第一章 函数与极限

第一节 函 数

一、教学基本要求

- 1. 掌握一元函数的概念.
- 2. 了解函数的特性.
- 3. 了解反函数的概念.

二、答疑解惑

1. 单调函数必存在反函数,不单调的函数是否一定不存在反函数?

答 不是. 函数单调只是它存在反函数的一个充分条件,并不是必要条件. 从映射的角度来说,函数 f 是否存在反函数,取决于 f 是否为其定义域 D 到值域 f(D) 上的单射,如果是的话,那么 f 就存在反函数,否则就不存在反函数. 不单调的函数,也可能是 D 到 f(D) 上的单射,这时它就存在反函数. 例如 $f(x) = \begin{cases} -x, & -1 \leq x \leq 0, \\ x^2+1, & 0 < x \leq 1 \end{cases}$

不单调,但它是从[-1,1]到[0,2]上的单射,所以存在反函数 $f^{-1}(x) = \begin{cases} -x, & 0 \leq x \leq 1, \\ \sqrt{x-1}, & 1 < x \leq 2. \end{cases}$

- 2. 设 f(x) 是定义在[-a,a]上的任意函数,F(x) = f(x) + f(-x)一定是偶函数吗?
- 答 是. 因为F(-x) = f(-x) + f[-(-x)] = f(-x) + f(x) = F(x),所以F(x)是偶函数.
- 3. 如果函数 f(x), g(x) 在数集 X 上都无界,那么 $f(x) \cdot g(x)$ 也在 X 上无界吗?

答 不一定. 例如 $f(x) = \tan x, g(x) = \cot x$ 都在 $X = \left(0, \frac{\pi}{2}\right)$ 上无界,但是 $f(x) \cdot g(x) = 1, x \in X$,即 $f(x) \cdot g(x)$ 在 X 上是有界的.

- 4. 两个单调增加(或减少)的函数之积一定还是单调增加(或减少)的函数吗?
- 答 不一定. 如 $f(x) = e^{2x}$, $g(x) = -e^{-x}$ 皆为单调增加的函数,而 $f(x) \cdot g(x) = -e^{x}$ 却是单调减少的函数.
 - 5. 周期函数是否一定有最小正周期?

答 不一定. 例如函数 f(x) = C (其中 C 为常数),因为对于任意的非零实数 l ,都有 f(x+l) = f(x) = C ,所以它是周期函数,但实数中是没有最小正数的,因此周期函数 f(x) = C 没有最小正周期. 再如狄利克雷函数 D(x) ,可以证明任何非零的有理数均为该函数的周期,但它没有最小正周期.

三、经典例题解析

题型一 判断函数的等价性

例1 在下列各组函数中,找出两个函数等价(相等)的一组:

(1)
$$y = x^0 = y = 1$$
;

$$(2) \quad y = \left(\sqrt{x}\right)^2 - y = \sqrt{x^2};$$

(3)
$$y = \frac{\sqrt[3]{x-1}}{x} = \sqrt[3]{\frac{x-1}{x^3}};$$
 (4) $y = \frac{\sqrt{x-3}}{\sqrt{x-2}} = \sqrt[3]{\frac{x-3}{x-2}}.$

(4)
$$y = \frac{\sqrt{x-3}}{\sqrt{x-2}} = y = \sqrt{\frac{x-3}{x-2}}$$

分析 当且仅当两个函数的定义域和对应法则完全相同时,两个函数才表示同一个函 数或称两个函数等价(相等),否则表示两个不同的函数.

 \mathbf{m} (1) 由于 $y = x^0$ 的定义域为 $\{x | x \neq 0\}$, y = 1 的定义域为全体实数,所以该组的两 个函数不等价.

