CHAPTER 3 Electric Flux Density, Gauss’s
Law, and Divergence
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fter drawing the fields described in the previous chapter and becoming fa-
miliar with the concept of the streamlines that show the direction of the force
on a test charge at every point, it is appropriate to give these lines a physi-
cal significance and to think of them as flux lines. No physical particle is projected
radially outward from the point charge, and there are no steel tentacles reaching out
to attract or repel an unwary test charge, but as soon as the streamlines are drawn on
paper there seems to be a picture showing “something” is present.
[t is very helpful to invent an electric flux that streams away symmetrically from
a point charge and is coincident with the streamlines and to visualize this flux wher-
ever an electric field is present.
This chapter introduces and uses the concept of electric flux and electric flux den-
sity to again solve several of the problems presented in Chapter 2. The work here turns
out to be much easier for problems that possess a high degree of spatial symmetry. B

31 ELECTRIC FLUX DENSITY

At this stage, the second basic field quantity in our study is introduced: the electric
[flux density, or electric displacement, given the symbol, D. This field can be con-
sidered a companion field to E, the electric field intensity, as it is usually (but not
always) parallel to E, and in the basic sense, they are both associated with electric
charge. The two fields are related. but they have totally different meanings: We have
already defined E in the context of finding forces on charges. but D is defined in
a more direct way to the charge that is generating E. The two fields are related to
each other through the properties of the medium in which they exist. This relation
is a study on its own and will be taken up in detail in Chapter 5. In this section, we
explain D in a historical context.
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34141 Faraday’s Experiments on Electric Displacement

About 1837, the director of the Royal Society in London, Michael Faraday, became very
interested in static electric fields and the effect of various insulating materials on these
fields. This problem had been bothering him during the previous ten years when he was
experimenting in his now-famous work on induced electromotive force, which we will
discuss in Chapter 9. With that subject completed, he had a pair of concentric metallic
spheres constructed, the outer one consisting of two hemispheres that could be firmly
clamped together. He also prepared shells of insulating material (or dielectric material, or
simply dielectric) that would occupy the entire volume between the concentric spheres.
His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive charge.

The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer sphere was separated carefully, using tools made of insulating
material in order not to disturb the induced charge on it, and the negative
induced charge on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude 10
the original charge placed on the inner sphere and that this was true regardless of the
dielectric material separating the two spheres. He concluded that there was some sort
of “displacement” from the inner sphere to the outer which was independent of the me-
dium; we now refer to this as displacement, displacement flux, or simply electric flux.

Faraday’s experiments also showed. of course, that a larger positive charge on the in-
ner sphere induced a correspondingly larger negative charge on the outer sphere, leading
to a direct proportionality between the electric flux and the charge on the inner sphere.
The constant of proportionality is dependent on the system of units involved, and we are
fortunate in our use of SI units, because the constant is unity. If electric flux is denoted
by ¥ (psi) and the total charge on the inner sphere by Q. then for Faraday’s experiment

¥=0

and the electric flux ¥ is measured in coulombs.

341.2 Electric Flux Density

More quantitative information can be obtained by considering an inner sphere of radius a
and an outer sphere of radius b, with charges of Q and —Q, respectively (Figure 3.1). The
paths of electric flux ¥ extending from the inner sphere to the outer sphere are indicated
by the symmetrically distributed streamlines drawn radially from one sphere to the other.

At the surface of the inner sphere, ¥ coulombs of electric flux are produced by
the charge Q(= W) coulombs distributed uniformly over a surface having an area of
4za® m?. The density of the flux at this surface is W/4za® or Q/4na® C/m?, and this is
an important new quantity.
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Metal Insulating or
conducting dielectric
spheres ~ material

Figure 34 The electric flux In the region between
a pair of charged concentric spheres. The direction
and magnitude of D are not functions of the dielec-
tric between the spheres.

Electric flux density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given the
letter D, which was originally chosen because of the alternate names of displacement
[flux density or displacement density. Electric flux density is more descriptive, how-
ever, and we will use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density”
class of vector fields, as opposed to the “force fields™ class, which includes the elec-
tric field intensity E. The direction of D at a point is the direction of the flux lines at
that point, and the magnitude is given by the number of flux lines crossing a surface
normal to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction
and has a value of

D| = Lﬂ,a,. (inner sphere)
r=a dra~
= £ —
= 4, (outer sphere)
=b 4mb*

and at a radial distance r, where a < r < b,

L (1)

If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q. it becomes a point charge in the limit, but the electric flux density at a
point » meters from the point charge is still given by (1), for Q lines of flux are sym-
metrically directed outward from the point and pass through an imaginary spherical
surface of area 47”.
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This result should be compared with Section 2.2, Eq. (9). the radial electric field
intensity of a point charge in free space,

E= Q -a,
4}7(‘0?’“
In free space, therefore,
D=¢,E (free space only) (2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of
a point charge. For a general volume charge distribution in free space, the discussion
in Section 2.3.2 resulted in

pudv
E=/.,—" _a ae o i 3
fml4E€0R1 R (free space only) (3)

This relationship was developed from the field of a single point charge. In a similar
manner, (1) leads to

[ pdy
vol 4}'[R2

agp 4)

and (2) is therefore true for any free-space charge configuration; we will consider (2)
as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point out
now that, for a point charge embedded in an infinite ideal dielectric medium, Fara-
day’s results show that (1) is still applicable, and thus so is (4). Equation (3) is not
applicable, however, and so the relationship between D and E will be slightly more
complicated than (2).

Because D is directly proportional to E in free space, it does not seem that it should
really be necessary to introduce a new symbol. We do so for a few reasons. First, D is as-
sociated with the flux concept, which is an important new idea. Second, the D fields we
obtain will be a little simpler than the corresponding E fields because €, does not appear.

D34. Given a 60-pC point charge located at the origin, find the total electric
flux passing through: (a) that portion of the sphere r = 26 cm bounded by 0 <
0< % and0 < ¢ < -g; (b) the closed surface defined by p = 26 cm and z = +26 cm;
(c) the plane z = 26 cm.

