlinearly if ck → ∞.

Note that it is not necessary to increase ck to ∞, although doing so results
in a better convergence rate.

Example 5.2.4 (A Nonconvex Problem)

Consider the problem

minimize 1
2
(−x2

1 + x2
2)

subject to x1 = 1

with optimal solution x∗ = (1, 0) and Lagrange multiplier λ∗ = 1. The
augmented Lagrangian is given by

Lc(x, λ) =
1
2
(−x2

1 + x2
2) + λ(x1 − 1) + c

2
(x1 − 1)2.

The vector xk minimizing Lck (x, λ
k) is given by

xk =

(
ck − λk

ck − 1
, 0

)
. (5.64)

For this formula to be correct, however, it is necessary that ck > 1; for ck < 1
the augmented Lagrangian has no minimum, and the same is true for ck = 1
unless λk = 1. The multiplier updating formula (5.63) can be written using
Eq. (5.64) as

λk+1 = λk + ck
(
ck − λk

ck − 1
− 1

)
= − λk

ck − 1
+

ck

ck − 1
,

or by introducing the Lagrange multiplier λ∗ = 1,

λk+1 − λ∗ = −λk − λ∗

ck − 1
. (5.65)
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From this iteration, it can be seen that similar conclusions to those of
the preceding example can be drawn. In particular, it is not necessary to
increase ck to ∞ to obtain convergence, although doing so results in a better
convergence rate. However, there is a difference: whereas in the preceding
example, convergence was guaranteed for all positive sequences {ck}, in the
present example, the minimizing points exist only if ck > 1. Here, ck plays
a convexification role: once it exceeds the threshold value of 1 the penalty
term convexifies the augmented Lagrangian, thus compensating for the non-
convexity of the cost function. Moreover, it is seen from Eq. (5.65) that to
obtain convergence, the penalty parameter ck must eventually exceed 2, so
that the scalar −1

ck − 1

multiplying λk has absolute value less than one. The need for ck to exceed
twice the value of the convexification threshold is a fundamental characteristic
of multiplier methods when applied to nonconvex problems, as we will see
shortly.

Geometric Interpretation of the Method of Multipliers

The conclusions from the preceding two examples hold in considerable gen-
erality. We first provide a geometric interpretation. Assume that f and h
are twice differentiable and let x∗ be a local minimum of f over h(x) = 0.
Assume also that x∗ is regular and together with its associated Lagrange
multiplier vector λ∗ satisfies the second order sufficiency conditions of Prop.
4.2.1. Then the assumptions of the sensitivity theorem (Prop. 4.2.2) are
satisfied and we can consider the primal function

p(u) = min
h(x)=u

f(x),

defined for u in an open sphere centered at u = 0. [The minimization above
is understood to be local in an open sphere within which x∗ is the unique
local minimum of f over h(x) = 0 (cf. Prop. 4.2.2).] Note that we have

p(0) = f(x∗), ∇p(0) = −λ∗,

(cf. Prop. 4.2.2). The primal function is illustrated in Fig. 5.2.4.
We can break down the minimization of Lc(·, λ) into two stages, first

minimizing over all x such that h(x) = u with u fixed, and then minimizing
over all u. Thus,

min
x

Lc(x, λ) = min
u

min
h(x)=u

{
f(x) + λ′h(x) +

c

2

∥∥h(x)∥∥2
}

= min
u

{
p(u) + λ′u+

c

2
‖u‖2

}
,
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p(0) = f(x∗) = 1

2

p(0) = f(x∗) = − 1

2

−1 −10 0u u

p(u) = 1

2
(u+ 1)2 p(u) = − 1

2
(u+ 1)2

Figure 5.2.4. Illustration of the primal function. In (a) we show the primal
function

p(u) = min
x1−1=u

1
2
(x2

1 + x2
2)

for the problem of Example 5.2.3. In (b) we show the primal function

p(u) = min
x1−1=u

1
2
(−x2

1 + x2
2)

for the problem of Example 5.2.4. The latter primal function is not convex because
the cost function is not convex on the subspace that is orthogonal to the constraint
set (this observation can be generalized).

where the minimization above is understood to be local in a neighborhood
of u = 0. This minimization can be interpreted as shown in Fig. 5.2.5.
The minimum is attained at the point u(λ, c) for which the gradient of
p(u) + λ′u+ c

2‖u‖2 is zero, or, equivalently,

∇
{
p(u) +

c

2
‖u‖2

} ∣∣∣
u=u(λ,c)

= −λ.

Thus, the minimizing point u(λ, c) is obtained as shown in Fig. 5.2.5. We
also have

min
x

Lc(x, λ) − λ′u(λ, c) = p
(
u(λ, c)

)
+

c

2

∥∥u(λ, c)∥∥2,
so the tangent hyperplane to the graph of p(u) + c

2‖u‖2 at u(λ, c) (which
has “slope” −λ) intersects the vertical axis at the value minx Lc(x, λ) as
shown in Fig. 5.2.5. It can be seen that if c is sufficiently large, then the
function

p(u) + λ′u+
c

2
‖u‖2

is convex in a neighborhood of the origin. Furthermore, for λ close to λ∗

and large c, the value minx Lc(x, λ) is close to p(0) = f(x∗).
Figure 5.2.6 provides a geometric interpretation of the multiplier it-

eration
λk+1 = λk + ckh(xk).
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p(0) = f(x∗)

u(λ, c)

−λ′u(λ, c)

Slope = −λ∗

u0

minx Lc(x, λ)

Slope = −λ

Penalized Primal Function

p(u) + c

2
‖u‖2

Primal Function
p(u)

Figure 5.2.5. Geometric interpretation of minimization of the augmented La-
grangian. The value minx Lc(x, λ) is the point where the tangent hyperplane to
the graph of p(u)+ c

2
‖u‖2 at u(λ, c) (which has “slope” −λ) intersects the vertical

axis. This point is close to p(0) = f(x∗) if either λ is close to λ∗ or c is large (or
both).

To understand this figure, note that if xk minimizes Lck(·, λk), then by the
preceding analysis the vector uk given by uk = h(xk) minimizes p(u) +

λk′u+ ck

2 ‖u‖2. Hence,

∇
{
p(u) +

ck

2
‖u‖2

} ∣∣∣
u=uk

= −λk,

and
∇p(uk) = −(λk + ckuk) = −(

λk + ckh(xk)
)
.

It follows that the next multiplier λk+1 is

λk+1 = λk + ckh(xk) = −∇p(uk),

as shown in Fig. 5.2.6. The figure shows that if λk is sufficiently close to
λ∗ and/or ck is sufficiently large, the next multiplier λk+1 will be closer to
λ∗ than λk is. Furthermore, ck need not be increased to ∞ in order to ob-
tain convergence; it is sufficient that ck eventually exceeds some threshold
level. The figure also shows that if p(u) is linear, convergence to λ∗ will be
achieved in one iteration.

In summary, the geometric interpretation of the method of multipliers
just presented suggests the following:

(a) If c is large enough so that cI +∇2p(0) is positive definite, then the
“penalized primal function”

p(u) +
c

2
‖u‖2
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p(0) = f(x∗)

u0

p(u) + c

2
‖u‖2

minx Lc(x, λk)

minx Lc(x, λk+1)

uk uk+1

Slope = −λk+1 = ∇p(uk)

Slope = −λ∗

Slope = −λk+1

Slope = −λk+2

p(u)

Slope = −λk

Figure 5.2.6. Geometric interpretation of the first order multiplier iteration.
The figure shows the process of obtaining λk+1 from λk, assuming a constant
penalty parameter ck = ck+1 = c.

is convex within a sphere centered at u = 0. Furthermore, a local
minimum of the augmented Lagrangian Lc(x, λ) that is near x∗ exists
if λ is close enough to λ∗. The reason is that ∇2

xxLc(x∗, λ∗) is positive
definite if and only if cI+∇2p(0) is positive definite, a fact the reader
may wish to verify as an exercise.

(b) If ck is sufficiently large [the threshold can be shown to be twice the
value of c needed to make cI +∇2p(0) positive definite; see Exercise
5.2.4], then

‖λk+1 − λ∗‖ ≤ ‖λk − λ∗‖
and λk → λ∗.

(c) Convergence can be obtained even if ck is not increased to ∞.

(d) As ck is increased, the rate of convergence of λk improves.

(e) If ∇2p(0) = 0, the convergence is very fast.

These conclusions will be formalized in Section 5.2.3.

Computational Aspects – Choice of Parameters

In addition to addressing the problem of ill-conditioning, an important
practical question in the method of multipliers is how to select the initial
multiplier λ0 and the penalty parameter sequence. Clearly, in view of the
interpretations given earlier, any prior knowledge should be exploited to
select λ0 as close as possible to λ∗. The main considerations to be kept in
mind for selecting the penalty parameter sequence are the following:
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(a) ck should eventually become larger than the threshold level necessary
to bring to bear the positive features of the multiplier iteration.

(b) The initial parameter c0 should not be too large to the point where
it causes ill-conditioning at the first unconstrained minimization.

(c) ck should not be increased too fast to the point where too much ill-
conditioning is forced upon the unconstrained minimization routine
too early.

(d) ck should not be increased too slowly, at least in the early minimiza-
tions, to the extent that the multiplier iteration has poor convergence
rate.

A good practical scheme is to choose a moderate value c0 (if necessary
by preliminary experimentation), and then increase ck via the equation
ck+1 = βck, where β is a scalar with β > 1. In this way, the threshold level
for multiplier convergence will eventually be exceeded. If the method used
for augmented Lagrangian minimization is powerful, such as a Newton-
like method, fairly large values of β (say β ∈ [5, 10]) are recommended;
otherwise, smaller values of β may be necessary, depending on the method’s
ability to deal with ill-conditioning.

Another reasonable parameter adjustment scheme is to increase ck

by multiplication with a factor β > 1 only if the constraint violation as
measured by

∥∥h(x(λk , ck))
∥∥ is not decreased by a factor γ < 1 over the

previous minimization; i.e.,

ck+1 =

{
βck if

∥∥h(xk)
∥∥ > γ

∥∥h(xk−1)
∥∥,

ck if ‖h(xk)‖ ≤ γ
∥∥h(xk−1)

∥∥.
A choice such as γ = 0.25 is typically recommended.

Still another possibility is an adaptive scheme that uses a different
penalty parameter cki for each constraint hi(x) = 0, and increases by a
certain factor the penalty parameters of the constraints that are violated
most. For example, increase cki if the constraint violation as measured by∣∣hi(xk)

∣∣ is not decreased by a certain factor over
∣∣hi(xk−1)

∣∣.
Inexact Minimization of the Augmented Lagrangian

In practice the minimization of Lck(x, λ
k) is typically terminated early. For

example, it may be terminated at a point xk satisfying∥∥∇xLck(x
k, λk)

∥∥ ≤ εk,

where {εk} is a positive sequence converging to zero. Then it is still appro-
priate to use the multiplier update

λk+1 = λk + ckh(xk),
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although in theory, some of the linear convergence rate results to be given
shortly will not hold any more. This deficiency does not seem to be im-
portant in practice, but can also be corrected by using the alternative
termination criterion∥∥∇xLck(x

k, λk)
∥∥ ≤ min

{
εk, γk‖h(xk)‖},

where {εk} and {γk} are positive sequences converging to zero; for an
analysis see the author’s works [Ber75b], [Ber76a], and [Ber82a], Section
2.5.

In Section 5.4, we will see that with certain safeguards, it is possible
to terminate the minimization of the augmented Lagrangian after a few
Newton steps (possibly only one), and follow it by a second order multi-
plier update of the type that will be discussed later in this section. Such
algorithmic strategies give rise to some of the most effective methods using
Lagrange multipliers.

Inequality Constraints

To treat inequality constraints gj(x) ≤ 0 in the context of the method of
multipliers, we convert them into equality constraints gj(x)+z2j = 0, using
the additional variables zj [cf. problems (5.56) and (5.57)]. In particular,
the multiplier update formulas are

λk+1 = λk + ckh(xk),

μk+1
j = max

{
0, μk

j + ckgj(xk)
}
, j = 1, . . . , r,

[cf. Eq. (5.62)], where xk minimizes the augmented Lagrangian

Lck(x, λ
k, μk) = f(x) + λk′h(x) +

c

2

∥∥h(x)∥∥2

+
1

2ck

r∑
j=1

{(
max

{
0, μk

j + ckgj(x)
})2 − (μk

j )
2
}
.

Many problems encountered in practice involve two-sided constraints
of the form

αj ≤ gj(x) ≤ βj ,

where αj and βj are given scalars. Each two-sided constraint could of
course be separated into two one-sided constraints. This would require,
however, the assignment of two multipliers per two-sided constraint, and
is somewhat wasteful, since we know that at a solution at least one of
the two multipliers will be zero. It turns out that there is an alternative
approach that requires only one multiplier per two-sided constraint (see
Exercise 5.2.7).
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Partial Elimination of Constraints

In the preceding multiplier algorithms, all the equality and inequality con-
straints are eliminated by means of a penalty. In some cases it is convenient
to eliminate only part of the constraints, while retaining the remaining con-
straints explicitly. A typical example is a problem of the form

minimize f(x)

subject to h(x) = 0, x ≥ 0.

While, in addition to h(x) = 0, it is possible to eliminate by means of
a penalty the bound constraints x ≥ 0, it is often desirable to handle
these constraints explicitly by a gradient projection or two-metric projec-
tion method of the type discussed in Sections 3.3 and 3.4, respectively.

More generally, a method of multipliers with partial elimination of
constraints for the problem

minimize f(x)

subject to h(x) = 0, g(x) ≤ 0,

consists of finding xk that solves the problem

minimize f(x) + λk′h(x) +
c

2

∥∥h(x)∥∥2

subject to g(x) ≤ 0,

followed by the multiplier iteration

λk+1 = λk + ckh(xk).

In fact it is not essential that just the equality constraints are eliminated
by means of a penalty above. Any mixture of equality and inequality con-
straints can be eliminated by means of a penalty and a multiplier, while the
remaining constraints can be explicitly retained. For a detailed treatment
of partial elimination of constraints, we refer to [Ber77], [Ber82a], Section
2.4, [Dun91a], and [Dun93b].

5.2.3 Convergence Analysis of Multiplier Methods

We now discuss the convergence properties of multiplier methods and sub-
stantiate the conclusions derived informally earlier. We focus attention
throughout on the equality constrained problem

minimize f(x)

subject to h(x) = 0,
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and on a particular local minimum x∗. We assume that x∗ is regular
and together with a Lagrange multiplier vector λ∗ satisfies the second order
sufficiency conditions of Prop. 4.2.1 . In view of our earlier treatment
of inequality constraints by conversion to equalities, our analysis readily
carries over to the case of mixed equality and inequality constraints, under
the second order sufficiency conditions of Prop. 4.2.1.

The convergence results described in this section can be strengthened
considerably under additional convexity assumptions on the problem. This
is discussed further in Section 7.3; see also [Ber82a], Chapter 5.

Error Bounds for Local Minima of the Augmented Lagrangian

A first basic issue is whether local minima xk of the augmented Lagrangian
Lck(·, λk) exist, so that the method itself is well-defined. We have shown
that for the local minimum-Lagrange multiplier pair (x∗, λ∗) there exist
scalars c̄ > 0, γ > 0, and ε > 0, such that

Lc(x, λ∗) ≥ Lc(x∗, λ∗)+
γ

2
‖x−x∗‖2, ∀ x with ‖x−x∗‖ < ε, and c ≥ c̄,

(cf. the discussion following Lemma 3.2.1). It is thus reasonable to infer
that if λ is close to λ∗, there should exist a local minimum of Lc(·, λ) close
to x∗ for every c ≥ c̄. More precisely, for a fixed c ≥ c̄, we can show this
by considering the system of equations

∇xLc(x, λ) = ∇f(x) +∇h(x)
(
λ+ ch(x)

)
= 0,

and by using the implicit function theorem in a neighborhood of (x∗, λ∗).
[This can be done because the Jacobian of the system with respect to x is
∇2

xLc(x∗, λ∗), and is positive definite since c ≥ c̄.] Thus, for λ sufficiently
close to λ∗, there is an unconstrained local minimum x(λ, c) of Lc(·, λ),
which is defined via the equation

∇f
(
x(λ, c)

)
+∇h

(
x(λ, c)

)(
λ+ ch(x(λ, c))

)
= 0.

A closer examination of the preceding argument shows that for ap-
plication of the implicit function theorem it is not essential that λ be close
to λ∗ but rather that the vector λ+ ch

(
x(λ, c)

)
be close to λ∗. Proposition

5.2.2 indicates that for any λ, if c is sufficiently large and x(λ, c) minimizes
Lc(x, λ), the vector λ+ ch

(
x(λ, c)

)
is close to λ∗. This suggests that there

should exist a local minimum of Lc(·, λ) close to x∗ even for λ that are far
from λ∗, provided c is sufficiently large. This can indeed be shown. In
fact it turns out that for existence of the local minimum x(λ, c), what is
really important is that the ratio ‖λ − λ∗‖/c be sufficiently small. How-
ever, proving this simultaneously for the entire range of values c ∈ [c̄,∞)
is not easy. The following proposition, due to [Ber82a], provides a precise
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mathematical statement of the existence result, together with some error
estimates that quantify the rate of convergence. The proof requires the
introduction of the variables λ̃ = λ + ch(x), and t = (λ − λ∗)/c, together
with the system of equations ∇xL0(x, λ̃) = 0 and an analysis based on a
more refined form of the implicit function theorem than the one given in
Appendix A.

Proposition 5.2.3: Let c̄ be a positive scalar such that

∇2
xxLc̄(x∗, λ∗) > 0.

There exist positive scalars δ, ε, and M such that:

(a) For all (λ, c) in the set D ⊂ �m+1 defined by

D =
{
(λ, c) | ‖λ− λ∗‖ < δc, c̄ ≤ c

}
, (5.66)

the problem
minimize Lc(x, λ)

subject to ‖x− x∗‖ < ε

has a unique solution denoted x(λ, c). The function x(·, ·) is
continuously differentiable in the interior ofD, and for all (λ, c) ∈
D, we have ∥∥x(λ, c) − x∗

∥∥ ≤ M
‖λ− λ∗‖

c
.

(b) For all (λ, c) ∈ D, we have

∥∥λ̃(λ, c)− λ∗

∥∥ ≤ M
‖λ− λ∗‖

c
,

where
λ̃(λ, c) = λ+ ch

(
x(λ, c)

)
.

(c) For all (λ, c) ∈ D, the matrix ∇2
xxLc

(
x(λ, c), λ

)
is positive defi-

nite and the matrix ∇h
(
x(λ, c)

)
has rank m.

Proof: See [Ber82a], p. 108.