Ans. (@) 7.5 pC; (b) 60 pC; (¢) 30 pC
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D3.2. Calculate D in rectangular coordinates at point P(2, —3, 6) produced
by: (a) a point charge Q4 = 55 mC at Q(-2, 3, —6); (b) a uniform line charge
prg = 20 mC/m on the x axis; (¢) a uniform surface charge density pge =
120 pC/m? on the plane z = —5 m.

Ans. (a)6.38a, —9.57a, + 19.14a, nC/m*; (b) —212a, + 424a, pnC/m*; () 60a, pC/m*

3.2 GAUSS’S LAW

The results of Faraday’s experiments with the concentric spheres could be summed
up as an experimental law by stating that the electric flux passing through any im-
aginary spherical surface lying between the two conducting spheres is equal to the
charge enclosed within that imaginary surface. This enclosed charge is distributed on
the surface of the inner sphere, or it might be concentrated as a point charge at the
center of the imaginary sphere. However, because one coulomb of electric flux is
produced by one coulomb of charge, the inner conductor might just as well have been
a cube or a brass door key and the total induced charge on the outer sphere would still
be the same. Certainly the flux density would change from its previous symmetrical
distribution to some unknown configuration, but +Q coulombs on any inner conduc-
tor would produce an induced charge of —Q coulombs on the surrounding sphere. Go-
ing one step further, we could now replace the two outer hemispheres with an empty
(but completely closed) soup can. Q coulombs on the brass door key would produce
¥ = @ lines of electric flux and would induce —Q coulombs on the soup can.!

These generalizations of Faraday’s experiment lead to the following statement,
which is known as Gauss'’s law:

The electric flux passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has
ever produced, was actually not in stating the law as we have, but in providing a
mathematical form for this statement, which we will now obtain.

Imagine a distribution of charge, shown as a cloud of point charges in Figure 3.2,
surrounded by a closed surface of any shape. The closed surface may be the surface of
some real material, but more generally it is any closed surface we wish to visualize. If the
total charge is Q, then Q coulombs of electric flux will pass through the enclosing surface.
At every point on the surface the electric-flux-density vector D will have some value Dy,
where the subscript § merely reminds us that D must be evaluated at the surface, and Dg
will in general vary in magnitude and direction from one point on the surface to another.

Now, consider the nature of an incremental element of the surface. An incremen-
tal element of area AS is very nearly a portion of a plane surface, and the complete
description of this surface element requires not only a statement of its magnitude AS
but also of its orientation in space. In other words, the incremental surface element is a

VI it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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Figure 3.2 The electric flux density Ds at P arising
from charge Q. The total flux passing through AS is
D; - AS.

vector quantity. The only unique direction that may be associated with AS is the direc-
tion of the normal to that plane which is tangent to the surface at the point in question.
There are, of course, two such normals, and the ambiguity is removed by specifying
the outward normal whenever the surface is closed; “outward™ has a specific meaning.

At any point P, consider an incremental element of surface AS and let Dg make
an angle @ with AS, as shown in Figure 3.2. The flux crossing AS is then the product
of the normal component of D and AS,

AY = flux crossing AS = Dy ,orm AS = Dgcosf AS = Dg - AS

where we are able to apply the definition of the dot product developed in Chapter 1.
The total flux passing through the closed surface is obtained by adding the dif-
ferential contributions crossing each surface element AS,

Y= [a% = fuipea Dy S
surfuce

The resultant integral is a closed surface integral, and since the surface element
dS always involves the differentials of two coordinates, such as dx dy, p d¢ dp, or r*
sin @ df dg¢, the integral is a double integral. Usually only one integral sign is used
for brevity, and we will always place an § below the integral sign to indicate a surface
integral, although this is not actually necessary, as the differential dS is automatically
the signal for a surface integral. One last convention is to place a small circle on the
integral sign itself to indicate that the integration is to be performed over a closed
surface. Such a surface is often called a gaussian surface. We then have the mathe-
matical formulation of Gauss’s law,

Y= ?gSDs - dS = charge enclosed = Q (5

The charge enclosed might be several point charges, in which case

0=%0,

lllustrations|
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or a line charge,

0=/ prdL

or a surface charge,
0= fg,agdS (not necessarily a closed surface)

or a volume charge distribution,

Q - \.'ul’arafIJI

The last form is usually used, and we should agree now that it represents any or all
of the other forms. With this understanding, Gauss’s law may be written in terms of
the charge distribution as

SﬁsD_q ~dS = fml podv (6)

a mathematical statement meaning simply that the total electric flux through any
closed surface is equal to the charge enclosed.

To illustrate the application of Gauss’s law, let us check the results of Faraday’s ex-
periment by placing a point charge Q at the origin of a spherical coordinate system
(Figure 3.3) and by choosing our closed surface as a sphere of radius a.

Solution. We have, as before,

D= —Q? '
drr-
At the surface of the sphere,
DS = Q 54,
dra-

The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,

dS = r*sin@ dO d¢p = a”sind dO dep
or

dS = a’sinf df d¢ a,

The integrand is

a’sinf df dgpa, - a, = € Ginodo dep

Dy dy= dra’ 4

leading to the closed surface integral

=2 fo=r Q .
$=0 .4‘:1, ﬂslnﬂdyddj
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Figure 3.3 Applying Gauss's law
to the field of a point charge Q on
a spherical closed surface of radius
a. The electric flux density D is
everywhere normal to the spherical
surface and has a constant magni-
tude at every point on it.

where the limits on the integrals have been chosen so that the integration is carried
over the entire surface of the sphere once.” Integrating gives

2x 2n
0 AR Qo
.([] - (—cos6)f dip = A Zdp =0
and we obtain a result showing that Q coulombs of electric flux are crossing the
surface, as we should since the enclosed charge is Q coulombs.

D3.3. Given the electric flux density, D = 0.3/%a, nC/m® in free space:
(a) find E at point P(r = 2, 8 = 25°, ¢p = 90°); (b) find the total charge within
the sphere r = 3: (c) find the total electric flux leaving the sphere r = 4.

Ans. (a) 135.5a, V/m; (b) 305 nC; (c) 965 nC

D3.4. Calculate the total electric flux leaving the cubical surface formed by
the six planes x, v, z = :tS if the charge distribution is: (@) two point charges,
0.1 pCat(1,-2,3) and & |.1C at(—1, 2, —2); (b) a uniform line charge of 7 pC/m
atx=-2,y=3;(c)a umform surface charge of 0.1 |.|Cfm on the plane y = 3x.

Ans. (a) 0.243 pC; (b) 31.4 puC; (c) 10.54 uC

Animations

2 Note that if @ and ¢ both cover the range from 0 to 2, the spherical surface is covered twice,
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3.3 APPLICATION OF GAUSS’S LAW: SOME
SYMMETRICAL CHARGE DISTRIBUTIONS

We now consider how we may use Gauss's law,

0=¢.D-as

to determine Dy if the charge distribution is known. This is an example of an integral
equation in which the unknown quantity to be determined appears inside the integral.

The solution is easy if we can choose a closed surface which satisfies two
conditions:

1. Dyis everywhere either normal or tangential to the closed surface, so that Dg +
dS becomes either DdS or zero. respectively.

2. On that portion of the closed surface for which Dy - dS is not zero, Dg =
constant.

This allows the dot product to be replaced with the product of the scalars Dg and
dS, and then Dg can be brought outside the integral sign. The remaining integral is
then [ dS over that portion of the closed surface that D crosses normally, and this is
simply the area of this section of that surface. Only a knowledge of the symmetry of
the problem enables us to choose such a closed surface.

3.31 Point Charge Field

Consider a point charge Q at the origin of a spherical coordinate system and decide
on a suitable closed surface that will meet the two requirements previously listed.
The surface in question is obviously a spherical surface, centered at the origin and of
any radius r. Dg is everywhere normal to the surface, and Dy has the same value at
all points on the surface.

Then we have, in order,

Q = .¢?5‘ DS dS = ﬁﬁph qub

=2 =
=Ds@  dS =D f 2 sinfdOdg
=0

sph =0
= 411':‘2[)_5-
and therefore
0
De=
S dnr?

Because r may have any value and because Dy is directed radially outward,

D=L,a, E:L,a,
4}1’}‘“ 4}1’6‘“?‘“
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which agrees with the results of Chapter 2. The example is a trivial one, and the
objection could be raised that we had to know that the field was symmetrical and
directed radially outward before we could obtain an answer. This is true, and that
leaves the inverse-square-law relationship as the only check obtained from Gauss’s
law. The example does, however, serve to illustrate a method which can be applied
to other problems, including several to which Coulomb’s law is almost incapable of
supplying an answer.

3.3.2 Line Charge Field

As a second example, consider again the uniform line charge distribution p; lying
along the z axis and extending from —oo to +co. We must first know the symmetry
of the field, and this knowledge is complete when the answers to these two questions
are known:

1. With which coordinates does the field vary (or of what variables is D a function)?
2. Which components of D are present?

In using Gauss’s law, it is not a question of using symmetry to simplify the
solution, for the application of Gauss’s law depends on symmetry, and if we cannot
show that symmetry exists then we cannot use Gauss's law to obtain a solution. The
preceding two questions now become “musts.”

From our previous discussion of the uniform line charge, it is evident that only
the radial component of D is present, or

D=D,a

PR

and this component is a function of p only.

D,=fip)

The choice of a closed surface is now simple, for a cylindrical surface is the only
surface to which D, is everywhere normal, and it may be closed by plane surfaces
normal to the z axis. A closed right circular cylinder of radius p extending from z =
0 1o z = L is shown in Figure 3.4.

We apply Gauss’s law,

@= ﬁ:yIDS “dS = Dsfsirlcsds + 0./[0[10’5 * Ufbullnmds

= Dsl:j/”'hpd(ﬂ dz = Dg2npL

=}

and obtain

i B
Ds=D,= 2rpL

In terms of the charge density p,, the total charge enclosed is

Q=p.L

57
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Line charge S

=
)

N
- -

N
hN
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Figure 3.4 The gaussian
surface for an infinite uniform
line charge s a right circular
cylinder of length L and radius
p. D is constant in magnitude
and everywhere perpendicular
to the cylindrical surface; D is
parallel to the end faces.

giving
= Pr
£ 2mp
or
= o
E'r’ - 2n €

Comparing with Section 2.4, Eq. (16). shows that the correct result has been ob-
tained and with much less work. Once the appropriate surface has been chosen, the
integration usually amounts only to writing down the area of the surface at which D
is normal.

3.3.3 Coaxial Cable Field

The problem of a coaxial cable is almost identical to that of the line charge and is an
example that is extremely difficult to solve from the standpoint of Coulomb’s law.
Suppose that we have two coaxial cylindrical conductors, the inner of radius a and
the outer of radius b, each infinite in extent (Figure 3.5). We will assume a charge
distribution of pg on the outer surface of the inner conductor.

Symmetry considerations show us that only the D, component is present and
that it can be a function only of p. A right circular cylinder of length L and radius p,
where a < p < b, is necessarily chosen as the gaussian surface, and we quickly have

0 = Dg2aplL



CHAPTER 3 Electric Flux Density, Gauss's Law, and Divergence

Conducting
cyli ;

p=a
rFigure 3.2 | e two Coaxial
cylindrical conductors forming
a coaxial cable provide an
electric flux density within the
cylinders, given by D, = aps/p.

The total charge on a length L of the inner conductor is

L p2r
0= [zﬂ Ln psa dp dz = 2zaLps
from which we have

=485 —2%Ps
=3 D= oA (a<p<b)

This result might be expressed in terms of charge per unit length because the inner
conductor has 2z apg coulombs on a meter length, and hence, letting p; = 2z apy,

Dy

=PL,
2mp " lllustrations

and the solution has a form identical with that of the infinite line charge.

Because every line of electric flux starting from the charge on the inner cylinder
must terminate on a negative charge on the inner surface of the outer cylinder. the
total charge on that surface must be

Q()uler eyl = _Z‘TaLpSIinner cyl
and the surface charge on the outer cylinder is found as

Zﬂ'prS.ouler eyl = _ZKHL)()S.inner cyl

or

= i
5. outer eyl = _BPS‘inner eyl

What would happen if we should use a cylinder of radius p, p > b, for the gaussian
surface? The total charge enclosed would then be zero, for there are equal and oppo-
site charges on each conducting cylinder. Hence
0= Dg2rpL (p>b)
Ds=0 (p>Db)
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An identical result would be obtained for p < a. Thus the coaxial cable or capacitor
has no external field (we have proved that the outer conductor is a “shield”), and
there is no field within the center conductor.