Figure 5.2.7 shows the set D of pairs (λ, c) within which the conclu-
sions of Prop. 5.2.3 are valid [cf. Eq. (5.66)]. It can be seen that, for any
λ, there exists a cλ such that (λ, c) belongs to D for every c ≥ cλ. The
estimate δc on the allowable distance of λ from λ∗ grows linearly with c
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[compare with Eq. (5.66)]. In particular problems, the actual allowable dis-
tance may grow at a higher than linear rate, and in fact it is possible that
for every λ and c > 0 there exists a unique global minimum of Lc(·, λ).
(Take for instance the scalar problem min{x2 | x = 0}.) However, it is
shown by example in [Ber82a], p. 111, that the estimate of a linear order
of growth cannot be improved.

Slope δ

Slope −δ

D

λ

λ∗

0 c c

Figure 5.2.7. Illustration of the set

D =
{
(λ, c) | ‖λ − λ∗‖ < δc, c̄ ≤ c

}
within which the conclusions of Prop. 5.2.3 are valid.

Convergence and Rate of Convergence

Proposition 5.2.3 yields both a convergence and a convergence rate result
for the multiplier iteration

λk+1 = λk + ckh(xk).

It shows that if the generated sequence {λk} is bounded [this can be en-
forced if necessary by leaving λk unchanged if λk+ckh(xk) does not belong
to a prespecified bounded open set known to contain λ∗], the penalty pa-
rameter ck is sufficiently large after a certain index [so that (λk, ck) ∈ D],
and after that index, minimization of Lck(·, λk) yields the local minimum
xk = x(λk, ck) closest to x∗, then we obtain xk → x∗, λk → λ∗. Fur-
thermore, the rate of convergence of the error sequences

{‖xk − x∗‖} and{‖λk − λ∗‖} is linear, and it is superlinear if ck → ∞.
It is possible to conduct a more refined convergence and rate of con-

vergence analysis that supplements Prop. 5.2.3. This analysis quantifies
the threshold level of the penalty parameter for convergence to occur and
gives a precise estimate of the linear convergence rate. We refer to the book
[Ber82a] for an extensive discussion; see also Exercise 5.2.4.
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5.2.4 Duality and Second Order Multiplier Methods

Let c̄, δ, and ε be as in Prop. 5.2.3, and define for (λ, c) in the set

D =
{
(λ, c) | ‖λ− λ∗‖ < δc, c̄ ≤ c

}
the dual function qc by

qc(λ) = min
‖x−x∗‖<ε

Lc(x, λ) = Lc

(
x(λ, c), λ

)
. (5.67)

Since x(·, c) is continuously differentiable (Prop. 5.2.3), the same is true for
qc.

Calling qc a dual function is not inconsistent with the duality the-
ory already formulated in Section 4.4 and further developed in Chapter 6.
Indeed qc is the dual function for the problem

minimize f(x) +
c

2

∥∥h(x)∥∥2

subject to ‖x− x∗‖ < ε, h(x) = 0,

which for c ≥ c̄, has x∗ as its unique optimal solution and λ∗ as the corre-
sponding Lagrange multiplier.

We compute the gradient of qc with respect to λ. From Eq. (5.67),
we have

∇qc(λ) = ∇λx(λ, c)∇xLc

(
x(λ, c), λ

)
+ h

(
x(λ, c)

)
.

Since ∇xLc

(
x(λ, c), λ

)
= 0, we obtain

∇qc(λ) = h
(
x(λ, c)

)
, (5.68)

and since x(·, c) is continuously differentiable, the same is true for ∇qc.
Next we compute the Hessian ∇2qc. Differentiating ∇qc, as given by

Eq. (5.68), with respect to λ, we obtain

∇2qc(λ) = ∇λx(λ, c)∇h
(
x(λ, c)

)
. (5.69)

We also have, for all (λ, c) in the set D,

∇xLc

(
x(λ, c), λ

)
= 0.

Differentiating with respect to λ, we obtain

∇λx(λ, c)∇2
xxLc

(
x(λ, c), λ

)
+∇2

λxLc

(
x(λ, c), λ

)
= 0,

and since
∇2

λxLc

(
x(λ, c), λ

)
= ∇h

(
x(λ, c)

)
′

,
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it follows that

∇λx(λ, c) = −∇h
(
x(λ, c)

)
′
(∇2

xxLc

(
x(λ, c), λ

))
−1

.

Substitution in Eq. (5.69) yields the formula

∇2qc(λ) = −∇h
(
x(λ, c)

)
′
(∇2

xxLc

(
x(λ, c), λ

))
−1∇h

(
x(λ, c)

)
. (5.70)

Since ∇2
xxLc

(
x(λ, c), λ

)
is positive definite and ∇h

(
x(λ, c)

)
has rank

m for (λ, c) ∈ D (cf. Prop. 5.2.3), it follows from Eq. (5.70) that ∇2qc(λ)
is negative definite for all (λ, c) ∈ D, so that qc is concave within the set{
λ | ‖λ− λ∗‖ ≤ δc

}
. Furthermore, using Eq. (5.68), we have, for all c ≥ c̄,

∇qc(λ∗) = h
(
x(λ∗, c)

)
= h(x∗) = 0.

Thus, for every c ≥ c̄, λ∗ maximizes qc(λ) over the set
{
λ | ‖λ−λ∗‖ < δc

}
.

Also in view of Eq. (5.68), the multiplier update formula can be written as

λk+1 = λk + ck∇qck(λ
k), (5.71)

so it is a steepest ascent iteration for maximizing qck . When ck = c for all
k, then Eq. (5.71) is the constant stepsize steepest ascent method

λk+1 = λk + c∇qc(λk)

for maximizing qc.

The Second Order Method of Multipliers

In view of the interpretation of the multiplier iteration as a steepest ascent
method, it is natural to consider the Newton-like iteration

λk+1 = λk − (∇2qck(λ
k)
)
−1∇qck(λ

k),

for maximizing the dual function. In view of the gradient and Hessian
formulas (5.68) and (5.70), this iteration can be written as

λk+1 = λk + (Bk)−1h(xk),

where
Bk = ∇h

(
xk

)
′
(∇2

xxLck(x
k, λk)

)
−1∇h

(
xk

)
and xk minimizes Lck(·, λk).

An alternative form, which turns out to be more appropriate when
the minimization of the augmented Lagrangian is inexact is given by

λk+1 = λk + (Bk)−1
(
h(xk)−∇h(xk)′

(∇2
xxLck(x

k, λk)
)
−1∇xLck(x

k, λk)
)
.

(5.72)
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When the augmented Lagrangian is minimized exactly, ∇xLck(x
k, λk) = 0,

and the two forms are equivalent.
To provide motivation for iteration (5.72), let us consider Newton’s

method for solving the system of necessary conditions

∇xLc(x, λ) = ∇f(x) +∇h(x)
(
λ+ ch(x)

)
= 0, h(x) = 0.

In this method, we linearize the above system around the current iterate
(xk, λk), and we obtain the next iterate (xk+1, λk+1) from the solution of
the linearized system(∇2

xxLck(x
k, λk) ∇h(xk)

∇h(xk)′ 0

)(
xk+1 − xk

λk+1 − λk

)
= −

(∇xLck(x
k, λk)

h(xk)

)
.

It is straightforward to verify (a derivation will be given in Section 5.4.2)
that λk+1 is given by Eq. (5.72), while

xk+1 = xk − (∇2
xxLck(x

k, λk)
)
−1∇xLck

(
xk, λk+1

)
.

This justifies the use of the extra term

∇h(xk)′
(∇2

xxLck(x
k, λk)

)
−1∇xLck(x

k, λk)

in Eq. (5.72) when the minimization of the augmented Lagrangian is inex-
act.

5.2.5 Nonquadratic Augmented Lagrangians - The Exponential
Method of Multipliers

One of the drawbacks of the method of multipliers when applied to inequal-
ity constrained problems is that the corresponding augmented Lagrangian
function is not twice differentiable even if the cost and constraint functions
are. As a result, serious difficulties can arise when Newton-like methods are
used to minimize the augmented Lagrangian, particularly for polyhedral-
type problems. This motivates alternative twice differentiable augmented
Lagrangians to handle inequality constraints, which we now describe.

Consider the problem

minimize f(x)

subject to g1(x) ≤ 0, . . . , gr(x) ≤ 0.

We introduce a method of multipliers characterized by a twice differentiable
penalty function ψ : � �→ � with the following properties:

(i) ∇2ψ(t) > 0 for all t ∈ �,
(ii) ψ(0) = 0, ∇ψ(0) = 1,
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Slope μ

Constraint level g

0

−μ
2

2c

c′ > c

μ

c

(
ecg − 1

)

Figure 5.2.8. The penalty term of the exponential method of multipliers. The
slope at 0 is μ, regardless of the value of x.

(iii) limt→−∞ ψ(t) > −∞,

(iv) limt→−∞ ∇ψ(t) = 0 and limt→∞ ∇ψ(t) = ∞.

A simple and interesting special case is the exponential penalty function

ψ(t) = et − 1,

(see Fig. 5.2.8).
The method consists of the sequence of unconstrained minimizations

xk ∈ arg min
x∈�n

⎧⎨
⎩f(x) +

m∑
j=1

μk
j

ckj
ψ
(
ckj gj(x)

)⎫⎬⎭ ,

followed by the multiplier iterations

μk+1
j = μk

j∇ψ
(
ckj gj(x

k)
)
, j = 1, . . . , r. (5.73)

Here {ckj } is a positive penalty parameter sequence for each j, and the

initial multipliers μ0
j are arbitrary positive numbers.

Note that for fixed μk
j > 0, the “penalty” term

μk
j

ckj
ψ
(
ckj gj(x)

)
tends (as ckj → ∞) to ∞ for all infeasible x [gj(x) > 0] and to zero for all
feasible x [gj(x) ≤ 0]. To see this, note that by convexity of ψ, we have
ψ(ct) ≥ ψ(ct/2) + (ct/2)∇ψ(ct/2), from which we obtain

1

c
ψ(ct) ≥ 1

c
ψ(ct/2) +

t

2
∇ψ(ct/2).
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Thus if t > 0, the assumptions ψ(ct/2) > 0 and limτ→∞ ∇ψ(τ) = ∞
imply that limc→∞(1/c)ψ(ct) = ∞. Also, if t < 0, we have infc>0 ψ(ct) =
infτ<0 ψ(τ) > −∞, so that limc→∞(1/c)ψ(ct) = 0.

On the other hand, for fixed ckj , as μ
k
j → 0 (which is expected to occur

if the jth constraint is inactive at the optimum), the penalty term goes to
zero for all x, feasible or infeasible. This is contrary to what happens in
the quadratic penalty and augmented Lagrangian methods, and turns out
to be a complicating factor in the analysis.

For the exponential penalty function ψ(t) = et − 1, the multiplier
iteration (5.73) takes the form

μk+1
j = μk

j e
ckj gj(x

k), j = 1, . . . , r.

Another interesting method, known as themodified barrier method , is based
on the following version of the logarithmic barrier function

ψ(t) = − ln(1− t),

for which the multiplier iteration (5.73) takes the form

μk+1
j =

μk
j

1− ckj gj(x
k)

, j = 1, . . . , r.

This method is not really a special case of the generic method (5.73) because
the penalty function ψ is defined only on the set (−∞, 1), but it shares the
same qualitative characteristics as the generic method.

Practical Implementation

Two practical points regarding the exponential method are worth mention-
ing. The first is that the exponential terms in the augmented Lagrangian
function can easily become very large with an attendant computer over-
flow. [The modified barrier method has a similar and even more serious
difficulty: it tends to ∞ as ckj gj(x

k) → 1.] One way to deal with this disad-
vantage is to define ψ(t) as the exponential et − 1 only for t in an interval
(−∞, A], where A is such that eA is within the floating point range of the
computer; outside the interval (−∞, A], ψ(t) can be defined as any function
such that the properties required of ψ, including twice differentiability, are
maintained over the entire real line. For example ψ can be a quadratic
function with parameters chosen so that ∇2ψ is continuous at the splice
point A.

The second point is that it makes sense to introduce a different
penalty parameter ckj for the jth constraint and to let ckj depend on the

current values of the corresponding multiplier μk
j via

ckj =
wk

μk
j

, j = 1, . . . , r, (5.74)
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where {wk} is a positive scalar sequence with wk ≤ wk+1 for all k. The
reason can be seen by using the series expansion of the exponential term
to write

μj

c

(
ecgj(x) − 1

)
=

μj

c

(
cgj(x) +

c2

2

(
gj(x)

)2
+

c3

3!

(
gj(x)

)3
+ · · ·

)
.

If the jth constraint is active at the eventual limit, the terms of order higher
than quadratic can be neglected and we can write approximately

μj

c

(
ecgj(x) − 1

) ≈ μjgj(x) +
cμj

2
gj(x)2.

Thus the exponential augmented Lagrangian term becomes similar to the
quadratic term, except that the role of the penalty parameter is played
by the product cμj . This motivates the use of selection rules such as Eq.
(5.74). A similar penalty selection rationale applies also to other penalty
functions in the class.

Generally the convergence analysis of the exponential method of mul-
tipliers and other methods in the class, under second order sufficiency con-
ditions, turns out to be not much more difficult than for the quadratic
method (see the references). The convergence results available are as pow-
erful as for the quadratic method. The practical performances of the expo-
nential and the quadratic method of multipliers are roughly comparable for
problems where second order differentiability of the augmented Lagrangian
function turns out to be of no concern. The exponential method has an
edge for problems where the lack of second order differentiability in the
quadratic method causes difficulties.

E X E R C I S E S

5.2.1

Consider the problem

minimize f(x) = 1
2

(
x2
1 − x2

2

)
− 3x2

subject to x2 = 0.

(a) Calculate the optimal solution and the Lagrange multiplier.

(b) For k = 0, 1, 2 and ck = 10k+1 calculate and compare the iterates of the
quadratic penalty method with λk = 0 for all k and the method of multi-
pliers with λ0 = 0.
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(c) Draw the figure that interprets geometrically the two methods (cf. Figs.
5.2.5 and 5.2.6) for this problem, and plot the iterates of the two methods
on this figure for k = 0, 1, 2.

(d) Suppose that c is taken to be constant in the method of multipliers. For
what values of c would the augmented Lagrangian have a minimum and
for what values of c would the method converge?

5.2.2

Consider the problem

minimize f(x) = 1
2

(
x2
1 + |x2|ρ

)
+ 2x2

subject to x2 = 0,

where ρ > 1.

(a) Calculate the optimal solution and the Lagrange multiplier.

(b) Write a computer program to calculate the iterates of the multiplier method
with λ0 = 0, and ck = 1 for all k. Confirm computationally that the rate of
convergence is sublinear if ρ = 1.5, linear if ρ = 2, and superlinear if ρ = 3.

(c) Give a heuristic argument why the rate of convergence is sublinear if ρ < 2,
linear if ρ = 2, and superlinear if ρ > 2. What happens in the limit where
ρ = 1?

5.2.3

Consider the problem of Exercise 5.2.1. Verify that the second order method of
multipliers converges in one iteration provided c is sufficiently large, and estimate
the threshold value for c.

5.2.4 (Convergence Threshold and Convergence Rate of the
Method of Multipliers) WWW

Consider the quadratic problem

minimize 1
2
x′Qx

subject to Ax = b,

where Q is symmetric and A is an m×n matrix of rank m. Let f∗ be the optimal
value of the problem and assume that the problem has a unique minimum x∗

with associated Lagrange multiplier λ∗. Verify that for sufficiently large c, the
penalized dual function is

qc(λ) = − 1
2
(λ− λ∗)′A(Q+ cA′A)−1A′(λ− λ∗) + f∗.
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(Use the quadratic programming duality theory of Section 4.4.2 to show that qc
is a quadratic function and to derive the Hessian matrix of qc. Then use the fact
that qc is maximized at λ∗ and that its maximum value is f∗.) Consider the first
order method of multipliers.

(a) Use the theory of Section 1.3 to show that for all k

‖λk+1 − λ∗‖ ≤ rk‖λk − λ∗‖,

where
rk = max

{
|1− ckEck |, |1− ckeck |

}
and Ec and ec denote the maximum and the minimum eigenvalues of the
matrix A(Q+ cA′A)−1A′.

(b) Assume that Q is invertible. Using the matrix identity

(
I + ckAQ−1A′

)−1
= I − ckA(Q+ ckA′A)−1A′

(cf. Section A.3 in Appendix A), relate the eigenvalues of the matrix A(Q+
ckA′A)−1A′ with those of the matrix AQ−1A′. Show that if γ1, . . . , γm are
the eigenvalues of (AQ−1A′)−1, we have

rk = max
i=1,...,m

∣∣∣∣∣ γi
γi + ck

∣∣∣∣∣.
(c) Show that the method converges to λ∗ if c > c̄, where c̄ = 0 if γi ≥ 0 for

all i, and c̄ = −2min{γ1, . . . , γm} otherwise.

5.2.5 (Stepsize Analysis of the Method of Multipliers) WWW

Consider the problem of Exercise 5.2.4. Use the results of that exercise to analyze
the convergence and rate of convergence of the generalized method of multipliers

λk+1 = λk + αk(Axk − b),

where αk is a positive stepsize. Show in particular that if Q is positive definite
and ck = c for all k, convergence is guaranteed if δ ≤ αk ≤ 2c for all k, where
δ is some positive scalar. (For a solution and related analysis, see [Ber75d] and
[Ber82a], p. 126.)

5.2.6

A weakness of the quadratic penalty method is that the augmented Lagrangian
may not have a global minimum. As an example, show that the scalar problem

minimize − x4

subject to x = 0
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has the unique global minimum x∗ = 0 but its augmented Lagrangian

Lck (x, λ
k) = −x4 + λkx+

ck

2
x2

has no global minimum for every ck and λk. To overcome this difficulty, consider
a penalty function of the form

c

2

∥∥h(x)∥∥2
+
∥∥h(x)∥∥ρ

,

where ρ > 4, instead of (c/2)
∥∥h(x)∥∥2

. Show that Lck (x, λ
k) has a global mini-

mum for every λk and ck > 0.

5.2.7 (Two-Sided Inequality Constraints [Ber77], [Ber82a])

The purpose of this exercise is to show how to treat two-sided inequality con-
straints by using a single multiplier per constraint. Consider the problem

minimize f(x)

subject to αj ≤ gj(x) ≤ βj , j = 1, . . . , r,

where f : 
n �→ 
 and gj : 
n �→ 
 are given functions, and αj and βj ,
j = 1, . . . , r, are given scalars with αj < βj . The method consists of sequential
minimizations of the form

minimize f(x) +

r∑
j=1

Pj

(
gj(x), μ

k
j , c

k
)

subject to x ∈ 
n,

where

Pj

(
gj(x), μ

k
j , c

k
)
= min

uj∈[gj(x)−βj, gj (x)−αj ]

{
μk
juj +

ck

2
|uj |2

}
.