Our result is also useful for a finite length of coaxial cable, open at both ends,
provided the length L is many times greater than the radius b so that the nonsymmet-
rical conditions at the two ends do not appreciably affect the solution. Such a device
is also termed a coaxial capacitor. Both the coaxial cable and the coaxial capacitor
will appear frequently in the work that follows,

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an
outer radius of 4 mm. The space between conductors is assumed to be filled with air.
The total charge on the inner conductor is 30 nC. We wish to know the charge density
on each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

Qinncrcyl _ 30x 1077
2ral  22(107%)(0.5)

=9.55uC/m?

P8,innercyl =

The negative charge density on the inner surface of the outer cylinder is

Quumrcyl -30x 107Y
05 outercvl = = = = —2.39uC/m?
P58 outercyl 27bL 27(4 X ]0_3)(0‘5) H
The internal fields may therefore be calculated easily:
_apg _ 1073(9.55 x 107%) _9.55 )
D,= — 5 = nC/m

and

D, -9
0 8854x10712, P

Both of these expressions apply to the region where 1 < p <4 mm. For p < 1 mm or
p >4 mm, E and D are zero.

D3.5. A point charge of 0.25 pC is located at r = 0, and uniform surface
charge densities are located as follows: 2 mC/m? at » = 1 ¢cm, and —0.6 mC/m>
at r = 1.8 cm. Calculate D at: (a) r=0.5cm; (b) r= 1.5 cm; (¢) r=2.5 cm.
(d) What uniform surface charge density should be established at r = 3 cm to
cause D=0at r= 3.5 cm?

Ans. (a) 796a, pC/m?; (b) 977a, pC/m?; (c) 40.8a, pC/m?; (d) —28.3 pC/m*
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3.4 GAUSS’S LAW IN DIFFERENTIAL
FORM: DIVERGENCE

We will now apply the methods of Gauss’s law to a slightly different type of problem—
one that may not possess any symmetry at all. At first glance, it might seem that our
case is hopeless, for without symmetry, a simple gaussian surface cannot be chosen
such that the normal component of D is constant or zero everywhere on the surface.
Without such a surface, the integral cannot be evaluated. There is only one way to
circumvent these difficulties and that is to choose such a very small closed surface
that D is almost constant over the surface, and the small change in D may be ade-
quately represented by using the first two terms of the Taylor’s-series expansion for
D. The result will become more nearly correct as the volume enclosed by the gaussian
surface decreases. and we intend eventually to allow this volume to approach zero.
This example also differs from the preceding ones in that we will not obtain the
value of D as our answer but will instead receive some extremely valuable informa-
tion about the way D varies in the region of our small surface. This leads directly
to one of Maxwell’s four equations, which are basic to all electromagnetic theory.

3.41 Gauss’s Law Applied to a Differential Volume Element

Consider any point P. shown in Figure 3.6, located by a rectangular coordinate sys-
tem. The value of D at the point P may be expressed in rectangular components, Dy, =
Dya, + Dya, + D.ya.. We choose as our closed surface the small rectangular box,
centered at P, having sides of lengths Ax, Ay, and Az, and apply Gauss’s law,

_?SSD'dS=Q

In order to evaluate the integral over the closed surface, the integral must be
broken up into six integrals, one over each face,

ﬁgD dS = front + back =+ left + right + flup + .[bullum

Consider the first of these in detail. Because the surface element is very small, D
is essentially constant (over this portion of the entire closed surface) and

ffmnt = Dl'mm *A S[rom
=Dgon - AyAza,
=D x,front A)" Az

where we have only to approximate the value of D, at this front face. The front face
is at a distance of Ax/2 from P, and hence

D, ont =Dy + %—‘ X rate of change of D, with x

Ax oD X

=Dy+ 3 o

61



62 ENGINEERING ELECTROMAGNETICS

t

P(x,y,2)
D= Do :‘Dxl] a, +Dy0 ay + D:o a,

A

x

Figure 3.6 A differential-sized gaussian surface
about the point Pis used to investigate the space
rate of change of D in the neighborhood of P.

where D is the value of D, at P, and where a partial derivative must be used to ex-
press the rate of change of D, with x, as D, in general also varies with y and z. This
expression could have been obtained more formally by using the constant term and
the term involving the first derivative in the Taylor’s-series expansion for D, in the

neighborhood of P.
We now have

S

MBD‘-) e
(D_\(]+ AT A}A&

Consider now the integral over the back surface,

and

giving

D,\'.bm.'k =D T

fbmk = Diack * ASpack

=Dy - (—AyAza,)
== Dx.lmck A_V Az

A oD,
2 .0%

” Ax 9D\ ,
.[b:tck_(_Dx“-’-T dx )A}AZ
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If we combine these two integrals, we have

./fmm fb;nk ‘ AX AvAz

By exactly the same process we find that

it = S dc v

and

./;Ui'l fl‘mllnm I = A)‘ AyAz

and these results may be collected to yield
aD, (3D_,- aD. .
§D-as=0= ( gttt A )

where Av = AxAyAz. The expression is an approximation which becomes better
as Av becomes smaller, and in the following section we shall let the volume Av
approach zero. For the moment, we have applied Gauss’s law to the closed surface
surrounding the volume element Av and have as a result the approximation (7) stat-
ing that

; oD, 0Dy oD,
Charge enclosed in volume Ay = a—'+ 0—+7 X volume Av (8)
X 'y Z

Find an approximate value for the total charge enclosed in an incremental volume of
10~ m? located at the origin, if D= ¢ sinya, — e cos y a, + 2za. C/m?,

Solution. We first evaluate the three partial derivatives in (8):

aD,

ox

ab,

aD.

dz
At the origin, the first two expressions are zero, and the last is 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2Av. If
Avis 107" m?, then we have enclosed about 2 nC.

=—e 'siny
g
=e 'siny

=2
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D3.6. In free space, let D = 8xyz*a, + 4xzz4a}. + 16277 a. pC/m?. (a) Find
the total electric flux passing through the rectangular surface z =2, 0 < x <
2, 1 <y <3, in the a, direction. (b) Find E at P(2, —1, 3). (¢) Find an approxi-
mate value for the total charge contained in an incremental sphere located at P

(2, —1, 3) and having a volume of 1072 m?.

Ans. (a) 1365 pC; (b) —146.4a, + 146.4a, — 195.2a_ V/m: (¢) —2.38 x 107! C

Interactives

3.4.2 Divergence

We next obtain an exact relationship from (7), by allowing the volume element Av to
shrink to zero. We write this equation as

D-dS
= lim $sD-dS _ itk -2 <5, 9)

Av—=0  Av T A-0Av T

oD, 0D, dD.
dx dy dz
in which the charge density, p,, is identified in the second equality.
The methods of the previous section could have been used on any vector A to
find 55,;A - dS for a small closed surface, leading to

dA, 4 A-dS
(dA"' 2 EJA‘_) = lim —565 (10)

ox Ty Tz ) S anT Ay

where A could represent velocity, temperature gradient, force, or any other vector
field.

The operation in Eq. (10) appeared so many times in physical investigations in
the nineteenth century that it received a descriptive name, divergence. The diver-
gence of A is defined as

Di FA = divA = jigg PA B
ivergence of A = divA = lim ———— (11)

and is usually abbreviated div A. The physical interpretation of the divergence of a
vector is obtained by describing carefully the operations implied by the right-hand
side of (11), where we shall consider A to be a member of the flux-density family of
vectors in order to aid the physical interpretation.

The divergence of the vector flux density A is the outflow of flux from a small closed
surface per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often useful
in obtaining qualitative information about the divergence of a vector field without re-
sorting to a mathematical investigation. For instance, let us consider the divergence of
the velocity of water in a bathtub after the drain has been opened. The net outflow of
water through any closed surface lying entirely within the water must be zero, for water
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is essentially incompressible, and the water entering and leaving different regions of

the closed surface must be equal. Hence the divergence of this velocity is zero.

If, however, we consider the velocity of the air in a tire that has just been punc-
tured by a nail, we realize that the air is expanding as the pressure drops, and that
consequently there is a net outflow from any closed surface lying within the tire. The
divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that vector
quantity at that point. Similarly, a negative divergence indicates a sink. Because the
divergence of the water velocity above is zero, no source or sink exists.® The expand-
ing air, however, produces a positive divergence of the velocity, and each interior
point may be considered a source.

Writing (9) with our new term, we have

aD, D.
divD= (ad? + d— + %z_) (rectangular) (12)

This expression is again of a form that does not involve the charge density. It is the
result of applying the definition of divergence (11) to a differential volume element
in rectangular coordinates.

If a differential volume unit p dp d¢p dz in cylindrical coordinates, or /> sin
6 dr df d¢p in spherical coordinates, had been chosen, expressions for divergence
involving the components of the vector in the particular coordinate system and in-
volving partial derivatives with respect to the variables of that system would have
been obtained. These expressions are obtained in Appendix A and are given here for
convenience:

1 0Dy dD

P op (cylindrical) (13)

i Dk
dWD_Pd (pD,) +

D,f,
r smf? op

divD=-L 92p) 4+ Humo Dy) + —— (spherical) | (14)
)

ar rsind d

These relationships are also shown at the end of this book for easy reference.

It should be noted that the divergence is an operation which is performed on a
vector, but that the result is a scalar. We should recall that, in a somewhat similar way,
the dot or scalar product was a multiplication of two vectors which yielded a scalar.

For some reason, it is a common mistake on meeting divergence for the first
time to impart a vector quality to the operation by scattering unit vectors around in

*Having chosen a differential element of volume within the water, the gradual decrease in water level
with time will eventually cause the volume element to lie above the surface of the water. At the instant
the surface of the water intersects the volume element, the divergence is positive and the small volume is
a source. This complication is avoided above by specifying an integral point.
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the partial derivatives. Divergence merely tells us how much flux is leaving a small
volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example at
the end of Section 3.4.

Find div D at the originif D =¢™*sinyax — e " cos ya, + 2za..
Solution. We use (10) to obtain

dD.\' dD." g aD:.
ox ' dy ' 0z
= —e 'siny+e'siny+2=2

divD =

The value is the constant 2, regardless of location.
If the units of D are C/m?, then the units of div D are C/m?. This is a volume
charge density, a concept discussed in the next section.

D3.7. In cach of the following parts, find a numerical value for div D ai the
point specified: (@) D = (2xyz — y*)a, + (x°z — 2xy)a, + x’ya, C/m* at Py(2,
3,—1): (b) D =2pz" sin® ¢ a, + pz° sin 24 &, + 2p*z sin® ¢p a. C/m* at Py(p =
2.p=110%z=—1); (c) D=2rsin @ cos ¢p a, + r cos & cos ¢h a; — r sin cﬁa,,;
C/m? at P(r = 1.5, 0 =30°, ¢p = 50°).

Ans. (a) —10.00; (b) 9.06; (¢) 1.29

3.4.3 Maxwell’s First Equation: Gauss’s Law in Point Form

Finally, we can combine Egs. (9) and (12) and form the relation between electric flux
density and charge density:

divD=p, (15)

This is the first of Maxwell’s four equations as they apply to electrostatics and
steady magnetic fields, and it states that the electric flux per unit volume leaving a
vanishingly small volume unit is exactly equal to the volume charge density there.
This equation is aptly called the point form of Gauss’s law. Gauss’s law relates the
flux leaving any closed surface to the charge enclosed, and Maxwell’s first equation
makes an identical statement on a per-unit-volume basis for a vanishingly small vol-
ume, or at a point. Because the divergence may be expressed as the sum of three par-
tial derivatives, Maxwell’s first equation is also described as the differential-equation
form of Gauss’s law, and conversely, Gauss’s law is recognized as the integral form
of Maxwell’s first equation.
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As a specific illustration, let us consider the divergence of D in the region about
a point charge Q located at the origin. We have the field

p=_2

—a,
4rr? "’

and use (14), the expression for divergence in spherical coordinates:
| 0Dy
rsiné d¢

(r’D,) + 1 i{Dﬂsinﬁ} -

v =L
divP = rsinf 00

9
rl dr

Because Dy and D, are zero, we have
: 1 d(_z Q ) i
divD=—=+(r*"——=) =0 itr#0
r2dr\’ 4z ,? Wrs0

Thus, p, = 0 everywhere except at the origin, where it is infinite.