Each of these minimizations is followed by the multiplier iteration

μk+1
j =

⎧⎨
⎩

μk
j + ck

(
gj(x

k)− βj

)
if μk

j + ck
(
gj(x

k)− βj

)
> 0,

μk
j + ck

(
gj(x

k)− αj

)
if μk

j + ck
(
gj(x

k)− αj

)
< 0,

0 otherwise,

where xk is a minimizing vector. Justify the method by introducing artificial
variables uj , by converting the problem to the equivalent form

minimize f(x)

subject to αj ≤ gj(x)− uj ≤ βj , uj = 0, j = 1, . . . , r,

and by applying a multiplier method for this problem, where only the constraints
uj = 0 are eliminated by means of a quadratic penalty function (partial elimina-
tion of constraints).
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5.2.8 (Proof of Ill-Conditioning as ck → ∞)

Consider the quadratic penalty method (ck → ∞) for the equality constrained
problem of minimizing f(x) subject to h(x) = 0, and assume that the generated
sequence converges to a local minimum x∗ that is also a regular point. Show that
the condition number of the Hessian ∇2

xxLck (x
k, λk) tends to ∞. Hint : We have

∇2
xxLck (x

k, λk) = ∇2
xxL0(x

k, λ̃k) + ck∇h(xk)∇h(xk)′,

where λ̃k = λk + ckh(xk). The minimum eigenvalue m(xk, λk, ck) of this matrix
satisfies

m(xk, λk, ck) = min
‖z‖=1

z′∇2
xxLck (x

k, λk)z

≤ min
‖z‖=1,∇h(xk)′z=0

z′∇2
xxLck (x

k, λk)z

= min
‖z‖=1,∇h(xk)′z=0

z′∇2
xxL0(x, λ̃

k)z.

The maximum eigenvalue M(xk, λk, ck) satisfies

M(xk, λk, ck) = max
‖z‖=1

z′∇2
xxLck (x

k, λk)z

≥ min
‖z‖=1

z′∇2
xxL0(x

k, λ̃k)z + ck max
‖z‖=1

z′∇h(xk)∇h(xk)′z.

Use Prop. 5.2.2 to argue that ∇h(xk) has rank m for sufficiently large k, and
hence

lim
ck→∞

M(xk, λk, ck)

m(xk, λk, ck)
= ∞.

5.2.9 WWW

Let {xk} be a sequence generated by the logarithmic barrier method. Formulate
conditions under which the sequences

{
−εk/gj(x

k)
}

converge to corresponding
Lagrange multipliers. Hint : Compare with the corresponding result of Prop.
5.2.2 for the quadratic penalty function.

5.2.10

State and prove analogs of Props. 5.2.1 and 5.2.2 for the case where the penalty
function

c

2

∥∥h(x)∥∥2
+
∥∥h(x)∥∥ρ

with ρ > 1 is used in place of the quadratic c
2

∥∥h(x)∥∥2
.
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5.2.11 (Primal-Dual Methods not Using a Penalty) WWW

This exercise shows that an important dual ascent method, to be discussed in
Section 7.2 (see also the end of Section 5.4.1), turns out to be equivalent to the
first order method of multipliers for an artificial problem. Consider minimizing
f(x) subject to h(x) = 0, where f and h are twice continuously differentiable,
and let x∗ be a local minimum that is a regular point. Let λ∗ be the associated
Lagrange multiplier vector, and assume that the Hessian ∇2

xxL(x
∗, λ∗) of the

(ordinary) Lagrangian
L(x, λ) = f(x) + λ′h(x)

is positive definite. (Note that this is stronger than what is required by the
second order sufficiency conditions.) Consider the iteration

λk+1 = λk + αh(xk),

where α is a positive scalar stepsize and xk minimizes L(x, λk) (the minimization
is local in a suitable neighborhood of x∗). Show that there exists a threshold
ᾱ > 0 and a sphere centered at λ∗ such that if λ0 belongs to this sphere and
α < ᾱ, then λk converges to λ∗. Consider first the case where f is quadratic and
h is linear, and sketch an analysis for the more general case. Hint : Even though
there is no penalty parameter here, the method can be viewed as a method of
multipliers for the artificial problem

minimize f(x)− α

2

∥∥h(x)∥∥2

subject to h(x) = 0.

Use the threshold of Exercise 5.2.4(c) to verify that ᾱ can be taken to be equal to

twice the minimum eigenvalue of ∇h(x∗)′
(
∇2

xxL(x
∗, λ∗)

)−1∇h(x∗). For analysis
along this line, see [Ber82a], Section 2.6.

5.3 EXACT PENALTIES – SEQUENTIAL QUADRATIC
PROGRAMMING

In this section we consider penalty methods that are exact in the sense that
they require only one unconstrained minimization to obtain an optimal
solution of the original constrained problem. We will use exact penalties
as the basis for a broad class of algorithms, called sequential quadratic
programming. These algorithms may also be viewed within the context of
the Lagrangian methods of Section 5.4, and will be reencountered there.

To get a sense of how this is possible, consider the equality constrained
problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m,
(5.75)

where f and hi are continuously differentiable, and let

L(x, λ) = f(x) + λ′h(x)
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be the corresponding Lagrangian function. Then by minimizing the func-
tion

P (x, λ) =
∥∥∇xL(x, λ)

∥∥2
+
∥∥h(x)∥∥2

(5.76)

over (x, λ) ∈ �n+m we can obtain local minima-Lagrange multiplier pairs
(x∗, λ∗) satisfying the first order necessary conditions

∇xL(x∗, λ∗) = 0, h(x∗) = 0.

We may view P (x, λ) as an exact penalty function, i.e., a function whose
unconstrained minima are (or strongly relate to) optimal solutions and/or
Lagrange multipliers of a constrained problem.

The exact penalty function P (x, λ) of Eq. (5.76) has (in effect) been
used extensively in the special case wherem = n and the problem is to solve
the system of constraint equations h(x) = 0 (in this case, any cost function
f may be used). However, in the case where m < n, P (x, λ) has significant
drawbacks because it does not discriminate between local minima and local
maxima, and it may also have local minima (x̄, λ̄) that are not global and
do not satisfy the necessary optimality conditions, i.e., P (x̄, λ̄) > 0. There
are, however, more sophisticated exact penalty functions that do not have
these drawbacks, as we will see later.

We may distinguish between differentiable and nondifferentiable exact
penalty functions. The former have the advantage that they can be mini-
mized by the unconstrained methods we have already studied in Chapters 1
and 2. The latter involve nondifferentiabilities, so the methods of Chapters
1 and 2 are not directly applicable. We will develop special algorithms,
called sequential quadratic programming methods, for their minimization.

Nondifferentiable exact penalty methods have been more popular in
practice than their differentiable counterparts, and they will receive most
of our attention. On the other hand, differentiable exact penalty methods
have some interesting advantages; see the monograph [Ber82a] (Section
4.3), which treats extensively both types of methods.

5.3.1 Nondifferentiable Exact Penalty Functions

Our first objective in this section is to show that solutions of the equality
constrained problem (5.75) are related to solutions of the (nondifferen-
tiable) unconstrained problem

minimize f(x) + cP (x)

subject to x ∈ �n,

where c > 0 and P is the nondifferentiable penalty function defined by

P (x) = max
i=1,...,m

∣∣hi(x)
∣∣.
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We develop the main argument for equality constraints, then generalize to
include inequality constraints, and finally state the result in Prop. 5.3.1.

Indeed let x∗ be a local minimum, which is a regular point and satis-
fies together with a corresponding Lagrange multiplier vector λ∗, the sec-
ond order sufficiency conditions of Prop. 4.2.1. Consider also the primal
function p defined in a neighborhood of the origin by

p(u) = min
{
f(x) | h(x) = u, ‖x− x∗‖ < ε

}
,

where ε > 0 is some scalar; see the sensitivity theorem (Prop. 4.2.2). Then
if we locally minimize f + cP around x∗, we can split the minimization in
two: first minimize over all x satisfying h(x) = u and then minimize over
all possible u. We have

inf
‖x−x∗‖<ε

{
f(x) + c max

i=1,...,m

∣∣hi(x)
∣∣}

= inf
u∈Uε

inf
{x|h(x)=u, ‖x−x∗‖<ε}

{
f(x) + c max

i=1,...,m

∣∣hi(x)
∣∣}

= inf
u∈Uε

pc(u),

where
pc(u) = p(u) + c max

i=1,...,m
|ui|,

Uε =
{
u | h(x) = u for some x with ‖x− x∗‖ < ε

}
.

We may view pc as a penalized primal function. We will now show that for
large enough c, pc has a local minimum at u = 0; cf. Fig. 5.3.1.

Since, according to the sensitivity theorem, we have ∇p(0) = −λ∗,
we can use the mean value theorem to write for each u in a neighborhood
of the origin

p(u) = p(0)− u′λ∗ + 1
2u

′∇2p(ᾱu)u,

where ᾱ is some scalar in [0, 1]. Thus

pc(u) = p(0)−
m∑
i=1

uiλ∗

i + c max
i=1,...,m

|ui|+ 1
2u

′∇2p(ᾱu)u. (5.77)

Assume that c is sufficiently large so that for some γ > 0,

c ≥
m∑
i=1

|λ∗

i |+ γ.

Then it follows that

c max
i=1,...,m

|ui| ≥
(

m∑
i=1

|λ∗

i |+ γ

)
max

i=1,...,m
|ui|

≥
m∑
i=1

uiλ∗

i + γ max
i=1,...,m

|ui|.
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Penalized primal function
pc(u) = p(u)+ c|u|

-1

Primal function
p(u)

0

p(0) = f(x∗) = −1

Slope = −λ∗ = − 1

2

u

Figure 5.3.2. Illustration of how for c large enough, u = 0 is a strict local
minimum of pc(u) = p(u) + cmaxi=1,...,m |ui|. The figure corresponds to the
two-dimensional problem where f(x) = x1 and h(x) = x2

1 + x2
2 − 1. The optimal

solution and Lagrange multiplier are x∗ = (−1, 0) and λ∗ = 1/2, respectively.
The primal function is defined for u ≥ −1 and is given by

p(u) = min
x2

1
+x2

2
−1=u

x1 = −√
1 + u.

Note that ∇p(0) = λ∗ and that we must have c > λ∗ in order for the nondiffer-
entiable penalty function to be exact.

Using this relation in Eq. (5.77), we obtain

pc(u) ≥ p(0) + γ max
i=1,...,m

|ui|+ 1
2u

′∇2p(ᾱu)u.

For u sufficiently close to zero, the last term is dominated by the next to
last term, so

pc(u) > p(0) = pc(0)

for all u �= 0 in a neighborhood N of the origin. Hence u = 0 is a strict
local minimum of pc as shown in Fig. 5.3.2. Since we have

f(x) + cP (x) ≥ p(u) + c max
i=1,...,m

|ui| = pc(u)

for all u �= 0 in the neighborhood N and x such that h(x) = u with
‖x− x∗‖ < ε, and we also have pc(0) = f(x∗), we obtain that for all x in a
neighborhood of x∗ with P (x) > 0,

f(x) + cP (x) > f(x∗).

Since x∗ is a strict local minimum of f over all x with P (x) = 0, it follows
that x∗ is a strict local minimum of f + cP , provided that c >

∑m
i=1 |λ∗

i |.
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The above argument can be extended to the case where there are
additional inequality constraints of the form gj(x) ≤ 0, j = 1, . . . , r. These
constraints can be converted to the equality constraints

gj(x) + z2j = 0, j = 1, . . . , r,

by introducing the squared slack variables zj as in Section 4.3. The slack
variables can be eliminated from the corresponding exact penalty function

f(x) + cmax
{|g1(x) + z21 |, . . . , |gr(x) + z2r |, |h1(x)|, . . . , |hm(x)|} (5.78)

by explicit minimization. In particular, we have

min
zj

∣∣gj(x) + z2j
∣∣ = max

{
0, gj(x)

}
,

so minimization of the exact penalty function (5.78) is equivalent to mini-
mization of the function

f(x) + cmax
{
0, g1(x), . . . , gr(x), |h1(x)|, . . . , |hm(x)|}.

Thus, by repeating the earlier argument given for equality constraints, we
have the following proposition.

Proposition 5.3.1: Let x∗ be a local minimum of the problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = 1, . . . , r,

which is regular and satisfies together with corresponding Lagrange
multiplier vectors λ∗ and μ∗, the second order sufficiency conditions
of Prop. 4.3.2. Then, if

c >
m∑
i=1

|λ∗

i |+
r∑

j=1

μ∗

j ,

the vector x∗ is a strict unconstrained local minimum of f+cP , where

P (x) = max
{
0, g1(x), . . . , gr(x), |h1(x)|, . . . , |hm(x)|}.

An example illustrating the above proposition is given in Fig. 5.3.3.
The proof of the proposition was relatively simple but made assumptions
that are stronger than necessary. There are related results that do not
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1

Figure 5.3.3. Equal cost surfaces of the function f + cP for the two-dimensional
problem where

f(x) = x1, h(x) = x2
1 + x2

2 − 1

(cf. Fig. 5.3.2). For c greater than the Lagrange multiplier λ∗ = 1/2, the optimal
solution x∗ = (−1, 0) is a local minimum of f + cP . This is not so for c < λ∗.
The figure corresponds to c = 0.8.

require second order differentiability assumptions. In particular, it is shown
in Exercise 5.3.4 that if c is sufficiently large, a regular local minimum x∗ is
a “stationary” point of f + cP (in a sense to be made precise shortly). The
reverse is not necessarily true. In particular, there may exist local minima
of f + cP that do not correspond to constrained local minima of f for any
c; see Exercise 5.3.1. There is also a more refined analysis that requires
just first order differentiability; see [BNO03], Section 5.5.

Finally, let us note that under convexity assumptions, where f is con-
vex, hi are linear, gj are convex, and there is an additional convex abstract
set constraint, the results that connect global minima of the original prob-
lem and global minima of corresponding nondifferentiable exact penalty
functions are more powerful. In particular, the analysis is not tied to a
specific local minimum x∗, and there no need for the type of differentia-
bility, sufficiency, and regularity assumptions that we are using in Prop.
5.3.1; see [Ber75a], and the textbook accounts [BNO03], Section 7.3, and
[Ber15a], Section 1.5.
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Descent Directions of Exact Penalties

We will now take the first steps towards algorithms for minimizing exact
penalty functions, by characterizing their descent directions. In order to
simplify notation, we will assume that all the constraints are inequalities.
The analysis and algorithms to be given admit simple extensions to the
equality constrained case simply by converting each equality constraint
into two inequalities. We assume throughout that the cost and constraint
functions are at least once continuously differentiable.

We will discuss properties of unconstrained minima of f + cP , with
c > 0 and

P (x) = max
{
g0(x), g1(x), . . . , gr(x)

}
, ∀ x ∈ �n, (5.79)

where for notational convenience, we denote by g0 the function that is
identically zero:

g0(x) ≡ 0, x ∈ �n. (5.80)

We first introduce some notation and definitions, and we develop some
preliminary results.

For x ∈ �n, d ∈ �n, and c > 0, we consider the index set

J(x) =
{
j | gj(x) = P (x), j = 0, 1, . . . , r

}
,

and we denote

θc(x; d) = max
{∇f(x)′d+ c∇gj(x)′d | j ∈ J(x)

}
.

The function θc plays the role that the gradient would play if f + cP were
differentiable. In particular, the function

f(x) + cP (x) + θc(x; d)

may be viewed as a linear approximation of f + cP for variations d around
x; see Fig. 5.3.4.

Since at an unconstrained local minimum x∗, f + cP cannot decrease
along any direction, the preceding interpretation of θc motivates us to call
a vector x∗ a stationary point of f + cP if for all d ∈ �n there holds

θc(x∗; d) ≥ 0.

The following proposition shows that local minima of f + cP must be
stationary points of f + cP . Furthermore, descent directions of f + cP at a
nonstationary point x can be obtained from the following convex quadratic
program, in (d, ξ) ∈ �n+1:

minimize ∇f(x)′d+ 1
2d

′Hd+ cξ

subject to (d, ξ) ∈ �n+1, gj(x) +∇gj(x)′d ≤ ξ, j = 0, 1, . . . , r,
(5.81)
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f(x+ d) + cP (x+ d)

f(x+ d) + cg0(x+ d)

f(x+ d) + cg2(x+ d)

f(x+ d) + cg1(x+ d)

x+ dx

f(x) + cP (x) + θc(x; d)

Figure 5.3.4. Illustration of θc(x; d) at a point x. It is the first order estimate
of the variation

f(x+ d) + cP (x+ d)− f(x)− cP (x)

of f + cP around x. Here the index set J(x) is {1, 2}.

where c > 0 and H is a positive definite symmetric matrix.
To understand the role of this quadratic program, note that for a

fixed d, the minimum with respect to ξ is attained at

ξ = max
j=0,1,...,r

{
gj(x) +∇gj(x)′d

}
.

Thus, by eliminating the variable ξ, and by adding to the cost the constant
term f(x), we can write the quadratic program (5.81) in the alternative
form

minimize max
j=0,1,...,r

{
f(x) + cgj(x) +∇f(x)′d+ c∇gj(x)′d

}
+ 1

2d
′Hd

subject to d ∈ �n.
(5.82)

For small ‖d‖, the maximum over j is attained for j ∈ J(x), so we can
substitute P (x) in place of gj(x). The cost function then takes the form

f(x) + cP (x) + θc(x; d) +
1
2d

′Hd,

so locally, for d near zero, the problem (5.82) can be viewed as minimization
of a quadratic approximation of f + cP around x; see Fig. 5.3.5. Also
since the cost function of problem (5.82) is strictly convex in d, its optimal
solution is unique, implying also that the quadratic program (5.81) has a
unique optimal solution (d, ξ).
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f(x+ d) + cg2(x+ d)

f(x+ d) + cg0(x+ d)

f(x+ d) + cg1(x+ d)

max
j=0,1,...,r

{
f(x) + cgj(x) +∇f(x)′d+ c∇gj(x)′d

}
+ 1

2
d′Hd

x x+ d

Figure 5.3.5. Illustration of the cost function

max
j=0,1,...,r

{
f(x) + cgj(x) +∇f(x)′d+ c∇gj(x)

′d
}
+ 1

2
d′Hd

of the quadratic program (5.82). For small ‖d‖ this function takes the form

f(x) + cP (x) + θc(x; d) +
1
2
d′Hd,

and is a quadratic approximation of f + cP around x. It can be seen that by
minimizing this function over d we obtain a direction of descent of f + cP at x.

Proposition 5.3.2: (Descent Directions of f + cP )

(a) For all x ∈ �n, d ∈ �n, and α > 0, we have

f(x+αd)+cP (x+αd)−f(x)−cP (x) = αθc(x; d)+o(α), (5.83)

where limα→0+ o(α)/α = 0. As a result, if θc(x; d) < 0, then d is
a descent direction, i.e., there exists ᾱ > 0 such that

f(x+ αd) + cP (x+ αd) < f(x) + cP (x), ∀ α ∈ (0, ᾱ].

Moreover, a local minimum of f + cP is a stationary point.

(b) If f and gj are convex functions, then a stationary point of f+cP
is also a global minimum of f + cP .

(c) For any x ∈ �n and positive definite symmetric H , if (d, ξ) is the
optimal solution of the quadratic program (5.81), then
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θc(x; d) ≤ −d′Hd. (5.84)

(d) A vector x is a stationary point of f + cP if and only if the
quadratic program (5.81) has

{
d = 0, ξ = P (x)

}
as its optimal

solution.

Proof: (a) We have for all α > 0 and j ∈ J(x),

f(x+ αd) + cgj(x+ αd) = f(x) + α∇f(x)′d+ c
(
gj(x) + α∇gi(x)′d

)
+ oj(α),

where limα→0+ oj(α)/α = 0. Hence, by using the fact gj(x) = P (x) for all
j ∈ J(x),

f(x+ αd) + cmax
{
gj(x+ αd) | j ∈ J(x)

}
= f(x) + α∇f(x)′d+ cmax

{
gj(x) + α∇gj(x)′d | j ∈ J(x)

}
+ o(α)

= f(x) + cP (x) + αθc(x; d) + o(α),

where limα→0+ o(α)/α = 0. We have, for all α that are sufficiently small,

max
{
gj(x+ αd) | j ∈ J(x)

}
= max

{
gj(x+ αd) | j = 0, 1, . . . , r

}
= P (x+ αd).

Combining the two above relations, we obtain

f(x+ αd) + cP (x+ αd) = f(x) + cP (x) + αθc(x; d) + o(α),

which is Eq. (5.83).
If x∗ is a local minimum of f + cP , then by Eq. (5.83), we have, for

all d and α > 0 such that ‖d‖ and α are sufficiently small,

αθc(x∗; d) + o(α) ≥ 0.

Dividing by α and taking the limit as α → 0, we obtain θc(x∗; d) ≥ 0, so
x∗ is a stationary point of f + cP .

(b) By convexity, we have [cf. Prop. B.3(a) in Appendix B] for all j and
x ∈ �n,

f(x) + cgj(x) ≥ f(x∗) + cgj(x∗) +
(∇f(x∗) + c∇gj(x∗)

)
′

(x− x∗).

Taking the maximum over j, we obtain

f(x)+ cP (x) ≥ max
j=0,1,...,r

{
f(x∗)+ cgj(x∗)+

(∇f(x∗)+ c∇gj(x∗)
)
′

(x−x∗)
}
.
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For a sufficiently small scalar ε and for all x with ‖x−x∗‖ < ε, the maximum
above is attained for some j ∈ J(x∗). Since gj(x∗) = P (x∗) for all j ∈
J(x∗), we obtain for all x with ‖x− x∗‖ < ε,

f(x) + cP (x) ≥ f(x∗) + cP (x∗) + θc(x∗;x− x∗) ≥ f(x∗) + cP (x∗),

where the last inequality holds because x∗ is a stationary point of f + cP .
Hence x∗ is a local minimum of f + cP , and in view of the convexity of
f + cP , x∗ is a global minimum.

(c) We have gj(x) + ∇gj(x)′d ≤ ξ for all j. Since gj(x) = P (x) for all
j ∈ J(x), it follows that ∇gj(x)′d ≤ ξ−P (x) for all j ∈ J(x) and therefore
using the definition of θc we have

θc(x; d) ≤ ∇f(x)′d+ c
(
ξ − P (x)

)
. (5.85)

Let {μj} be a set of Lagrange multipliers for the quadratic program
(5.81). The optimality conditions yield

∇f(x) +Hd+

r∑
j=0

μj∇gj(x) = 0, (5.86)

c−
r∑

j=0

μj = 0, (5.87)

gj(x) +∇gj(x)′d ≤ ξ, μj ≥ 0, j = 0, 1, . . . , r,

μj

(
gj(x) +∇gj(x)′d− ξ

)
= 0, j = 0, 1, . . . , r.

By adding the last equation over all j and using Eq. (5.87), we have
r∑

j=0

μj∇gj(x)′d =

r∑
j=0

μjξ −
r∑

j=0

μjgj(x)

≥
r∑

j=0

μj

(
ξ − max

m=0,1,...,r
gm(x)

)

=

r∑
j=0

μj

(
ξ − P (x)

)

= c
(
ξ − P (x)

)
.

Combining this equation with Eq. (5.86) we obtain

∇f(x)′d+ d′Hd+ c
(
ξ − P (x)

) ≤ 0, (5.88)

which in conjunction with Eq. (5.85) yields

θc(x; d) + d′Hd ≤ 0,

thus proving Eq. (5.84).

(d) We have that x is a stationary point of f+cP if and only if θc(x; d) ≥ 0
for all d, which by Eq. (5.84) is true if and only if

{
d = 0, ξ = P (x)

}
is the

optimal solution of the quadratic program (5.81). Q.E.D.
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5.3.2 Sequential Quadratic Programming

We now introduce an iterative descent algorithm for minimizing the exact
penalty function f+cP . It is called the linearization algorithm or sequential
quadratic programming. Like the gradient projection method, it calculates
the descent direction by solving a quadratic programming subproblem of
the form (5.81). The algorithm is given by

xk+1 = xk + αkdk,

where αk is a nonnegative scalar stepsize, and dk is a direction obtained
by solving the quadratic program in (d, ξ)

minimize ∇f(xk)′d+ 1
2d

′Hkd+ cξ

subject to gj(xk) +∇gj(xk)′d ≤ ξ, j = 0, 1, . . . , r,
(5.89)

where Hk is a positive definite symmetric matrix. Proposition 5.3.2(c)
implies that the solution d is a descent direction of f + cP at xk.

The initial vector x0 is arbitrary and the stepsize αk is chosen by any
one of the stepsize rules listed below:

(a) Minimization rule: Here αk is chosen so that

f(xk + αkdk) + cP (xk +αkdk) = min
α≥0

{
f(xk +αdk) + cP (xk + αdk)

}
.

(b) Limited minimization rule: Here a fixed scalar s > 0 is selected and
αk is chosen so that

f(xk+αkdk)+cP (xk+αkdk) = min
α∈[0,s]

{
f(xk+αdk)+cP (xk+αdk)

}
.

(c) Armijo rule: Here fixed scalars s, β, and σ with s > 0, β ∈ (0, 1),
and σ ∈ (0, 1

2 ), are selected, and we set αk = βmks, where mk is the
first nonnegative integer m for which

f(xk)+ cP (xk)− f(xk + βmsdk)− cP (xk + βmsdk) ≥ σβmsdk′Hkdk.
(5.90)

It can be shown that if dk �= 0, the Armijo rule will yield a stepsize
after a finite number of arithmetic operations. To see this, note that by
Prop. 5.3.2(a) and Eq. (5.84), we have for all α > 0,

f(xk) + cP (xk)− f(xk + αdk)− cP (xk + αdk) = −αθc(xk; dk) + o(α)

≥ αdk
′

Hkdk + o(α).

We then obtain

f(xk)+cP (xk)−f(xk+αdk)−cP (xk+αdk) ≥ σαdk ′Hkdk, ∀ α ∈ (0, ᾱ],
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where ᾱ > 0 is such that we have (1 − σ)αdk ′Hkdk + o(α) ≥ 0 for all
α ∈ (0, ᾱ]. Therefore, if dk �= 0, there is an integer m such that the Armijo
test (5.90) is passed, while if dk = 0, by Prop. 5.3.2(d), xk is a stationary
point of f + cP .

We have the following convergence result. Its proof is patterned after
the corresponding proof for gradient methods for unconstrained minimiza-
tion (cf. Prop. 1.2.1 in Section 1.2), but is considerably more complicated
due to the constraints.

Proposition 5.3.3: Let {xk} be a sequence generated by the lin-
earization algorithm, where the stepsize αk is chosen by the minimiza-
tion rule, the limited minimization rule, or the Armijo rule. Assume
that there exist positive scalars γ and Γ such that

γ‖z‖2 ≤ z′Hkz ≤ Γ‖z‖2, ∀ z ∈ �n, k = 0, 1, . . . ,

(this condition corresponds to the assumption of a gradient-related
direction sequence in unconstrained optimization). Then every limit
point of {xk} is a stationary point of f + cP .

Proof: We argue by contradiction. Assume that a subsequence {xk}K
generated by the algorithm using the Armijo rule converges to a vector x̄
that is not a stationary point of f + cP . Since f(xk)+ cP (xk) is monoton-
ically decreasing, we have

f(xk) + cP (xk) → f(x̄) + cP (x̄)

and hence also

f(xk) + cP (xk)− f(xk+1)− cP (xk+1) → 0.

By the definition of the Armijo rule, we have

f(xk) + cP (xk)− f(xk+1)− cP (xk+1) ≥ σαkdk′Hkdk.

Hence
αkdk

′

Hkdk → 0. (5.91)

Since for k ∈ K, dk is the optimal solution of the quadratic program (5.89),
we must have for some set of Lagrange multipliers {μk

j } and all k ∈ K,

∇f(xk) +

r∑
j=0

μk
j∇gj(xk) +Hkdk = 0, c =

r∑
j=0

μk
j , (5.92)
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μk
j ≥ 0, μk

j

(
gj(xk) +∇gj(xk)′dk − ξk

)
= 0, j = 0, 1, . . . , r, (5.93)

where
ξk = max

j=0,1,...,r

{
gj(xk) +∇gj(xk)′dk

}
.

The relations c =
∑r

j=0 μ
k
j and μk

j ≥ 0 imply that the subsequences {μk
j }

are bounded. Hence, without loss of generality, we may assume that for
some μj , j = 0, 1, . . . , r, we have

{μk
j }K → μ̄j , j = 0, 1, . . . , r. (5.94)

Using the assumption γ‖z‖2 ≤ z′Hkz ≤ Γ‖z‖2, we may also assume with-
out loss of generality that

{Hk}K → H̄ (5.95)

for some positive definite matrix H̄.
Now from the fact αkdk′Hkdk → 0 [cf. Eq. (5.91)], we see that there

are two possibilities. Either

lim inf
k→∞, k∈K

‖dk‖ = 0, (5.96)

or else
lim inf

k→∞, k∈K
αk = 0, lim inf

k→∞, k∈K
‖dk‖ > 0. (5.97)

If Eq. (5.96) holds, then we may assume without loss of generality that
{dk}K → 0, and by taking the limit in Eqs. (5.92) and (5.93), and using
Eq. (5.94), we have

∇f(x̄) +

r∑
j=0

μ̄j∇gj(x̄) = 0, c =

r∑
j=0

μ̄j ,

μ̄j ≥ 0, μ̄j

(
gj(x̄)− ξ

)
= 0, j = 0, 1, . . . , r,

where ξ = maxj=0,1,...,r gj(x̄). Hence the quadratic program (5.81) corre-
sponding to x̄ has

{
d = 0, ξ = P (x̄)

}
as its optimal solution. From Prop.

5.3.2(d), it follows that x̄ is a stationary point of f+cP , thus contradicting
the hypothesis made earlier.

It will thus suffice to assume that Eq. (5.97) holds and to arrive at a
contradiction. We may assume without loss of generality that

{αk}K → 0.

Since Eqs. (5.92), (5.94), and (5.95) show that {dk}K is a bounded se-
quence, we may also assume without loss of generality that

{dk}K → d̄,
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where d̄ is some vector that cannot be zero in view of Eq. (5.97).
Since {αk}K → 0, it follows, in view of the definition of the Armijo

rule, that the initial stepsize s will be reduced at least once for all k ∈ K
after some index k̄. This means that for all k ∈ K, k ≥ k̄,

f(xk) + cP (xk)− f(xk + ᾱkdk)− cP (xk + ᾱkdk) < σᾱkdk
′

Hkdk, (5.98)

where ᾱk = αk/β.
Define for all k and d,

ζk(d) = ∇f(xk)′d+ c max
j∈J(xk)

{
gj(xk) +∇gj(xk)′d

}− cP (xk),

and restrict attention to k ∈ K, k ≥ k̄, that are sufficiently large so that
ᾱk ≤ 1, J(xk) ⊂ J(x̄), and J(xk + ᾱkdk) ⊂ J(x̄). We will show that

f(xk)+cP (xk)−f(xk+ᾱkdk)−cP (xk+ᾱkdk) = −ζk(ᾱkdk)+o(ᾱk), (5.99)

where

lim
k→∞, k∈K

o(ᾱk)

ᾱk
= 0. (5.100)

Indeed, we have

f(xk + ᾱkdk) = f(xk) + ᾱk∇f(xk)′dk + o0(ᾱk‖dk‖)

gj(xk + ᾱkdk) = gj(xk) + ᾱk∇gj(xk)′dk + oj(ᾱk‖dk‖), j ∈ J(xk),

where oj(·) are functions satisfying limk→∞ oj
(
ᾱk‖dk‖)/ᾱk = 0. Adding

and taking the maximum over j ∈ J(x), and using the fact J(xk+ ᾱkdk) ⊂
J(x̄) [implying that P (xk + ᾱkdk) = maxj gj(xk + ᾱkdk)], we obtain for
sufficiently large k,

f(xk + ᾱkdk) + cP (xk + ᾱkdk) = f(xk) + ᾱk∇f(xk)′dk

+ c max
j∈J(xk)

{
gj(xk) + ᾱk∇gj(xk)′dk

}
+ o(ᾱk‖dk‖)

= f(xk) + cP (xk) + ζk(ᾱkdk) + o(ᾱk),

thus proving Eq. (5.99).
We also claim that

−ζk(ᾱkdk)

ᾱk
≥ −ζk(dk) ≥ dk′Hkdk. (5.101)

Indeed, let (dk, ξk) be the optimal solution of the quadratic program

minimize ∇f(xk)′d+ 1
2d

′Hkd+ cξ

subject to gj(xk) +∇gj(xk)′d ≤ ξ, j = 0, 1, . . . , r.
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We have
ξk = max

j=0,1,...,r

{
gj(xk) +∇gj(xk)′dk

}
≥ max

j∈J(x)

{
gj(xk) +∇gj(xk)′dk

}
=

ζk(dk)−∇f(xk)′dk

c
+ P (xk).

On the other hand, in the proof of Prop. 5.3.2(c) we showed [cf. Eq. (5.88)]
that

c
(
ξk − P (xk)

)−∇f(xk)′dk ≥ dk
′

Hkdk.

The last two equations, together with the relation ζk(ᾱkd) ≤ ᾱkζk(d),
which follows from the convexity of ζk(·), prove Eq. (5.101).

By dividing Eq. (5.98) with ᾱk and by combining it with Eq. (5.99),
we obtain

σdk
′

Hkdk > −ζk(ᾱkd)

ᾱk
+

o(ᾱk)

ᾱk
,

which in view of Eq. (5.101), yields

(1− σ)dk ′Hkdk +
o(ᾱk)

ᾱk
< 0.

Since {Hk}K → H̄ , {dk}K → d̄, H̄ is positive definite, d̄ �= 0, and
o(ᾱk)/ᾱk → 0 [cf. Eq. (5.100)], we obtain a contradiction. This completes
the proof of the proposition for the case of the Armijo rule.

Consider now the minimization rule and let {xk}K converge to a
vector x̄, which is not a stationary point of f + cP . Let x̃k+1 be the point
that would be generated from xk via the Armijo rule and let α̃k be the
corresponding stepsize. We have

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k+1) ≥ σα̃kdk
′

Hkdk.

By replacing αk by α̃k in the arguments of the earlier proof, we obtain
a contradiction. This line of argument establishes that any stepsize rule
that gives a larger reduction in the value of f + cP at each iteration than
the Armijo rule inherits its convergence properties, so it also proves the
proposition for the limited minimization rule. Q.E.D.

Application to Constrained Optimization Problems

Given the inequality constrained problem

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,
(5.102)
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we can attempt its solution by using the linearization algorithm to minimize
the corresponding exact penalty function f+cP for a value of c that exceeds
the threshold

∑r
j=1 μ

∗

j (cf. Prop. 5.3.1).
There are a number of complex implementation issues here. One

difficulty is that we may not know a suitable threshold value for c. Under
these circumstances, a possible approach is to choose an initial value c0 for
c and increase it as necessary at each iteration k if the algorithm indicates
that the current value ck is inadequate. An important question is to decide
on the conditions that would prompt an increase of ck. The most common
approach is based on trying to solve the quadratic program

minimize ∇f(xk)′d+ 1
2d

′Hkd

subject to gj(xk) +∇gj(xk)′d ≤ 0, j = 1, . . . , r,
(5.103)

which differs from the direction finding quadratic program

minimize ∇f(xk)′d+ 1
2d

′Hkd+ cξ

subject to gj(xk) +∇gj(xk)′d ≤ ξ, j = 0, 1, . . . , r,
(5.104)

of the linearization method in that ξ has been set to zero. If program
(5.103) has a feasible solution, then it must have a unique optimal solution
dk and at least one set of Lagrange multipliers μk

1 , . . . , μ
k
r (since its cost

function is a strictly convex quadratic and its constraints are linear). It
can then be verified by checking the corresponding optimality conditions
(Exercise 5.3.3) that for all c >

∑r
j=1 μ

k
j , the pair {dk, ξ = 0} is the optimal

solution of the quadratic program (5.104). Thus the direction dk can be
used as a direction of descent for minimizing f + ckP , where

∑r
j=1 μ

k
j

provides an underestimate for the appropriate value for ck. The penalty
parameter may be updated by

ck = max

⎧⎨
⎩ck−1,

r∑
j=1

μk
j + γ

⎫⎬
⎭ ,

where γ is some positive scalar. Note that by the optimality conditions of
the quadratic program (5.103) we have approximately, for small ‖dk‖,

∇f(xk) +

r∑
j=1

μk
j∇gj(xk) ≈ 0, μk

j gj(x
k) ≈ 0, j = 1, . . . , r,

so near convergence, the scalars μk
j are approximately equal to Lagrange

multipliers of the constrained problem (5.102). This is consistent with the
strategy of setting ck at a somewhat higher value than

∑r
j=1 μ

k
j . If on the

other hand, the quadratic program (5.103) has no feasible solution, one
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can set ck = ck−1 and obtain a direction of descent dk for the quadratic
program (5.104).†

One of the drawbacks of this approach is that the value of the penalty
parameter ck may increase rapidly during the early stages of the algorithm,
while during the final stage of the algorithm a much smaller value of ck

may be adequate. A large value of ck results in very sharp corners of the
surfaces of equal cost of the penalized cost f+ckP along the boundary of the
constraint set, and can have a substantial adverse effect on the effectiveness
of the stepsize procedure and thus on algorithmic progress (see Fig. 5.3.3).
In this connection, it is interesting to note that if the system

gj(xk) +∇gj(xk)′d ≤ 0, j = 1, . . . , r,

is feasible, then the direction dk obtained from the quadratic program
(5.103) is independent of ck, while the stepsize αk depends strongly on
ck. For this reason, it may be important to provide schemes that allow for
the reduction of ck if circumstances appear to be favorable. The details of
this can become quite complicated and we refer to the book [Ber82a] for a
discussion of some possibilities.