The divergence operation is not limited to electric flux density: it can be applied
to any vector field. We will apply it to several other electromagnetic fields in the
coming chapters.

D3.8. Determine an expression for the volume charge density associated with
; dxy 2 2z :

each D field: () D = ;" a, + 2'; a — 2 ya:; (b)D=zsinga,+zcosda,+

psinga_ (c) D =sin@sin ¢ a, + cos O sin ¢ ay + cos ¢ a,.

2
Z

Ans. 2 (2 + ), 0; 0,

67

3.5 DIVERGENCE THEOREM

Gauss’s law for the electric field as we have used it is a specialization of what is
called the divergence theorem in field theory. This general theorem is applied in other
ways to different problems in physics, as well as to a few more in electromagnetics.
In this section, we develop this broader perspective and demonstrate the use of the
theorem in simplifying some otherwise complicated problems.

3.541 The Del Operator

As divergence is an operation on a vector yielding a scalar result, just as the dot prod-
uct of two vectors gives a scalar result, it seems possible that we can find something
that may be dotted formally with D to yield the scalar

oD, | oD, L 9D
dx dy 07

Obviously, this cannot be accomplished by using a dot product; the process must be
a dot operation.
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With this in mind, we define the del operator V as a vector operator,

s B o B B
Vv rh" +0va +64a- (16)

Similar scalar operators appear in several methods of solving differential equa-
tions where we often let D replace d/dx, D* replace d*/dx”, and so forth.* V is treated
in every way as an ordinary vector with the one important exception that partial
derivatives result instead of products of scalars.

3.5.2 Obtaining Divergence with the Del Operator
Consider the operation V + D, signifying

.D=(2 d O.a .
Vv D_(d a, +6 a, +a a) (Dya, + D,a, + D.a_)
We first consider the dot products of the unit vectors, discarding the six zero

terms, and obtain the result that we recognize as the divergence of D:

oD, D.
9D, L+ = =div(D)

V‘D=E+W+ 9z

The use of V + D is much more prevalent than that of div D, although both
usages have their advantages. Writing V - D allows us to obtain simply and quickly
the correct partial derivatives, but only in rectangular coordinates, as we will see.
On the other hand, div D is an excellent reminder of the physical interpretation of
divergence. We will use the operator notation V - D from now on to indicate the
divergence operation.

The vector operator V is used not only with divergence, but also with several
other very important operations that appear later. One of these, the gradient, is Vu,
where i is any scalar field, and it leads to

d d du du du

_ (0 d a du du du
th—(aa+ava +da)”_c1xa+da+0a'

The V operator does not have a specific form in other coordinate systems. If we
are considering D in cylindrical coordinates, then V - D still indicates the divergence
of D, or

ch, 492 6D_
P op
where this expression has been taken from Section 3.5. We have no form for V itself
to help us obtain this sum of partial derivatives. This means that Vu, as yet unnamed
but easily written in rectangular coordinates, cannot be expressed by us at this time
in cylindrical coordinates. Such an expression will be obtained when Vi is defined
in Chapter 4.

V- D—pa)(p!,,)+

*This scalar operator D, which will not appear again, is not to be confused with the electric flux density.
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3.5.3 Divergence Theorem

We close the treatment of divergence by presenting a theorem that brings the discus-
sion full circle, the divergence theorem. This theorem applies to any vector field for
which the appropriate partial derivatives exist, although it is easiest for us to develop
it for the electric flux density. We have actually obtained it already and now have
little more to do than point it out and name it, for starting from Gauss’s law, we have

§D-ds=0=[ pdv=[ V-Dav

The first and last expressions constitute the divergence theorem,

jﬁqD-dS:fmJV-de (17)

which may be stated as follows:

The integral of the normal component of any vector field over a closed surface is equal
to the integral of the divergence of this vector field throughout the volume enclosed by
the closed surface.

The divergence theorem is also known as Gauss's theorem, and in fact Gauss’s
law as we have used it is nothing more than an application of the divergence theorem
to electrostatics. Again, we emphasize that the theorem is true for any vector field, and
we will have occasion later to apply it to several different fields. Its benefits derive from
the fact that it relates a triple integration throughout some volume to a double integra-
tion over the surface of that volume. For example, it is much easier to look for leaks in
a bottle full of some agitated liquid by inspecting the surface than by calculating the
velocity at every internal point. It should also be pointed out that Eq. (17), as applied to
the electric flux density, is Maxwell’s first equation in integral form.

The divergence theorem becomes obvious physically if we consider a volume
v, shown in cross section in Figure 3.7, which is surrounded by a closed surface S.

, _ Closed surface §
| | .
‘q

Volume v

Figure 3.7 The divergence theorem states that the
total flux crossing the closed surface is equal to the
integral of the divergence of the flux density through-
out the enclosed volume. The volume is shown here in
cross section.
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Division of the volume into a number of small compartments of differential size and
consideration of one cell show that the flux diverging from such a cell enters, or con-
verges on, the adjacent cells unless the cell contains a portion of the outer surface. In
summary, the divergence of the flux density throughout a volume leads, then, to the
same result as determining the net flux crossing the enclosing surface.

Evaluate both sides of the divergence theorem for the field D = 2xva, + .tza_‘. C/m? and the
rectangular parellelepiped formed by the planesx=0and |,y =0and 2, and z= 0 and 3.

Solution. Evaluating the surface integral first, we note that D is parallel to the sur-
faces at z=0and z = 3, so D - dS = 0 there. For the remaining four surfaces we have

?gsD *dS = ./: 42 (D)= * (—dy dz 3_‘.)+1;3 j;z (D)., - (dvdz a,)
+j”'3 A' (D)o " (—dxdz a,) +£3 _/”‘I (D), * (dx dz a,)

= [ [[@otvic+ [ [[Dcidsde
_/n-J -/n‘ | (By), SRt _[ 3 _4‘ | (Dy) _,dx dz

However, (D,),—o = 0, and (Dy),—y = (D,),~>, which leaves only
yf . /-3 2 3 2_)
D-as= [ [ 0ocavdz=[ [2vdya
3
= ’( 4dz=12

. —ij" i -2y — ]
Y D_ax(..,\_»)+av(»\ ) =2y

Since

the volume integral becomes

o VoDdv= LSJ‘;:]”‘IZ)'G‘J:d_\-‘d:: /jf 2vdydz
=f:4d;=12

and the check is accomplished. Remembering Gauss’s law, we see that we have also
determined that a total charge of 12 C lies within this parallelepiped.