An important question relates to the choice of the matrices Hk. In
unconstrained minimization, one tries to employ a stepsize αk = 1 together
with matrices Hk that approximate the Hessian of the cost function at a
solution. A natural analog for the constrained case would be to choose Hk

close to the Hessian of the Lagrangian function

L(x, μ) = f(x) + μ′g(x),

evaluated at (x∗, μ∗); a justification for this is provided in the next sec-
tion, where it is shown that the direction dk calculated by the linearization
algorithm, with this choice of Hk, can be viewed as a Newton step.

There are two difficulties relating to such an approach. The first
is that ∇2

xxL(x∗, μ∗) may not be positive definite. Actually this is not
as serious as might appear. As we discuss more fully in the next section,
what is important is that Hk approximate closely ∇2

xxL(x∗, μ∗) only on the

† It is possible that because of the constraint nonlinearities the quadratic
program (5.103) has no feasible solution. This will not happen if the constraint
functions gj are convex and the original inequality constrained problem (5.102)
has at least one feasible solution, say x̄; it can be seen that the vector d̄k = x̄−xk

is a feasible solution of the quadratic program (5.103) since

gj(x
k) +∇gj(x

k)′(x̄− xk) ≤ gj(x̄) ≤ 0

by Prop. B.3(a) of Appendix B. Usually, even if the constraints are nonconvex, the

quadratic problem (5.103) is feasible, provided the constrained problem (5.102)

is feasible.
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subspace tangent to the active constraints. Under second order sufficiency
assumptions on (x∗, μ∗), this can be done with positive definite Hk, since
then ∇2

xxL(x∗, μ∗) is positive definite on this subspace.
The second difficulty relates to the fact that even if we were to choose

Hk equal to the (generally unknown) matrix ∇2
xxL(x∗, μ∗) and even if this

matrix is positive definite, it may happen that arbitrarily close to x∗ a
stepsize αk = 1 is not acceptable by the algorithm because it does not
decrease the value of f+cP ; this can happen even for very simple problems
(see Exercise 5.3.9). The book [Ber82a] (p. 290) discusses this point in
detail, and introduces modifications to the basic linearization algorithm
that allow a superlinear convergence rate.

Extension to Equality Constraints

The development given earlier for inequality constraints can be extended
to the case of additional equality constraints simply by converting each
equality constraint hi(x) = 0 to the two inequalities

hi(x) ≤ 0, −hi(x) ≤ 0.

For example, the direction finding quadratic program of the linearization
method is

minimize ∇f(xk)′d+ 1
2d

′Hkd+ cξ

subject to gj(xk) +∇gj(xk)′d ≤ ξ, j = 0, 1, . . . , r,∣∣hi(xk) +∇hi(xk)′d
∣∣ ≤ ξ, i = 1, . . . ,m.

This program yields a descent direction for the exact penalty function

f(x) + cmax
{
0, g1(x), . . . , gr(x), |h1(x)|, . . . , |hm(x)|},

and can be used as a basis for an algorithm similar to the one developed
for inequality constraints.

5.3.3 Differentiable Exact Penalty Functions

We now discuss briefly differentiable exact penalty functions for the equality
constrained problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . ,m.
(5.105)

We assume that f and hi are twice continuously differentiable. Further-
more, we assume that the matrix ∇h(x) has rank m for all x, although



Sec. 5.3 Exact Penalties – Sequential Quadratic Programming 521

much of the following analysis can be conducted assuming ∇h(x) has rank
m in a suitable open subset of �n. Motivated by the exact penalty function

∥∥∇xL(x, λ)
∥∥2

+
∥∥h(x)∥∥2

discussed earlier, we consider the function

Pc(x, λ) = L(x, λ) + 1
2

∥∥W (x)∇xL(x, λ)
∥∥2

+ c
2

∥∥h(x)∥∥2
, (5.106)

where

L(x, λ) = f(x) + λ′h(x)

is the Lagrangian function, c is a positive parameter, and W (x) is any
continuously differentiable m × n matrix such that the m × m matrix
W (x)∇h(x) is nonsingular for all x.

The idea here is that by introducing the Lagrangian L(x, λ) in the
penalized cost Pc, we build a preference towards local minima rather than
local maxima. The use of the matrix function W (x) cannot be motivated
easily, but will be justified by subsequent developments. Two examples of
choices of W (x) that turn out to be useful are

W (x) = ∇h(x)′, (5.107)

W (x) =
(∇h(x)′∇h(x)

)
−1∇h(x)′. (5.108)

The monograph [Ber82a] discusses in greater detail the role of the matrix
W (x) and also considers a different type of method whereby W (x) is taken
equal to the identity matrix.

Let us write W (x) in the form

W (x) =

⎛
⎜⎝

w1(x)′

...
wm(x)′

⎞
⎟⎠ ,

where wi : �n �→ �n are some functions, and let e1, . . . , em be the columns
of the m×m identity matrix. It is then straightforward to verify that

∇xPc = ∇xL+

(
∇2

xxLW ′ +
m∑
i=1

∇wi∇xLe′i

)
W∇xL+ c∇hh, (5.109)

∇λPc = h+∇h′W ′W∇xL, (5.110)

where all functions and gradients in the above expressions are evaluated at
the typical pair (x, λ).
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It can be seen that if (x∗, λ∗) is a local minimum-Lagrange multiplier
pair of the original problem (5.105), then (x∗, λ∗) is also a stationary point
of Pc(x, λ), i.e.,

∇xPc(x∗, λ∗) = 0, ∇λPc(x∗, λ∗) = 0.

Under appropriate conditions, the reverse assertions are possible, namely
that stationary points (x∗, λ∗) of Pc(x, λ) satisfy the first order necessary
conditions for the original constrained optimization problem. There are
several results of this type, of which the following is typical. We outline
the proof in Exercise 5.3.7 and we also refer to [Ber82a] for an extensive
analysis.

Proposition 5.3.4: For every compact subset X × Λ of �n+m there
exists a c̄ > 0 such that for all c ≥ c̄, every stationary point (x∗, λ∗) of
Pc that belongs to X × Λ satisfies the first order necessary conditions

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0.

Differentiable Exact Penalty Functions Depending Only on x

One approach to minimizing Pc(x, λ) is to first minimize it with respect
to λ and then minimize it with respect to x. To simplify the subsequent
formulas, let us focus on the function

W (x) =
(∇h(x)′∇h(x)

)
−1∇h(x)′

of Eq. (5.108). For this function, W (x)∇h(x) is equal to the identity matrix
and from Eq. (5.106) we have

Pc(x, λ) = f(x) + λ′h(x) + 1
2

∥∥W (x)∇f(x) + λ
∥∥2

+ c
2

∥∥h(x)∥∥2
. (5.111)

We can minimize explicitly this function with respect to λ by setting

∇λPc(x, λ) = h(x) +W (x)∇f(x) + λ = 0.

Substituting λ from this equation into Eq. (5.111), we obtain

min
λ

Pc(x, λ) = f(x) + λ̂(x)′h(x) +
c− 1

2

∥∥h(x)∥∥2
,

where
λ̂(x) = −W (x)∇f(x).
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Figure 5.3.6. Equal cost surfaces of the differentiable exact penalty function
P̂c(x) for the two-dimensional problem where

f(x) = x1, h(x) = x2
1 + x2

2 − 1

(cf. Figs. 5.3.2 and 5.3.3). The figure corresponds to c = 2. Note that there is a
singularity at (0, 0), which is a nonregular point at which λ̂(x) is undefined. The
function P̂c(x) takes arbitrarily large and arbitrarily small values sufficiently close
to (0, 0). This type of singularity can be avoided by using a modification of the
exact penalty function (see Exercise 5.3.8).

Replacing c− 1 by c, it is seen that the function

P̂c(x) = f(x) + λ̂(x)′h(x) +
c

2

∥∥h(x)∥∥2
(5.112)

is an exact penalty function, inheriting its properties from the exact penalty
function Pc(x, λ). Figure 5.3.6 illustrates the function P̂c(x) for the same
example problem that we used to illustrate the nondifferentiable exact
penalty function f + cP in Fig. 5.3.3. It can be seen that the two exact
penalty functions P̂c and f + cP have quite different structures, includ-
ing that P̂c is not defined at nonregular points. For a detailed analysis
of algorithms for minimization of P̂c (including superlinearly converging
Newton-like methods), the associated convergence and implementation is-
sues, and extensions to inequality constraints we refer to the monograph
[Ber82a] (Section 4.3.3).
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E X E R C I S E S

5.3.1

Consider a one-dimensional problem with two inequality constraints where f(x) =
0, g1(x) = −x, g2(x) = 1− x2. Show that for all c, x = (1/2)(1−√

5) and x = 0
are stationary points of f + cP , where P is the nondifferentiable exact penalty
function (5.79)-(5.80), but are infeasible for the constrained problem. Plot P (x)
and discuss the behavior of the linearization method for this problem.

5.3.2

Let H be a positive definite symmetric matrix. Show that the pair (x∗, μ∗)
satisfies the first order necessary conditions of Prop. 4.3.1 for the problem

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,

if and only if (0, μ∗) is a global minimum-Lagrange multiplier pair of the quadratic
program

minimize ∇f(x∗)′d+ 1
2
d′Hd

subject to gj(x
∗) +∇gj(x

∗)′d ≤ 0, j = 1, . . . , r.

(See [Ber82a], Section 4.1 for a solution.)

5.3.3

Show that if (d, μ) is a global minimum-Lagrange multiplier pair of the quadratic
program

minimize ∇f(x)′d+ 1
2
d′Hd

subject to gj(x) +∇gj(x)
′d ≤ 0, j = 1, . . . , r,

where H is positive definite symmetric, and

c ≥
r∑

j=1

μj ,

then (d, ξ = 0, μ̄) is a global minimum-Lagrange multiplier pair of the quadratic
program

minimize ∇f(x)′d+ 1
2
d′Hd+ cξ

subject to (x, ξ) ∈ 
n+1, gj(x) +∇gj(x)
′d ≤ ξ, j = 0, 1, . . . , r,

where μ̄j = μj for j = 1, . . . , r, μ̄0 = c−∑r

j=1
μj , and g0(x) ≡ 0. (See [Ber82a],

Section 4.1 for a solution.)
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5.3.4

Show that if the pair (x∗, μ∗) satisfies the first order necessary conditions of Prop.
4.3.1 for the problem

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,

then x∗ is a stationary point of f + cP for all c ≥ ∑r

j=1
μ∗
j . Hint : Combine the

results of Exercises 5.3.2 and 5.3.3.

5.3.5

Show that when the constraints are linear, the linearization method based on the
quadratic program (5.103) is equivalent to one of the gradient projection methods
of Section 3.3.

5.3.6

For the one-dimensional problem of minimizing (1/6)x3 subject to x = 0, consider
the differentiable exact penalty function Pc(x, λ) of Eq. (5.106) with W (x) given
by Eq. (5.107) or Eq. (5.108). Show that it has two stationary points: the pairs
(0, 0) and

(
c−1, (1− c2)/2

)
. Are both of these local minima of Pc(x, λ)? Discuss

how your analysis is consistent with Prop. 5.3.4.

5.3.7

Prove Prop. 5.3.4. Hint : By Eq. (5.110), the condition ∇λPc = 0 at some point
of X × Λ implies W∇xL = −(∇h′W ′)−1h. If at this point ∇xPc = 0 also holds,
we obtain after some calculation

0 = W∇xPc

=

{
cW∇h−

(
I +W

(
∇2

xxLW
′ +

m∑
i=1

∇wi∇xLe
′
i

))
(∇h′W ′)−1

}
h.

Show that there exists c̄ > 0 such that for all c ≥ c̄ and stationary points within
X×Λ, the matrix within braces is nonsingular, implying that at such points h = 0.
Conclude that we also have W∇xL = 0 so that from Eq. (5.109), ∇xL = 0.
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5.3.8 (Dealing with Singularities [Ber82a], p. 215)

A difficulty with the penalty function Pc(x, λ) of Eq. (5.106) is the assumption
that the matrix ∇h(x) has rankm for all x. When this assumption is violated, the
λ-dependent terms of Pc may be unbounded below. Furthermore, the function P̂c

of Eq. (5.112) is undefined at some points and singularities of the type shown in
Fig. 5.3.3 at x = 0 may arise. To deal with this difficulty, introduce the following
modified version of Pc:

Pc,τ (x, λ) = L(x, λ) + 1
2

∥∥∇h(x)∇xL(x, λ)
∥∥2

+ c+τ‖λ‖2

2

∥∥h(x)∥∥2
,

where τ is an additional positive parameter.

(a) Show that Pc,τ (x, λ) is bounded from below if the function f(x)+(c/2)
∥∥h(x)∥∥2

is bounded from below.

(b) Obtain a corresponding differentiable penalty function depending only on
x, by minimizing Pc,τ (x, λ) with respect to λ.

(c) Plot the contours of this function for the problem of Fig. 5.3.6 and verify
that the singularity exhibited in that figure does not occur.

5.3.9 (Maratos’ Effect [Mar78])

This example illustrates a fundamental difficulty in attaining superlinear con-
vergence when using the nondifferentiable exact penalty function for monitoring
descent. (This difficulty does not arise for differentiable exact penalty functions;
see [Ber82a], pp. 271-277.) Consider the problem

minimize f(x) = x1

subject to h(x) = x2
1 + x2

2 − 1 = 0,

with optimal solution x∗ = (−1, 0) and Lagrange multiplier λ∗ = 1/2 (see Figs.
5.3.2, 5.3.3, and 5.3.6). For any x, let (d, λ) be an optimal solution-Lagrange
multiplier pair of the problem

minimize ∇f(x) + 1
2
d′∇2

xxL(x
∗, λ∗)d

subject to h(x) +∇h(x)′d = 0.

(Note that d is the Newton direction; see also the next section.) Show that for
all c,

f(x+ d) + c
∣∣h(x+ d)

∣∣− f(x)− c
∣∣h(x)∣∣ = λh(x)− c

∣∣h(x)∣∣+ (c− λ∗)‖d‖2.

Conclude that for c > 2λ∗, there are points x arbitrarily close to x∗ for which
the exact penalty function f(x) + c

∣∣h(x)∣∣ is not reduced by a pure Newton step.
(For a solution of the exercise and for a broader discussion of this phenomenon,
see [Ber82a], p. 290.)
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5.4 LAGRANGIAN METHODS

In this section we consider the direct solution of the system of necessary
optimality conditions of the equality constrained problem

minimize f(x)

subject to h(x) = 0.

Thus we view the optimality conditions

∇f(x) +∇h(x)λ = 0, h(x) = 0, (5.113)

as a system of (n + m) nonlinear equations with (n + m) unknowns, the
vectors x and λ. We refer to this as the Lagrangian system, and we will
aim to solve it with a variety of first and second order methods, called
Lagrangian methods . We will also discuss supplementary schemes, based
on merit function descent, which offer improved convergence guarantees.
Moreover, we will provide alternative or modified forms of the optimality
conditions to accommodate inequality constraints and approximations.

An important example of the Lagrangian approach is the primal-dual
methodology for linear programming that we have discussed in Section
5.1.2. In that case, we considered solution of the system of primal and
dual optimality conditions (5.16), Newton-like solution methods, and the
use of the merit function (5.15) to enforce global convergence. Here our
approach is more closely related to traditional lines of analysis of algorithms
for solution of differentiable systems of nonlinear equations.

We will first consider Lagrangian algorithms for the system (5.113)
that have the generic form

xk+1 = G(xk, λk), λk+1 = H(xk, λk), (5.114)

where G : �n+m �→ �n and H : �n+m �→ �n are continuously differentiable
functions. Since this iteration can only converge to a pair (x∗, λ∗) such that

x∗ = G(x∗, λ∗), λ∗ = H(x∗, λ∗),

the functions G and H must be chosen so that local minima-Lagrange
multiplier pairs satisfy the above equations.

We start with a first order method, which does not require second
derivatives. We then consider Newton-like methods, and various ways to
implement them. The difficulty with all these methods, as well as with
most other methods for solving nonlinear systems of equations, is that they
guarantee only local convergence, i.e., convergence from a starting point
that is sufficiently close to a solution. To enlarge the region of convergence,
it is necessary to use some type of line search based on the improvement
of some merit function. While the existence of such a function for the
Lagrangian system (5.113) is not obvious, we will see that a number of
functions, such as the augmented Lagrangian function, the exact penalty
functions of Section 5.3, and other functions can serve as the basis for
globally convergent versions.
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5.4.1 First Order Lagrangian Methods

The simplest Lagrangian method for solving the system of optimality con-
ditions (5.113) is given by

xk+1 = xk − α∇xL(xk, λk), (5.115)

λk+1 = λk + αh(xk), (5.116)

where L is the Lagrangian function

L(x, λ) = f(x) + λ′h(x)

and α > 0 is a scalar stepsize. To motivate this method, consider the
function

P (x, λ) = 1
2

∥∥∇xL(x, λ)
∥∥2

+ 1
2

∥∥h(x)∥∥2
.

This function is minimized at a local minimum-Lagrange multiplier pair, so
it can be viewed as an exact penalty function (cf. the discussion of Section
5.3).

Let us consider the direction

d(xk, λk) =
(−∇xL(xk, λk), h(xk)

)
used in the first order iteration (5.115)-(5.116) and derive conditions under
which it is a descent direction of the exact penalty function P (x, λ). We
have

∇P (x, λ) =

(∇2
xxL(x, λ)∇xL(x, λ) +∇h(x)h(x)

∇h(x)′∇xL(x, λ)

)
,

so that

d(xk, λk)′∇P (xk, λk) = −∇xL(xk, λk)′
(∇2

xxL(xk, λk)∇xL(xk, λk)

+∇h(xk)h(xk)
)
+ h(xk)′∇h(xk)′∇xL(xk, λk)

= −∇xL(xk, λk)′∇2
xxL(xk, λk)∇xL(xk, λk).

If the Hessian of the Lagrangian ∇2
xxL(xk, λk) is positive definite, we see

that d(xk, λk) is a descent direction of the exact penalty function P [as-
suming that ∇xL(xk, λk) �= 0]. Note, however, that positive definiteness
of ∇2

xxL(xk, λk) is essential and is a stronger requirement than the second
order sufficiency conditions of Section 4.2 .