D3.9. Given the field D = 6p sin%q& a,+ 1.5p cos%qﬁ a, C/m’. evaluate both
sides of the divergence theorem for the region bounded by p =2. ¢ =0, ¢p =
m,z=0,and z=5.

Ans. 225; 225




CHAPTER 23 FElectric Flux Density, Gauss's Law, and Divergence

REFERENCES

1.

5.

Kraus, I. D., and D. A. Fleisch. Electromagnetics. 5th ed. New York: McGraw-Hill,
1999. The static electric field in free space is introduced in Chapter 2.

Plonsey, R., and R. E. Collin. Principles and Applications of Electromagnetic Fields.
New York: McGraw-Hill, 1961. The level of this text is somewhat higher than the one
we are reading now, but it is an excellent text to read next. Gauss’s law appears in the
second chapter.

Plonus, M. A. Applied Electromagnetics. New York: McGraw-Hill, 1978. This

book contains rather detailed descriptions of many practical devices that illustrate
electromagnetic applications. For example, see the discussion of xerography on

pp. 95-98 as an electrostatics application.

Skilling, H. H. Fundamentals of Electric Waves. 2d ed. New York: John Wiley & Sons,
1948. The operations of vector calculus are well illustrated. Divergence is discussed on
pp. 22 and 38. Chapter 1 is interesting reading.

Thomas, G. B., Ir.,, and R. L. Finney. (See Suggested References for Chapter 1.) The
divergence theorem is developed and illustrated from several different points of view on
pp. 976-980.

CHAPTER 3 PROBLEMS

3.1 Suppose that the Faraday concentric sphere experiment is performed

in free space using a central charge at the origin, @, and with
hemispheres of radius a. A second charge Q- (this time a point charge)
is located at distance R from Q,, where R > a. (a) What is the force
on the point charge before the hemispheres are assembled around Q,?
(b) What is the force on the point charge after the hemispheres are
assembled but before they are discharged? (c) What is the force on the
point charge after the hemispheres are assembled and after they are
discharged? (d) Qualitatively, describe what happens as O, is moved
toward the sphere assembly to the extent that the condition R > a is no
longer valid.

320  Anelectric field in free space is E = (5z°/¢;)a. V/m. Find the total charge

contained within a cube, centered at the origin, of 4-m side length, in which
all sides are parallel to coordinate axes (and therefore each side intersects
an axis at + 2).

331 Consider an electric dipole in free space, consisting of point charge g at

location z = +d/2, and point charge —q at location z = —d/2. The electric
field intensity in the xy plane is (see Problem 2.7):
- —qd a,
dreylp® + (dr2)% 7
where p is the radius from the origin in cylindrical coordinates.
(a) Determine the net electric flux associated with this field that penetrates
the xy plane. (b) Interpret your result as it relates to Gauss’s law.

Quizzes

4
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34l

38l

391

3100

3114

3121

An electric field in free space is E = (5zey) a. V/m. Find the total charge
contained within a sphere of 3-m radius, centered at the origin.

A volume charge distribution in free space is characterized by the density

P = —ﬁ—exp(—izl /d)

T 2Ad
where d is a distance along z, A is the area of a surface parallel to the
xy plane, and ¢ is a fixed charge quantity. The charge distribution exists
everywhere. (a) Find the electric field intensity, E, everywhere. (b) What is
the interpretation of ¢?

In free space, a volume charge of constant density p, = p, exists within the region
—00 < X < 00, —00 <y < 00, and —d/2 < z < d/2. Find D and E everywhere.

A spherically symmetric charge distribution in free space is characterized
by the charge density
= qbexp(—br} C/m? (0<r<oo)

v 2
i

(a) Find the electric field intensity, E(r), everywhere. (b) Find the total
charge present.

Use Gauss’s law in integral form to show that an inverse distance field in
spherical coordinates, D = Aa,/r, where A is a constant, requires every
spherical shell of 1 m thickness to contain 4zA coulombs of charge. Does
this indicate a continuous charge distribution? If so, find the charge density
variation with r.

A sphere of radius a in free space contains charge of density p, = p, /a,
where p;, is a constant. (a) Find the electric field intensity, E;, inside the
sphere. (b) Find the electric field intensity, E;;, outside the sphere. (¢) A
spherical shell of radius b is positioned concentrically around the sphere.
What surface charge density, p,, must exist on the shell so that the electric
field at locations r > b is zero? (d) What electrostatic force per unit area is
exerted by the solid sphere on the spherical shell?

An infinitely long cylindrical dielectric of radius » contains charge within
its volume of density p, = ap®, where a is a constant. Find the electric field
strength, E, both inside and outside the cylinder.

Consider a cylindrical charge distribution having infinite length in

z. but which has a radial dependence in charge density given by the
gaussian, p,(p) = p|,exp[—(p/b)2 ]. () Find the electric field intensity, E,

at large radii, p >> b. This enables the enclosed charge integral in Gauss’s
law to be approximated using an infinite upper limit in radius. (b) Compare
your result to the field outside a charged cylinder of radius / containing
uniform charge density p.

The sun radiates a total power of about 3.86 x 10%° watts (W). If we

imagine the sun’s surface to be marked off in latitude and longitude and
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3.141

3.151

3161

3171
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assume uniform radiation, (@) what power is radiated by the region lying
between latitude 50° N and 60° N and longitude 12° W and 27° W?

(b) What is the power density on a spherical surface 93,000,000 miles
from the sun in W/m??

Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge
densities of 20 nC/m?, —4 nC/m?, and py, respectively. (a) Find D at r = 1,
3, and 5 m. (b) Determine pg such that D =0at r =7 m.