To analyze the convergence of the first order iteration (5.115)-(5.116),
we cannot quite use the global convergence methodology for descent meth-
ods of Chapters 1 and 2 because d(xk, λk) need not be a descent direction
of the exact penalty function P when far from (x∗, λ∗). Thus we need
some new tools, and to this end, we develop a general result on the lo-
cal convergence of methods for solving systems of nonlinear equations. A
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pair (x∗, λ∗) is said to be a point of attraction of the iteration (5.114) if
there exists an open set S ⊂ �n+m such that if (x0, λ0) ∈ S, then the
sequence

{
(xk, λk)

}
generated by the iteration belongs to S and converges

to (x∗, λ∗). The following proposition is very useful for our purposes.

Proposition 5.4.1: Let G : �n+m �→ �n and H : �n+m �→ �n be
continuously differentiable functions. Assume that (x∗, λ∗) satisfies

x∗ = G(x∗, λ∗), λ∗ = H(x∗, λ∗),

and that all eigenvalues of the (n+m)× (n+m) matrix

R∗ =

(∇xG(x∗, λ∗) ∇xH(x∗, λ∗)
∇λG(x∗, λ∗) ∇λH(x∗, λ∗)

)
(5.117)

lie strictly within the unit circle of the complex plane. Then (x∗, λ∗)
is a point of attraction of the iteration

xk+1 = G(xk, λk), λk+1 = H(xk, λk), (5.118)

and when the generated sequence
{
(xk, λk)

}
converges to (x∗, λ∗), the

rate of convergence of ‖xk − x∗‖ and ‖λk − λ∗‖ is linear.

Proof: Denote y = (x, λ), yk = (xk, λk), y∗ = (x∗, λ∗), and consider the
function M : �n+m �→ �n+m given by M(y) =

(
G(x, λ), H(x, λ)

)
. By the

mean value theorem, we have for any two vectors y and ỹ,

M(ỹ)−M(y) = R′(ỹ − y),

where R is the matrix having as ith column the gradient∇Mi(ŷi) of the ith
component ofM evaluated at some vector ŷi on the line segment connecting
y and ỹ. By taking ỹ and y sufficiently close to y∗, we can make R as close
to the matrix R∗ of Eq. (5.117) as desired, and therefore we can make the
eigenvalues of the transpose R′ lie within the unit circle [the eigenvalues of
R and R′ coincide by Prop. A.13(f) of Appendix A]. It follows from Prop.
A.15 of Appendix A that there exists a norm ‖ · ‖ and an open sphere S
with respect to that norm centered at (x∗, λ∗) such that, within S, the
induced matrix norm of R′ is less than 1−ε where ε is some positive scalar.
Since ∥∥M(ỹ)−M(y)

∥∥ ≤ ‖R′‖ ‖ỹ − y‖,
it follows that within the sphere S, the mapping M is a contraction as de-
fined in Appendix A. The result then follows from the contraction mapping
theorem (Prop. A.26 in Appendix A). Q.E.D.
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We now prove the local convergence of the first order Lagrangian
iteration (5.115)-(5.116).

Proposition 5.4.2: Assume that f and h are twice continuously dif-
ferentiable, and let (x∗, λ∗) be a local minimum-Lagrange multiplier
pair. Assume also that x∗ is regular and that the matrix ∇2

xxL(x∗, λ∗)
is positive definite. Then there exists ᾱ > 0, such that for all α ∈ (0, ᾱ],
(x∗, λ∗) is a point of attraction of iteration (5.115)-(5.116), and if the
generated sequence

{
(xk, λk)

}
converges to (x∗, λ∗), then the rate of

convergence of ‖xk − x∗‖ and ‖λk − λ∗‖ is linear.

Proof: The proof consists of showing that, for α sufficiently small, the hy-
pothesis of Prop. 5.4.1 is satisfied. Indeed for α > 0, consider the mapping
Mα : �n+m �→ �n+m defined by

Mα(x, λ) =

(
x− α∇xL(x, λ)
λ+ α∇λL(x, λ)

)
.

Clearly (x∗, λ∗) = Mα(x∗, λ∗), and we have

∇Mα(x∗, λ∗)′ = I − αB, (5.119)

where

B =

(∇2
xxL(x∗, λ∗) ∇h(x∗)
−∇h(x∗)′ 0

)
. (5.120)

We will show that the real part of each eigenvalue of B is strictly positive,
and then the result will follow from Eq. (5.119) by using Prop. 5.4.1. For
any complex vector y, denote by ŷ its complex conjugate, and for any
complex number γ, denote by Re(γ) its real part. Let β be an eigenvalue
of B, and let (z, w) �= 0 be a corresponding eigenvector where z and w are
complex vectors of dimension n and m, respectively. We have

Re

{
(ẑ′ ŵ′)B

(
z
w

)}
= Re

{
β(ẑ′ ŵ′)

(
z
w

)}
= Re(β)

(‖z‖2 + ‖w‖2),
(5.121)

while at the same time, by using Eq. (5.120),

Re

{
(ẑ′ ŵ′)B

(
z
w

)}
= Re

{
ẑ′∇2

xxL(x∗, λ∗)z+ẑ′∇h(x∗)w−ŵ′∇h(x∗)′z
}
.

(5.122)
Since for any real n×m matrix Q, we have

Re{ẑ′Q′w} = Re{ŵ′Qz},
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it follows from Eqs. (5.121) and (5.122) that

Re
{
ẑ′∇2

xxL(x∗, λ∗)z
}
= Re

{
(ẑ′ ŵ′)B

(
z
w

)}
= Re(β)

(‖z‖2 + ‖w‖2).
(5.123)

Since for any positive definite matrix A, we have

Re{ẑ′Az} > 0, ∀ z �= 0,

it follows from Eq. (5.123) and the positive definiteness assumption on
∇2

xxL(x∗, λ∗) that either Re(β) > 0 or else z = 0. But if z = 0, the
equation

B

(
z
w

)
= β

(
z
w

)
yields

∇h(x∗)w = 0.

Since ∇h(x∗) has rank m, it follows that w = 0. This contradicts our
earlier assumption that (z, w) �= 0. Consequently, we must have Re(β) > 0.
Q.E.D.

We note that by appropriately scaling the vectors x and λ, we can
show that the result of Prop. 5.4.2 holds also for the more general iteration

xk+1 = xk − αD∇xL(xk, λk), (5.124)

λk+1 = λk + αEh(xk), (5.125)

where D and E are any positive definite symmetric matrices of appropri-
ate dimension [reduce the preceding iteration to an iteration of the form
(5.115)-(5.116) using a change of variables x = D1/2y and λ = E1/2μ; cf.
the discussion of Section 1.3.2].

Augmented Lagrangian Convexification

We noted that positive definiteness of ∇2
xxL(x∗, λ∗) is necessary for the

validity of the Lagrangian method (5.115)-(5.116) and its scaled version
(5.124)-(5.125). This essentially requires that the problem has a “locally
convex” structure in the neighborhood of x∗. On the other hand when this
structure is not present, we can remedy the situation by convexification,
through the use of an augmented Lagrangian of the form

Lc(x, λ) = f(x) + λ′h(x) +
c

2

∥∥h(x)∥∥2
. (5.126)

In particular, we may apply the method to the equivalent problem

minimize f(x) +
c

2

∥∥h(x)∥∥2

subject to h(x) = 0,
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where c is chosen sufficiently large to ensure that the corresponding matrix

∇2
xxLc(x∗, λ∗) = ∇2

xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)′

is positive definite [assuming of course that (x∗, λ∗) satisfy the second order
sufficiency conditions so that the augmented Lagrangian theory applies; cf.
Lemma 4.2.1 and the subsequent discussion].

The method (5.124)-(5.125) applied to the preceding equivalent prob-
lem takes the form

xk+1 = xk − αD∇xLc(xk, λk), (5.127)

λk+1 = λk + αEh(xk), (5.128)

where D and E are positive definite symmetric matrices of appropriate di-
mension. By using Prop. 5.4.2, we see that this method converges linearly
to (x∗, λ∗), assuming that the second order sufficiency conditions are satis-
fied, c is sufficiently large to ensure that ∇2

xxLc(x∗, λ∗) is positive definite,
the starting pair (x0, λ0) is sufficiently close to (x∗, λ∗), and α is sufficiently
small.

Lagrangian Method in the Space of Primal Variables

An important observation for our purposes is that given a good approxima-
tion of a local minimum x∗ that is a regular point [∇h(x∗) has rank m], we
can obtain analytically a good approximation of the associated Lagrange
multiplier λ∗. One way to do this is to use the function λ̂ defined by

λ̂(x) =
(∇h(x)′∇h(x)

)
−1(

h(x) −∇h(x)′∇f(x)
)
, (5.129)

for all x such that ∇h(x) has rank m. Indeed, by multiplying the necessary
condition∇f(x∗)+∇h(x∗)λ∗ = 0 with∇h(x∗)′, we obtain∇h(x∗)′∇f(x∗)+
∇h(x∗)′∇h(x∗)λ∗ = 0, so that

λ∗ = −(∇h(x∗)′∇h(x∗)
)
−1∇h(x∗)′∇f(x∗).

Thus, using the fact h(x∗) = 0 in Eq. (5.129), we obtain λ̂(x∗) = λ∗. Since

λ̂(·) is a continuous function, it follows that λ̂(x) is near λ∗ if x is near x∗.
One benefit of this observation is to alleviate the requirement for a

good initial choice of (x0, λ0) in the preceding Lagrangian methods (cf.
Prop. 5.4.2). If a good initial choice x0 is available, we can obtain a good

initial choice λ0 from λ0 = λ̂(x0).
Carrying this idea further, we may consider a Lagrangian method

where λk is taken to be equal to λ̂(xk) rather than updated according to
Eq. (5.116) or (5.125), leading to the algorithm

xk+1 = xk − α∇xL
(
xk, λ̂(xk)

)
, (5.130)
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which iterates exclusively within the space of the vector x. To show local
convergence to x∗ of this iteration for sufficiently small stepsize α, it is
necessary that the matrix

I − αG(x∗)

where
G(x) = ∇(∇xL

(
x, λ̂(x)

))
,

has eigenvalues strictly within the unit circle (cf. Prop. 5.4.1).
Indeed, remarkably, it can be shown that if (x∗, λ∗) satisfy the second

order sufficiency conditions of Prop. 4.2.1 (in addition to x∗ being a regular
point), the eigenvalues of G(x∗) are all real-valued and positive, so the
eigenvalues of I − αG(x∗) lie within the unit circle for sufficiently small
α. The proof is fairly complicated, and is given in Prop. 4.26 of [Ber82a].
A superlinearly converging Newton-like Lagrangian method that operates
exclusively within the space of x is also described in [Ber82a] (Prop. 4.27).

An interesting observation is that [assuming that ∇h(xk) has rank

m] we can obtain both λ̂(xk) and ∇xL
(
xk, λ̂(xk)

)
by solving the quadratic

program
minimize ∇f(xk)′d+ 1

2‖d‖2
subject to h(xk) +∇h(xk)′d = 0.

(5.131)

Indeed the optimality conditions for this program are

∇f(xk) +∇h(xk)λ+ d = 0, h(xk) +∇h(xk)′d = 0,

and it can be seen that the unique Lagrange multiplier vector is λ̂(xk),
while the unique optimal solution is

d(xk) = −∇xL
(
xk, λ̂(xk)

)
.

As a special case we note that if h is linear and xk is a feasible point,
−∇xL

(
xk, λ̂(xk)

)
is equal to −∇f(xk) projected onto the feasible set, so

the iteration reduces to a gradient projection iteration. In the more general
case, where h is linear but xk is infeasible, −∇xL

(
xk, λ̂(xk)

)
has two com-

ponents; one component is −∇f(xk) projected onto the feasible set and
aims at cost function reduction, while the other component is orthogonal
to the feasible set, and aims at infeasibility reduction (for sufficiently small
α). Note also that based on the quadratic programming implementation
(5.131), the method is related to the linearization method (5.103) of Section
5.3.2.

A noteworthy fact here is that positive definiteness of the matrix
∇2

xxL(x∗, λ∗) is not required . Convergence is guaranteed assuming just
the second order sufficiency conditions of Prop. 4.2.1 and regularity of x∗.
To get a sense of this, we note that the iteration (5.130) when applied to
the equivalent problem

minimize fc(x)
def
= f(x) +

c

2

∥∥h(x)∥∥2

subject to h(x) = 0,
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is independent of the value of c, and embodies any desired amount of aug-
mented Lagrangian convexification. Indeed it can be seen that the solution
of the quadratic program (5.131) is not affected if ∇f is replaces by ∇fc,
since subject to the constraint h(xk) +∇h(xk)′d = 0, the inner products

∇f(xk)′d and ∇fc(xk)′d differ by the constant c
∥∥h(xk)

∥∥2
.

Let us finally note that the iteration (5.130) involves the calculation of

λ̂(xk), which may be significant extra overhead, particularly if h is nonlinear
and/or the number of constraints m is large. Under favorable conditions,
however, the method is viable and applies to problems that do not have the
“locally convex” structure [positive definiteness of ∇2

xxL(x∗, λ∗)], which is
required for the Lagrangian iteration (5.115)-(5.116).

Decomposition and Parallelization in Separable Problems

The Lagrangian methods and their variations in this section are well-suited
for separable problems of the form

minimize

n∑
i=1

fi(xi)

subject to
n∑

i=1

hij(xi) = 0, j = 1, . . . ,m,

(5.132)

where fi : � �→ � and hij : � �→ � are twice continuously differentiable
scalar functions. Problems of this type arise naturally in many contexts and
they will be discussed in greater detail in the context of convex program-
ming in Section 6.1.5, and in a variety of algorithmic contexts in Chapter
7.

Here we wish to point out the mechanism by which Lagrangian meth-
ods can exploit the structure of separable problems. Indeed the Lagrangian
function of the problem takes the form

L(x, λ) =

n∑
i=1

⎧⎨
⎩fi(xi) +

m∑
j=1

λjhij(xi)

⎫⎬
⎭ ,

and is separable with respect to xi. As a result, the Lagrangian method
(5.115)-(5.116) takes the form

xk+1
i = xk

i − α

⎛
⎝∂fi(xk

i )

∂xi
+

m∑
j=1

λk
j

∂hij(xk
i )

∂xi

⎞
⎠ , i = 1, . . . , n, (5.133)

λk+1
j = λk

j + α

n∑
i=1

hij(xk
i ), j = 1, . . . ,m. (5.134)
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Note that the iteration (5.133) decomposes with respect to the coordinates
xi, and is well-suited for parallel computation. For example, one may con-
sider a parallel computing system with n processors, each updating a single
scalar coordinate xi according to iteration (5.133), and another (central)
processor updating the multiplier vector λ according to Eq. (5.134). The
ith processor communicates with the central processor, sending its cur-
rent values xk

i or hij(xk
i ), j = 1, . . . ,m, while receiving from the central

processor the current value of λk.
For a small enough stepsize α, this parallel algorithmic process is con-

vergent under the conditions of Prop. 5.4.2 [including the requirement that
the Hessian of the Lagrangian ∇2

xxL(x∗, λ∗) is positive definite]. Also, a
certain amount of asynchronism can be allowed into the algorithm, based
on the totally and partially asynchronous guidelines of Section 2.5. More-
over, the iteration (5.130) admits similar parallelization.

Let us finally note an alternative method for separable problems,
which uses a Lagrangian minimization in place of the gradient iteration
(5.133). The method also requires that the Hessian of the Lagrangian
∇2

xxL(x∗, λ∗) is positive definite, and has the form

xk+1
i = argmin

xi

⎧⎨
⎩fi(xi) +

m∑
j=1

λk
j hij(xi)

⎫⎬
⎭ , i = 1, . . . , n,

λk+1
j = λk

j + α

n∑
i=1

hij(xk
i ), j = 1, . . . ,m,

where the minimization is assumed to be local in a neighborhood of x∗.
This method can be understood by viewing it as a method of multipliers
for the problem

minimize f(x)− α

2

∥∥h(x)∥∥2

subject to h(x) = 0.

In particular, for convergence, α must not exceed twice the minimum eigen-

value of ∇h(x∗)′
(∇2

xxL(x∗, λ∗)
)
−1∇h(x∗); see Exercise 5.2.11.

5.4.2 Newton-Like Methods for Equality Constraints

We will now turn to second order methods for solving the Lagrangian sys-
tem

∇f(x) +∇h(x)λ = 0, h(x) = 0,

by viewing it as the vector equation

∇L(x, λ) = 0.

Newton’s method for this equation is

xk+1 = xk +Δxk, λk+1 = λk +Δλk, (5.135)
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where (Δxk,Δλk) ∈ �n+m is obtained by solving the system

∇2L(xk, λk)

(
Δxk

Δλk

)
= −∇L(xk, λk), (5.136)

the linearized version of the optimality condition ∇L(x, λ) = 0.
We say that (xk+1, λk+1) is well-defined by the Newton iteration

(5.135)-(5.136) if the matrix ∇2L(xk, λk) is invertible. Note that if x∗

is a local minimum that is regular and together with a Lagrange multi-
plier λ∗ satisfies the second order sufficiency condition of Prop. 4.2.1, then
∇2L(x∗, λ∗) is invertible; this was shown as part of the proof of the sen-
sitivity theorem (Prop. 4.2.2). As a result, ∇2L(x, λ) is invertible in a
neighborhood of (x∗, λ∗), and within this neighborhood, points generated
by the Newton iteration are well-defined. In the subsequent discussion,
when stating various local convergence properties of the Newton iteration
in connection with such a pair, we implicitly restrict the iteration within a
neighborhood where it is well-defined.

The local convergence properties of the method can be inferred from
the results of Section 1.4. For purposes of convenient reference, we provide
the corresponding result in the following proposition.

Proposition 5.4.3: Let x∗ be a strict local minimum that is reg-
ular and satisfies together with a corresponding Lagrange multiplier
vector λ∗ the second order sufficiency conditions of Prop. 4.2.1. Then
(x∗, λ∗) is a point of attraction of the Newton iteration (5.135)-(5.136).
Furthermore, if the generated sequence converges to (x∗, λ∗), the rate
of convergence of

{‖(xk, λk) − (x∗, λ∗)‖} is superlinear (at least or-
der two if ∇2f and ∇2hi, i = 1, . . . ,m, are Lipschitz continuous in a
neighborhood of x∗).

Proof: Use Prop. 1.4.1 of Section 1.4. Q.E.D.

The Newton iteration (5.135)-(5.136) has a rich structure that can
be used to provide interesting implementations, three of which we discuss
below.

A First Implementation of Newton’s Method

Let us write the gradient and Hessian of the Lagrangian function as

∇L(xk, λk) =

(∇xL(xk, λk)
h(xk)

)
, ∇2L(xk, λk) =

(
Hk Nk

Nk′ 0

)
,

where
Hk = ∇2

xxL(xk, λk), Nk = ∇h(xk).
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Thus, the Newton system (5.136) takes the form(
Hk Nk

Nk′ 0

)(
Δxk

Δλk

)
= −

(∇xL(xk, λk)
h(xk)

)
. (5.137)

Let us assume that Hk is invertible and Nk has rank m. Then we
can provide a more explicit expression for the Newton iteration. Indeed
the Newton system (5.137) can be written as

HkΔxk +NkΔλk = −∇xL(xk, λk), (5.138)

Nk′Δxk = −h(xk). (5.139)

By multiplying the first equation with Nk′(Hk)−1 and by using the second
equation, it follows that

−h(xk) +Nk′(Hk)−1NkΔλk = −Nk′(Hk)−1∇xL(xk, λk).

Since Nk has rank m, the matrix Nk′(Hk)−1Nk is nonsingular, and we
obtain

λk+1 − λk = Δλk =
(
Nk′(Hk)−1Nk

)
−1(

h(xk)−Nk′(Hk)−1∇xL(xk, λk)
)
.

(5.140)
We have

∇xL(xk, λk) = ∇f(xk) +Nkλk

= ∇f(xk) +Nkλk+1 −NkΔλk

= ∇xL(xk, λk+1)−NkΔλk,

and by using this equation to substitute ∇xL(xk, λk) in Eqs. (5.138) and
(5.140), we finally obtain the two-step iteration

λk+1 =
(
Nk′(Hk)−1Nk

)
−1(

h(xk)−Nk′(Hk)−1∇f(xk)
)
, (5.141)

xk+1 = xk − (Hk)−1∇xL(xk, λk+1). (5.142)

This is a first implementation of the Newton iteration (under the
assumption that Hk is invertible and Nk has rankm). It has the advantage
that it requires the solution of systems of dimension at most n [as opposed
to n+m, which is the dimension of ∇2L(xk, λk)].

An Implementation of Newton’s Method Based on Augmented
Lagrangian Functions

We will now derive another way to write the system of equations (5.138)-
(5.139). It is based on the observation that, for every scalar c, we have
from Eq. (5.139),

cNkNk′Δx = −cNkh(xk),



538 Lagrange Multiplier Algorithms Chap. 5

which added to Eq. (5.138), yields

(Hk + cNkNk′)Δxk +Nk
(
Δλk + ch(xk)

)
= −∇xL(xk, λk). (5.143)

Equivalently, by writing Δλk = λk+1 − λk,

(Hk + cNkNk′)Δxk = −∇xL
(
xk, λk+1 + ch(xk)

)
= −∇xLc(xk, λk+1),

(5.144)
where Lc is the augmented Lagrangian function

Lc(x, λ) = L(x, λ) +
c

2

∥∥h(x)∥∥2
.

Also if (Hk + cNkNk′)−1 exists, by multiplying Eq. (5.143) with
Nk′(Hk + cNkNk′)−1, we obtain

Nk′(Hk + cNkNk′)−1Nk
(
Δλk + ch(xk)

)
= −Nk′Δxk −Nk′(Hk + cNkNk′)−1∇xL(xk, λk),

which by writing Δλk = λk+1−λk and Nk′Δxk = −h(xk) [cf. Eq. (5.139)],
yields

Nk′(Hk + cNkNk′)−1Nk
(
λk+1 − λk + ch(xk)

)
= h(xk)−Nk′(Hk + cNkNk′)−1∇xL(xk, λk),

or by using the fact ∇xL(xk, λk) = ∇f(xk) +Nkλk,

Nk′(Hk + cNkNk′)−1Nk
(
λk+1 + ch(xk)

)
= h(xk)−Nk′(Hk + cNkNk′)−1∇f(xk).

(5.145)

Thus, from Eqs. (5.144) and (5.145), we obtain the following equiva-
lent form of Newton’s method

λk+1 = −ch(xk)+
(
Nk′(Hk + cNkNk′)−1Nk

)
−1(

h(xk)−Nk′(Hk + cNkNk′)−1∇f(xk)
)
,

(5.146)

xk+1 = xk − (Hk + cNkNk′)−1∇xLc(xk, λk+1). (5.147)

An advantage that this implementation may offer over the one of Eqs.
(5.141)-(5.142) (which corresponds to c = 0) is that the matrix Hk may
not be invertible while Hk + cNkNk′ may be invertible for some values
of c. For example, for c sufficiently large, we have that Hk + cNkNk′

is not only invertible but also positive definite near (x∗, λ∗) (cf. Lemma
4.2.1 in Section 4.2). An additional benefit of this property is that it
allows us to differentiate between local minima and local maxima (near a
local maximum-Lagrange multiplier pair, Hk + cNkNk′ is not likely to be
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positive definite for any positive value of c). Note that positive definiteness
ofHk+cNkNk′ can be easily detected if the Cholesky factorization method
is used for solving the various linear systems of equations in Eqs. (5.146)
and (5.147) (cf. the discussion of Section 1.4).

Another property, which is particularly useful for enlarging the region
of convergence of Newton’s method (see Section 5.4.3), can be inferred from
Eq. (5.147): if c is large enough so that Hk + cNkNk′ is positive definite,
xk+1 − xk is a descent direction of the augmented Lagrangian function
Lc

(·, λk+1
)
at xk.

An Implementation of Newton’s Method Based on Quadratic
Programming

We will now derive a third implementation of Newton’s method. It is based
on the observation that the Newton system (5.138)-(5.139) is written as

∇f(xk) +HkΔxk +Nkλk+1 = 0, h(xk) +Nk′Δxk = 0,

which are the necessary optimality conditions for
(
Δxk, λk+1

)
to be a global

minimum-Lagrange multiplier pair of the quadratic program

minimize ∇f(xk)′Δx+ 1
2Δx′HkΔx

subject to h(xk) +Nk′Δx = 0.
(5.148)

Thus we can obtain
(
Δxk, λk+1

)
by solving this problem.

This implementation is not particularly useful for practical purposes
but provides an interesting connection with the linearization method of
Section 5.3. This connection can be made more explicit by noting that
the solution Δxk of the quadratic program (5.148) is unaffected if Hk is
replaced by any matrix of the form Hk + cNkNk′, where c is a scalar,
thereby obtaining the program

minimize ∇f(xk)′Δx+ 1
2Δx′(Hk + cNkNk′)Δx

subject to h(xk) +Nk′Δx = 0.
(5.149)

To see that problems (5.148) and (5.149) have the same solution Δxk,
simply note that they have the same constraints while their cost func-

tions differ by the term cΔx′NkNk′Δx, which is equal to c
∥∥h(xk)

∥∥2 and is
therefore constant. Near a local minimum-Lagrange multiplier pair (x∗, λ∗)
satisfying the sufficiency conditions, we have that Hk + cNkNk′ is posi-
tive definite if c is sufficiently large (Lemma 4.2.1 in Section 4.2), and the
quadratic program (5.149) is positive definite.

We see therefore that, under these circumstances, the Newton itera-
tion can be viewed in effect as a special case of the linearization method of
Section 5.3 with a constant unity stepsize, and scaling matrix

H̄k = Hk + cNkNk′,

where c is any scalar for which H̄k is positive definite.
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Merit Functions and Descent Properties of Newton’s Method

Since we would like to improve the global convergence properties of New-
ton’s method, it is interesting to look for appropriate merit functions, i.e.,
functions for which (xk+1 − xk) is a descent direction at xk or (xk+1 −
xk, λk+1 − λk) is a descent direction at (xk, λk). By this, we mean func-
tions F such that for a sufficiently small positive scalar ᾱ, we have

F
(
xk + α(xk+1 − xk)

)
< F (xk), ∀ α ∈ (0, ᾱ],

or

F
(
xk + α(xk+1 − xk), λk + α(λk+1 − λk)

)
< F (xk, λk), ∀ α ∈ (0, ᾱ].

The following proposition shows that there are several possible merit func-
tions.

Proposition 5.4.4: (Merit Functions for Lagrangian Methods)
Let x∗ be a local minimum that is a regular point and satisfies together
with a corresponding Lagrange multiplier vector λ∗ the second order
sufficiency conditions of Prop. 4.2.1. There exists a neighborhood S
of (x∗, λ∗) such that if (xk, λk) ∈ S and xk �= x∗, then (xk+1, λk+1) is
well-defined by the Newton iteration and the following hold:

(a) There exists a scalar c̄ such that for all c ≥ c̄, the vector (xk+1 −
xk) is a descent direction at xk for the exact penalty function

f(x) + c max
i=1,...,m

∣∣hi(x)
∣∣. (5.150)

(b) The vector (xk+1−xk, λk+1−λk) is a descent direction at (xk, λk)
for the exact penalty function

P (x, λ) = 1
2

∥∥∇L(x, λ)
∥∥2

.

Furthermore, given any scalar r > 0, there exists a δ > 0 such
that if ∥∥(xk − x∗, λk − λ∗)

∥∥ < δ,

we have
P (xk+1, λk+1) ≤ rP (xk, λk). (5.151)

(c) For every scalar c such that Hk+cNkNk′ is positive definite, the
vector (xk+1 − xk) is a descent direction at xk of the augmented
Lagrangian function Lc(·, λk+1).
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Proof: (a) Take c̄ > 0 sufficiently large and a neighborhood S of (x∗, λ∗),
which is sufficiently small, so that for (xk, λk) ∈ S, the matrixHk+c̄NkNk′

is positive definite. Since Δxk is the solution of the quadratic program
(5.149), it follows from Prop. 5.3.2 that if xk �= x∗, then Δxk is a descent
direction of the exact penalty function (5.150) for all c ≥ c̄.

(b) We have (
xk+1 − xk

λk+1 − λk

)
= −∇2L(xk, λk)−1∇L(xk, λk)

and
∇P (xk, λk) = ∇2L(xk, λk)∇L(xk, λk),

so

(
(xk+1 − xk)′, (λk+1 − λk)′

)∇P (xk, λk) = −
∥∥∇L(xk, λk)

∥∥2 < 0,

and the descent property follows.
From Prop. 1.4.1, we have that, given any r̄ > 0, there exists a δ̄ > 0

such that for
∥∥(xk − x∗, λk − λ∗)

∥∥ < δ̄, we have

∥∥(xk+1 − x∗, λk+1 − λ∗)
∥∥ ≤ r̄

∥∥(xk − x∗, λk − λ∗)
∥∥. (5.152)

For every (x, λ), we have, by the mean value theorem,

∇L(x, λ) = B

(
x− x∗

λ− λ∗

)
,

where each row of B is the corresponding row of ∇2L evaluated at a point
between (x, λ) and (x∗, λ∗). Since ∇2L(x∗, λ∗) is invertible, it follows that
there is an ε > 0 and scalars μ > 0 and M > 0 such that for

∥∥(x− x∗, λ−
λ∗)

∥∥ < ε, we have

μ
∥∥(x− x∗, λ− λ∗)

∥∥ ≤
∥∥∇L(x, λ)

∥∥ ≤ M
∥∥(x− x∗, λ− λ∗)

∥∥. (5.153)

From Eqs. (5.152) and (5.153), it follows that for each r̄ > 0 there exists
δ > 0 such that, for

∥∥(xk − x∗, λk − λ∗)
∥∥ < δ,

∥∥∇L(xk+1, λk+1)
∥∥ ≤ (Mr̄/μ)

∥∥∇L(xk, λk)
∥∥,

or, equivalently,

P (xk+1, λk+1) ≤ (M2r̄2/μ2)P (xk, λk).

Given r > 0, we take r̄ = (μ/M)
√
r in the preceding relation, and Eq.

(5.151) follows.
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(c) We have shown that xk+1 − xk = −(Hk + cNkNk′)−1∇xLc

(
xk, λk+1

)
[cf. Eq. (5.147)], which implies the conclusion. Q.E.D.

It is also possible to use the differentiable exact penalty functions of
Section 5.3.3 as merit functions for Newton’s method. The verification of
this is somewhat tedious, so we refer to [Ber82a], p. 219, and [Ber82c] for
an analysis. Moreover, it can be shown that differentiable exact penalty
functions, while more complicated, have an interesting advantage over the
nondifferentiable penalty function (5.150): they are not susceptible to the
Maratos’ effect discussed in Exercise 5.3.9 of Section 5.3, and they allow su-
perlinear convergence of Newton-like methods without any complex modifi-
cations. For this analysis, we refer to the paper [Ber80b] (see also [Ber82a],
pp. 271-279).

Variations of Newton’s Method

There are a number of variations of Newton’s method, which aim at some
beneficial effect, and are obtained by introducing some extra terms in the
left-hand side of the Newton system. These variations have the general
form

xk+1 = xk +Δxk, λk+1 = λk +Δλk,

where (∇2L(xk, λk) + V k(xk, λk)
)(Δxk

Δλk

)
= −∇L(xk, λk),

with the extra term V k(xk, λk) being “small” enough relative to∇2L(xk, λk),
so that the eigenvalues of the matrix

I − (∇2L(xk, λk) + V k(xk, λk)
)
−1∇2L(xk, λk)

are within the unit circle and the convergence result of Prop. 5.4.1 applies.
In the case where the extra term V k(xk, λk) converges to zero, superlinear
convergence is attained; otherwise, the rate of convergence is linear (cf.
Prop. 5.4.1).

An interesting approximation of Newton’s method is obtained by
adding a term −(1/ck)Δλk in the left-hand side of the equation Nk′Δxk =
−h(xk), where ck is a positive parameter, so that Δxk and Δλk are ob-
tained by solving the system

HkΔxk +NkΔλk = −∇xL(xk, λk), (5.154)

Nk′Δxk − (1/ck)Δλk = −h(xk). (5.155)

As ck → ∞, the system asymptotically becomes identical to the one corre-
sponding to Newton’s method.
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We can show that the system (5.154)-(5.155) has a unique solution if
either (Hk)−1 or (Hk+ckNkNk′)−1 exists. Indeed when (Hk)−1 exists, we
can write explicitly the solution. By multiplying Eq. (5.154) by Nk′(Hk)−1

and by using Eq. (5.155), we obtain

(1/ck)Δλk − h(xk) +Nk′(Hk)−1NkΔλk = −Nk′(Hk)−1∇xL(xk, λk),

from which

Δλk =
(
(1/ck)I +Nk′(Hk)−1Nk

)
−1(

h(xk)−Nk′(Hk)−1∇xL(xk, λk)
)

and

λk+1 = λk+
(
(1/ck)I+Nk′(Hk)−1Nk

)
−1(

h(xk)−Nk′(Hk)−1∇xL(xk, λk)
)
.

From Eq. (5.154), we then obtain

xk+1 = xk − (Hk)−1∇xL(xk, λk+1).

Also if (Hk + ckNkNk′)−1 exists, by multiplying Eq. (5.155) with
ckNk and adding the resulting equation to Eq. (5.154), we obtain

(Hk + ckNkNk′)Δxk = −∇xL(xk, λk)− ckNkh(xk),

and finally,

xk+1 = xk − (Hk + ckNkNk′)−1∇Lck(x
k, λk), (5.156)

where Lck is the augmented Lagrangian function. Furthermore, from Eq.
(5.155), we obtain

λk+1 = λk + ck
(
h(xk) +Nk′(xk+1 − xk)

)
. (5.157)

Note that the preceding development shows that Nk need not have
rank m in order for the system (5.154)-(5.155) to have a unique solution,
while this is not true for the Newton iteration. Thus by introducing the
term (1/ck)Δλk in the second equation, we avoid potential difficulties due
to linear dependence of the constraint gradients.

The preceding analysis suggests that if ck is taken sufficiently large,
then the approximate Newton iteration (5.156)-(5.157) should converge
locally to a local minimum-Lagrange multiplier pair (x∗, λ∗) under the same
conditions as the exact Newton iteration (cf. Prop. 5.4.3). Furthermore,
the rate of convergence should be superlinear if ck → ∞. The proof of
this, using Prop. 5.4.1, is straightforward, but is tedious and will not be
given; see [Ber82a], pp. 240-243, where some variations of the method of
Eqs. (5.156)-(5.157) are also discussed.

Another type of approximate Newton’s method is obtained by intro-
ducing extra terms in the right-hand side (rather than the left-hand side)
of the Newton system. For local convergence to (x∗, λ∗), it is essential
that the extra terms tend to zero. The primal-dual methods for linear
programming of Section 5.1.2 are of this type.
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Connection with the First Order Method of Multipliers

From Eq. (5.156) it is seen that if Hk + ckNkNk′ is positive definite, then
(xk+1 − xk) is a descent direction for the augmented Lagrangian function
Lck(·, λk). Furthermore, if the constraint functions hi are linear, then Eq.
(5.157) can be written as

λk+1 = λk + ckh(xk+1), (5.158)

while if in addition f is quadratic and Hk + ckNkNk′ is positive definite,
then from Eq. (5.156), xk+1 is the unique minimizing point of the aug-
mented Lagrangian Lck(·, λk). Hence, it follows that if the constraints are
linear and the cost function is quadratic, then the iteration (5.156)-(5.157)
is equivalent to the first order method of multipliers of Section 5.2 .

In the more general case where the constraints are nonlinear, it is
natural to consider the iteration

xk+1 = xk −∇2
xxLck(x

k, λk)−1∇xLck(x
k, λk), (5.159)

followed by the first order multiplier iteration

λk+1 = λk + ckh(xk+1). (5.160)

This is simply the first order multiplier iteration where the minimization
of the augmented Lagrangian is replaced by a single pure Newton step, a
method known as the diagonalized method of multipliers .

Note that for ck large and xk close to x∗, the Hessian ∇2
xxLck(x

k, λk)
is nearly equal to Hk + ckNkNk′, and h(xk+1) is nearly equal to h(xk) +
Nk′(xk+1 − xk). Thus the diagonalized method of multipliers (5.159)-
(5.160) can be viewed as an approximation to the variation of Newton’s
method (5.156)-(5.157) discussed earlier. This suggests that if ck is taken
larger than some threshold for all k, then the method should converge lo-
cally to a local minimum-Lagrange multiplier pair (x∗, λ∗) under the con-
ditions of Prop. 5.4.3. This is indeed true, and the proof may be found in
[Tap77] and [Ber82a], pp. 241-243, where it is also shown that the rate of
convergence is superlinear if ck → ∞.

Extension to Inequality Constraints

Let us consider the inequality constrained problem

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,

and focus on a local minimum x∗ that is regular and together with a La-
grange multiplier μ∗, satisfies the second order sufficiency conditions of
Prop. 4.3.2.
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We can develop a Newton method for this problem, which is an exten-
sion of the quadratic programming implementation given earlier for equality
constraints [cf. Eq. (5.148)]. This method is also similar to the constrained
version of Newton’s method for convex constraint sets given in Section 3.3
(in fact the two methods coincide when all the constraints are linear). In
particular, given (xk, μk), we obtain (xk+1, μk+1) as an optimal solution-
Lagrange multiplier pair of the quadratic program

minimize ∇f(xk)′(x − xk) + 1
2 (x− xk)′∇2

xxL(xk, μk)(x − xk)

subject to gj(xk) +∇gj(xk)′(x − xk) ≤ 0, j = 1, . . . , r.