A certain light-emitting diode (LED) is centered at the origin with its
surface in the xy plane. At far distances, the LED appears as a point, but the
glowing surface geometry produces a far-field radiation pattern that follows
a raised cosine law: that is, the optical power (flux) density in W/m? is
given in spherical coordinates by

Pi=Py%la,  Wim?
2nr-

where @ is the angle measured with respect to the direction that is normal
to the LED surface (in this case, the z axis), and r is the radial distance
from the origin at which the power is detected. (@) In terms of Py, find the
total power in watts emitted in the upper half-space by the LED. (b) Find
the cone angle, #,, within which half the total power is radiated, that is,
within the range 0 < 0 < 6. (¢) An optical detector, having a 1-mm? cross-
sectional area, is positioned at » = 1 m and at & = 45°, such that it faces the
LED. If one nanowatt is measured by the detector, what (to a very good
estimate) is the value of P?

Volume charge density is located as follows: p, = 0 for p < 1 mm and for
p>2mm, p, =4p pC/m’ for 1 < p <2 mm. (a) Calculate the total charge
in the region 0 < p < p;, 0 <z <L, where 1 < p; <2 mm. (b) Use Gauss’s
law to determine D, at p = p,. (c) Evaluate D, at p = 0.8 mm, 1.6 mm, and
2.4 mm.

An electric flux density is given by D = Dy, a,, where D, is a given
constant. (a) What charge density generates this field? () For the specified
field, what total charge is contained within a cylinder of radius a and height
b, where the cylinder axis is the z axis?

In a region having spherical symmetry, volume charge is distributed
according to:

pu(r) ={J0M C/m’
)

Find the surfaces on which E = ().

State whether the divergence of the following vector fields is positive,
negative, or zero: (a) the thermal energy flow in J/(m® — s) at any point in a
freezing ice cube; (b) the current density in A/m? in a bus bar carrying direct

73
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3.191

3201

32114

anl

3.231

3.241

current; (¢) the mass flow rate in kg/(m? — s) below the surface of water in a
basin, in which the water is circulating clockwise as viewed from above.

A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space.
Let D = xa, C/m’. Use the results of Section 3.4 to estimate the net electric
flux leaving the spherical surface.

A radial electric field distribution in free space is given in spherical
coordinates as:

_ T
E'__3£(, o (r<a
(2a* - r?)py
E2=—,,——a, (ﬂgrgb)
35‘;]!"_
(2a’=b*)py
E;=———a, (r=5b)
3(‘{;1"-

where py, a, and b are constants. (a) Determine the volume charge density
in the entire region (0 < r < oo0) by the appropriate use of V- D = p,. (b) In
terms of given parameters, find the total charge, Q, within a sphere of
radius r where r > b.

In a region exhibiting spherical symmetry, electric flux density is found
tobe D, =pyr/3a,(0<r<a).D,=0(a<r<b) and D; = (a’py)/(3r)
a, (r < b). (a) Find the charge configuration that would produce the given
field. (b) What total charge is present?

(a) A flux density field is given as F; = 5a.. Evaluate the outward flux

of F, through the hemispherical surface, r=a,0 <8 < 2/2,0 < ¢p < 2nr.

(h) What simple observation would have saved a lot of work in part a?

(c) Now suppose the field is given by F, = 5za.. Using the appropriate
surface integrals, evaluate the net outward flux of F, through the closed
surface consisting of the hemisphere of part @ and its circular base in the xy
plane. (d) Repeat part ¢ by using the divergence theorem and an appropriate
volume integral.

(a) A point charge Q lies at the origin. Show that div D is zero everywhere
except at the origin. (b) Replace the point charge with a uniform volume
charge density p,, for 0 < r < a. Relate p,, to O and a so that the total
charge is the same. Find div D everywhere.

In a region in free space, electric flux density is found to be

IA

p= Pt 2d)a, C/m*>  (-2d <z<0)
—-polz—2d)a. C/m?*  (0<z<2d)

Everywhere else, D = 0. (a) Using V - D = p,, find the volume charge
density as a function of position everywhere. (b) Determine the electric
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flux that passes through the surface defined by =0, —a<x<a,—-b <y
< b. (¢) Determine the total charge contained within the region —a < x <
a,—b <y <b,—d <z <d. (d) Determine the total charge contained within
theregion —a<x<a,-b<y<h 0<z<2d.

Within the spherical shell, 3 < r < 4 m, the electric flux density is given
as D = 5(r — 3)* a, C/m’. (@) What is the volume charge density at r = 4?
(b) What is the electric flux density at » = 47 (¢) How much electric flux
leaves the sphere r = 47 (d) How much charge is contained within the
sphere r =47

If we have a perfect gas of mass density p,, ke/m®, and we assign a velocity
U m/s to each differential element, then the mass flow rate is p,, U kg/

(m? — 5). Physical reasoning then leads to the continuity equation, V -
(p,,U) = —adp,for. (a) Explain in words the physical interpretation of this
equation. (b) Show that ﬁ‘.p,,,U +dS = —dM/dr, where M is the total mass
of the gas within the constant closed surface S, and explain the physical
significance of the equation.

Consider a slab of material containing a volume charge distribution
throughout. The slab is of length d in the z direction, and its dimensions in
x and y represent a cross-sectional area of A. Free space permittivity exists
throughout. The electric field in the slab is given by

E= &exp(-a") a. V/m

E£na b :

where pj, is a positive constant. (a) Find the volume charge density p, in the
slab. (b) Find the total charge in the slab. (c) Verify your result for part b by
evaluating the net outward flux of D through the slab surfaces.

Repeat Problem 3.8, but use V + D = p, and take an appropriate volume
integral.

In the region of free space that includes the volume 2 < x, v, z < 3,

D= j(‘vz a,+xza, — 2xy a:) C/m?. (a) Evaluate the volume integral side
of the divergence theorem for the volume defined here. (b) Evaluate the
surface integral side for the corresponding closed surface.

(a) Use Maxwell’s first equation, V + D = p,, to describe the variation of
the electric field intensity with x in a region in which no charge density
exists and in which a nonhomogeneous dielectric has a permittivity

that increases exponentially with x. The field has an x component only;

() repeat part a, but with a radially directed electric field (spherical
coordinates) in which again p, = 0, but in which the permittivity decreases
exponentially with r,

Given the flux density D =1 cos(260)a, C/m?, use two different methods
to find the total charge within the region 1 <r<2m, 1 <#<2rad, | <¢
< 2 rad.
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