It is possible to show that there exists a neighborhood S of (x∗, μ∗) such
that if (xk, μk) is within S, then (xk+1, μk+1) is uniquely defined as an
optimal solution-Lagrange multiplier pair within S (an application of the
implicit function theorem is needed to formalize this statement). Fur-
thermore, (xk, μk) converges to (x∗, μ∗) superlinearly. The details of this
development are quite complex, and we refer to the book [Ber82a], Section
4.4.3, and the literature cited at the end of the chapter for further material.

5.4.3 Global Convergence

In order to enlarge the region of convergence of Lagrangian methods, it
is necessary to combine them with some other method that has satisfac-
tory global convergence properties. We refer to such a method as a global
method . The main idea here is to construct a method that when sufficiently
close to a local minimum switches automatically to a fast Lagrangian
method, while when far away from such a point switches automatically
to the global method, which is designed to make steady progress towards
approaching the set of optimal solutions. The Lagrangian method can be
any method that updates both vectors x and λ, based on the guidelines
of this section. Prime candidates for use as global methods are multiplier
methods and exact penalty methods.

There are many possibilities for combining global and Lagrangian
methods, and the suitability of any one of these depends strongly on the
problem at hand. For this reason, our main purpose in this section is not
to develop and recommend specific algorithms, but rather to focus on the
main guidelines for harmoniously interfacing global and Lagrangian meth-
ods while retaining the advantages of both. We note that combinations of
global and Lagrangian methods, which involve augmented Lagrangian func-
tions for convexification purposes, underlie several practical algorithms,
including some popular nonlinear programming codes [CGT92], [MuS87].

Once a global and a Lagrangian method have been selected, the main
issue to be settled is the choice of what we shall call the switching rule and
the acceptance rule. The switching rule determines at each iteration, on the
basis of certain tests, whether a switch should be made to the Lagrangian
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method. The tests depend on the information currently available, and their
purpose is to decide whether an iteration of the Lagrangian method has
a reasonable chance of success. As an example, such tests might include
verification that ∇h has rank m and that ∇2

xxL is positive definite on the
subspace {y | ∇h′y = 0}. We hasten to add here that these tests should not
require excessive computational overhead. In some cases a switch might
be made without any test at all, subject only to the condition that the
Lagrangian iteration is well-defined.

The acceptance rule determines whether the results of the Lagrangian
iteration will be accepted as they are, whether they will be modified, or
whether they will be rejected completely and a switch will be made back to
the global method. Typically, acceptance of the results of the Lagrangian
iteration is based on reducing the value of a suitable merit function.

Combinations with Multiplier Methods

One possibility for enlarging the region of convergence of Lagrangian meth-
ods is to combine them with the first or second order methods of multipliers
discussed in Section 5.2. The resulting methods tend to be very reliable
since they inherit the robustness of the method of multipliers. At the same
time they typically require fewer iterations to converge within the same
accuracy than pure methods of multipliers.

To convey the general idea, let us discuss a few of the many possi-
bilities. The simplest one is to switch to a Lagrangian method at the end
of each (perhaps approximate) unconstrained minimization of a method
of multipliers and continue using the Lagrangian method as long as the
value of the exact penalty function ‖∇L‖2 is being decreased by a certain
factor at each iteration. If satisfactory progress in decreasing ‖∇L‖2 is
not observed, a switch back to the method of multipliers is made. Another
possibility is to attempt a switch to a Lagrangian method at each iteration.
As an example, consider a method for the equality constrained problem,
which combines Newton’s method for unconstrained minimization of the
augmented Lagrangian together with the approximate Newton/Lagrangian
iterations (5.156)-(5.160), which correspond to the method of multipliers.

At iteration k, we have xk, λk, and a penalty parameter ck. We
also have a positive scalar wk, which represents a target value of the ex-
act penalty function ‖∇L‖2 that must be attained in order to accept the
Lagrangian iteration, and a positive scalar εk that controls the accuracy of
the unconstrained minimization of the method of multipliers. At the kth
iteration, we determine xk+1, λk+1, wk+1, and εk+1 as follows:

We form the Cholesky factorization LkLk′ of ∇2
xxLck(x

k, λk) as in
Section 1.4. In the process, we modify ∇2

xxLck(x
k, λk) if it is not “suf-

ficiently positive definite” (compare with Section 1.4). We then find the
Newton direction

dk = −(LkLk′)−1∇xLck(x
k, λk), (5.161)
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and if ∇2
xxLck(x

k, λk) was found “sufficiently positive definite” during the
factorization process, we also carry out the Lagrangian iteration [compare
with Eqs. (5.159) and (5.160)]:

x̄k = xk + dk, (5.162)

λ̄k = λk + ckh(x̄k). (5.163)

[The analog of Eq. (5.157) could also be used in place of Eq. (5.163).]
If ∥∥∇L(x̄k, λ̄k)

∥∥2 ≤ wk,

then we accept the Lagrangian iteration and we set

xk+1 = x̄k, λk+1 = λ̄k, ck+1 = ck, εk+1 = εk,

wk+1 = γ
∥∥∇L(x̄k, λ̄k)

∥∥2
,

where γ is a fixed scalar with 0 < γ < 1.
Otherwise, we do not accept the results of the Lagrangian iteration,

that is we do not update λk. Instead we revert to minimization of the
augmented Lagrangian Lck(·, λk) by performing an Armijo-type line search.
In particular, we set

xk+1 = xk + αkdk,

where the stepsize is obtained as

αk = βmk ,

where mk is the first nonnegative integer m such that

Lck(x
k, λk)− Lck(x

k + βmdk, λk) ≥ −σβmdk′∇xLck(x
k, λk),

and β and σ are fixed scalars with β ∈ (0, 1) and σ ∈ (0, 1
2 ). If∥∥∇xLck(x

k+1, λk)
∥∥ ≤ εk,

implying termination of the current unconstrained minimization, we do the
ordinary first order multiplier iteration, setting

λk+1 = λk + ckh(xk), (5.164)

εk+1 = γεk, ck+1 = rck, wk+1 = γ
∥∥∇L(xk+1, λk+1)

∥∥2
,

where r is a fixed scalar with r > 1. If

∥∥∇xLck(x
k+1, λk)

∥∥ > εk,
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we set

λk+1 = λk, εk+1 = εk, ck+1 = ck, wk=1 = wk,

and proceed with the next iteration.
An alternative combined algorithm is obtained by using, in place of

the first order iteration (5.163), the second order iteration

λ̄k =
(
Nk′(Hk + ckNkNk′)−1Nk

)
−1(

h(x̃k)−Nk′(Hk + ckNkNk′)−1∇f(x̃k)
)− ckh(x̃k),

where x̃k is obtained by a pure Newton step

x̃k = xk + dk = xk − (LkLk′)−1∇xL(xk, λk),

[cf. Eq. (5.161)]. This corresponds to the second implementation of New-
ton’s method of Eqs. (5.146)-(5.147)]. One could then obtain the vector x̄k

by a line search on the augmented Lagrangian Lck(·, λ̄k) along the direction
dk. The first order multiplier update (5.164) could also be replaced by a sec-
ond order update. This combination of Newton’s method and the second
order multiplier method has outstanding rate of convergence properties,
particularly if relatively good starting points are known. The combination
given earlier based on the first order multiplier updates (5.163)-(5.164) is
simpler, particularly if second derivatives are hard to compute and/or a
quasi-Newton approximation is used in Eq. (5.161) in place of the inverse
Hessian of the augmented Lagrangian (LkLk′)−1.

5.4.4 A Comparison of Various Methods

Quite a few barrier, penalty, and Lagrange multiplier methods were given
in this chapter, so it is worth reflecting on their suitability for different
types of problems. Even though it is hard to provide reliable guidelines,
one may at least delineate the relative strengths and weaknesses of the
various methods in specific practical contexts.

The barrier methods of Section 5.1, generally must solve a sequence of
minimization problems that are increasingly ill-conditioned. This is a dis-
advantage relative to the multiplier methods of Section 5.2, whose sequence
of minimization problems need not be ill-conditioned, and also relative to
the exact penalty methods of Section 5.3, which require solution of only
one minimization problem. However, for linear and for quadratic programs
there is special structure that makes the logarithmic barrier and also the
primal-dual interior point methods of Section 5.1.2 preferable to multiplier
and exact penalty methods, from the theoretical and apparently the prac-
tical point of view. Whether, there are other important classes of problems
for which this is also true, is an open question.
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Multiplier methods are excellent general purpose constrained opti-
mization methods. Their main advantages are simplicity and robustness.
They rely on well-developed unconstrained optimization technology, and
they require fewer assumptions for their validity relative to their competi-
tors. In particular, they can deal with nonlinear equality constraints, and
they do not require the existence of second derivatives and the regularity
of the generated iterates (although they can be made more efficient when
second derivatives can be used and when the iterates are regular). For these
reasons some of the most popular software packages for solving nonlinear
programming problems are based on multiplier methods.

The main disadvantage of multiplier methods relative to exact penalty
methods is that they require a sequence of unconstrained minimizations as
opposed to a single minimization. This disadvantage can be ameliorated by
making the minimizations inexact or by combining the multiplier method
with a Lagrangian method as described in Section 5.4.3. Still, practice has
shown that minimization of an exact penalty function by a Newton-like
method can require substantially fewer iterations relative to a multiplier
method. Note, however, that each of these iterations may require a poten-
tially costly subproblem (as in the linearization method) or may require
complex calculations (as in differentiable exact penalty methods).

Generally, both multiplier methods and exact penalty methods re-
quire some trial and error to obtain appropriate values of the penalty pa-
rameter and also to ensure that there are no difficulties with ill-conditioning.
However, multiplier methods typically are easier to “tune” than exact
penalty methods, and deal more comfortably with the absence of a good
starting point. Thus, if only a limited number of optimization runs are re-
quired in a given practical problem after development of the optimization
code, one is typically better off with a method of multipliers than with an
exact penalty method. If on the other hand, repetitive solution of the same
problem with minor variations is envisioned, solution time is an issue, and
the associated overhead per iteration is reasonable, one may prefer to use
an exact penalty method.

E X E R C I S E S

5.4.1

Consider the problem

minimize − x1x2

subject to x1 + x2 = 2.
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Write the implementation (5.141)-(5.142) of Newton’s method, and show that it
finds the optimal solution in a single iteration, regardless of the starting point.
Write also the approximate implementation (5.156)-(5.157) for the starting point
x0 = (0, 0), λ0 = 0, and for the two values c = 10−2 and c = 102. How does the
error after a single iteration depend on c?

5.4.2

Use Prop. 5.4.1 to derive a local convergence result for the approximate im-
plementation (5.156)-(5.157) of Newton’s method. Do the same for iteration
(5.159)-(5.160).

5.5 NOTES AND SOURCES

Section 5.1: The logarithmic barrier method dates to the work of Frisch in
the middle 50s [Fri56]. Other barrier methods have been proposed by Car-
roll [Car61]. An important early reference on penalty and barrier methods
is the book by Fiacco and McCormick [FiM68]. Properties of the central
path are investigated by McLinden [McL80], Sonnevend [Son86], Bayer and
Lagarias [BaL89], and Guler [Gul94]. For surveys of interior point methods
for linear programming, which give many additional references, see Gon-
zaga [Gon92], den Hertog [Her94], and Forsgren, Gill, andWright [FGW02].
The line of analysis that we use is due to Tseng [Tse89], which also gives a
computational complexity result along the lines of Exercise 5.1.5 (see also
Gonzaga [Gon91]).

There has been a lot of effort to apply interior point methods to non-
linear problems, such as quadratic programming (Anstreicher, den Her-
tog, Roos, and Terlaky [AHR93], Wright [Wri96]), linear complementarity
problems (Kojima, Meggido, Noma, and Yoshise [KMN91], Tseng [Tse92],
Wright [Wri93c]), matrix inequalities (Alizadeh [Ali92], [Ali95], Nesterov
and Nemirovskii [NeN94], Vandenberghe and Boyd [VaB95]), general con-
vex programming problems (Wright [Wri92], Kortanek and Zhu [KoZ93],
Anstreicher and Vial [AnV94], Jarre and Saunders [JaS95], Kortanek and
Zhu [KoZ95]), and optimal control (Wright [Wri93b]). The research mono-
graphs by Nesterov and Nemirovskii [NeN94], Wright [Wri97a], Ye [Ye97],
and Renegar [Ren01] are devoted to interior point methods for linear,
quadratic, and convex programming.

Among interior point algorithms for linear programming, primal-dual
methods are widely considered as generally the most effective; see e.g.,
McShane, Monma, and Shanno [MMS91]. They were introduced for lin-
ear programming through the study of the primal-dual central path by
Megiddo [Meg88]. They were turned into path-following algorithms in
the subsequent papers by Kojima, Mizuno, and Yoshise [KMY89], and
Monteiro and Adler [MoA89a]. Their convergence, rate of convergence,
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and computational complexity are discussed in Zhang and Tapia [ZhT92],
[ZTP93], [ZhT93], Potra [Pot94], and Tapia, Zhang, and Ye [TZY95]. The
predictor-corrector variant was proposed by Mehrotra [Meh92]. There have
been several extensions to broader classes of problems, including quadratic
programming (Monteiro and Adler [MoA89b]), and linear complementarity
(Wright [Wri94] and Tseng [Tse95b]). The research monograph by Wright
[Wri97a] provides an extensive development of primal-dual interior point
methods.

Section 5.2: The method of multipliers for equality constraints was inde-
pendently proposed by Hestenes [Hes69], Powell [Pow69], and Haarhoff and
Buys [HaB70]. These references contained very little analysis and empirical
evidence, but much subsequent work established the convergence proper-
ties of the method and proposed various extensions. Surveys by Bertsekas
[Ber76b] and Rockafellar [Roc76c] summarize the work up to 1976, and
the author’s research monograph [Ber82a] provides a detailed analysis and
many references. The global convergence of the method is discussed by Pol-
jak and Tretjakov [PoT73b], Bertsekas [Ber76a], Polak and Tits [PoT80a],
Bertsekas [Ber82a], and Conn, Gould, and Toint [CGT91]. Global and
superlinear convergence results for second order methods of multipliers,
which are analogous to Prop. 5.2.3, are given in [Ber82a], Section 2.3.2.

The class of nonquadratic penalty methods for inequality constraints,
given in Section 5.2.5, was introduced by Kort and Bertsekas [KoB72], with
a special focus on the exponential method of multipliers. The convergence
properties of the sequence {xk} generated by this method are quite intricate
and are discussed by Bertsekas [Ber82a], Tseng and Bertsekas [TsB93], and
Iusem [Ius99] for convex problems. For nonconvex problems under second
order sufficiency conditions, the convergence analysis follows the pattern
of the corresponding analysis for the quadratic method of multipliers (see
Nguyen and Strodiot [NgS79]). The exponential method was applied to the
solution of systems of nonlinear inequalities by Bertsekas ([Ber82a], Section
5.1.3), and Schnabel [Sch82]. The modified barrier method was proposed
and developed by Polyak; see [Pol92] and the references given therein.

For subsequent research on the exponential penalty, the modified bar-
rier, and other related methods that use nonquadratic penalty functions;
see Freund [Fre91], Guler [Gul92], Teboulle [Teb92], Chen and Teboulle
[ChT93], Tseng and Bertsekas [TsB93], Eckstein [Eck94a], Iusem, Svaiter,
and Teboulle [IST94], Iusem and Teboulle [IuT95], Ben-Tal and Zibulevsky
[BeZ97], Polyak and Teboulle [PoT97], Wei, Qi, and Birge [WQB98], and
Iusem [Ius99].

Section 5.3: Nondifferentiable exact penalty methods were first proposed
by Zangwill [Zan67b]; see also Han and Mangasarian [HaM79], who sur-
vey the subject and give many references. The linearization method is
due to Pschenichny [Psc70] (see also Pschenichny and Danilin [PsD76]). It
was independently derived later by Han [Han77]. Convergence rate issues
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and modifications to improve the convergence rate of sequential quadratic
programming algorithms and to avoid the Maratos’ effect (Exercise 5.3.9)
are discussed in Boggs, Tolle, and Wang [BTW82], Coleman and Conn
[CoC82a], [CoC82b], Gabay [Gab82], Mayne and Polak [MaP82], Panier
and Tits [PaT91], Bonnans, Panier, Tits, and Zhou [BPT92], and Bon-
nans [Bon89b], [Bon94]. Combinations of the linearization method and
the two-metric projection method of Section 3.4 have been proposed by
Heinkenschloss [Hei96]. Note that since the linearization method can min-
imize the nondifferentiable exact penalty function f(x)+ cP (x), it can also
be used to minimize

P (x) = max
{
g0(x), g1(x), . . . , gr(x)

}
,

which is a typical case of a minimax problem.
Exact differentiable penalty methods involving only x were introduced

by Fletcher [Fle70b]. Exact differentiable penalty methods involving both
x and λ were introduced by DiPillo and Grippo [DiG79]. The relation be-
tween these two types of methods, their utility for sequential quadratic pro-
gramming, and a number of variations were derived by Bertsekas [Ber82c]
(see also [Ber82a], Section 4.3, which contains a detailed convergence anal-
ysis). Extensions to inequality constraints are given by Glad and Polak
[GlP79], and Bertsekas [Ber82a]; see also Mukai and Polak [MuP75], Boggs
and Tolle [BoT80], and DiPillo and Grippo [DiG89]. Differentiable ex-
act penalty functions are used by Nazareth [Naz96], and Nazareth and Qi
[NaQ96] to extend the region of convergence of Newton-like methods for
solving systems of nonlinear equations.

Section 5.4: First order Lagrangian methods were introduced by Arrow,
Hurwicz, and Uzawa [AHU58]. They were also analyzed by Poljak [Pol70],
and Psenichnyi and Danilin [PsD75], whom we follow in our presentation.
Combinations of Lagrangian methods with the proximal algorithm were
proposed in more general form for convex programming problems by Chen
and Teboulle [ChT94], together with applications in decomposition of sep-
arable problems.

A Newton-like Lagrangian method for inequality constraints was pro-
posed by Wilson [Wil63]. For this method, a superlinear convergence rate
was established by Robinson [Rob74] under second order sufficiency con-
ditions, including strict complementarity. Superlinear convergence results
for a variant of the method were shown under weaker conditions by Wright
[Wri98] and Hager [Hag99]. Combinations of Lagrangian methods with
first order methods of multipliers were given by Glad [Gla79]. An exten-
sive discussion of Newton-like Lagrangian methods is given in the author’s
research monograph [Ber82a].
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