- (2) 由于 $y = (\sqrt{x})^2$ 的定义域为 $\{x | x \ge 0\}$, $y = \sqrt{x^2}$ 的定义域为全体实数,所以该组的 两个函数不等价.
- (3) 由于两个函数的定义域均为 $\{x|x\neq 0\}$,且对应法则相同,所以该组的两个函数 等价.
 - (4) 由于函数 $y = \frac{\sqrt{x-3}}{\sqrt{x-2}}$ 的定义域为[3,+∞),函数 $y = \sqrt{\frac{x-3}{x-2}}$ 的定义域为(-∞,2)U[3,+∞),

所以该组的两个函数不等价.

题型二 有关函数的性质

例 2 判断下列各函数的奇偶性:

(1)
$$f(x) = e^{x^2} \sin x$$
; (2) $f(x) = x \ln(x + \sqrt{1 + x^2})$; (3) $f(x) = x^4 \sin x - x \cos x^2 + 1$.

分析 先检验函数的定义域是否对称,然后按定义判断函数的奇偶性.

解 (1) 函数在
$$(-\infty, +\infty)$$
 内有定义,因为 $f(-x) = -f(x)$,所以 $f(x) = e^{x^2} \sin x$ 是奇函数.

(2) 函数在 $(-\infty, +\infty)$ 内有定义,因为

$$f(-x) = -x \ln(-x + \sqrt{1 + x^2}) = -x \ln \frac{1}{x + \sqrt{1 + x^2}} = x \ln(x + \sqrt{1 + x^2}) = f(x),$$

所以 f(x) 为偶函数.

(3) 函数在 $(-\infty, +\infty)$ 上有定义,因为 $f(-x) = -x^4 \sin x + x \cos x^2 + 1$,而f(-x) = f(x)和 f(-x) = -f(x)都不能对所有的 $x \in (-\infty, +\infty)$ 成立,所以f(x)为非奇非偶的函数.

例 3 指出下列函数是否有界:

(1)
$$f(x) = \frac{1}{x^2} (a \le x \le 1, 0 < a < 1);$$
 (2) $f(x) = (\operatorname{sgn} x) \cdot \sin \frac{1}{x}, x \ne 0;$

(3)
$$f(x) = \frac{[x]}{x}, x > 0;$$
 (4) $f(x) = x \cos x \ (-\infty < x < +\infty).$

分析 根据函数有界性的定义进行判断.

- 解 (1) 因为 $a \le x \le 1$,所以 $a^2 \le x^2 \le 1$,从而有 $1 \le \frac{1}{x^2} \le \frac{1}{a^2}$,这里 $\frac{1}{a^2} > 1$,所以 函数 $f(x) = \frac{1}{x^2}$ 是有界函数.
- (2) 因为 $|\operatorname{sgn} x| \le 1$, $|\sin \frac{1}{x}| \le 1$, 所以 $|f(x)| \le 1$, 从而函数 $f(x) = (\operatorname{sgn} x) \cdot \sin \frac{1}{x} (x \ne 0)$ 是有界函数.
- (3) 因为当x>0时, $0 \le [x] \le x$,所以 $0 \le \frac{[x]}{x} \le 1$,从而函数 $f(x) = \frac{[x]}{x} (x>0)$ 是有界函数.
 - (4) 对任意的正数 M > 0,取 $x = (2[M]+1)\pi$,则 $\cos(2[M]+1)\pi = -1$,因为 $|f(x)| = |(2[M]+1)\pi\cos[(2[M]+1)\pi]| = (2[M]+1)\pi > M ,$

所以函数 $y = x \cos x$ 在 $(-\infty, +\infty)$ 内无界.

例 4 函数 $f(x) = \frac{x}{1+x^2}$ 在定义域内 ()

(A) 有上界且无下界

(B) 有下界且无上界

(C) 有界且 $|f(x)| \le \frac{1}{2}$

(D) 有界且 $|f(x)| \leq 2$

解 选 (C) 正确. 因为 $1+x^2 \ge 2|x|$, 所以 $|f(x)| = \frac{|x|}{1+x^2} \le \frac{|x|}{2|x|} = \frac{1}{2}$.

例 5 设函数 f(x) 在区间 $(0,+\infty)$ 内有定义, $x_1 > 0$, $x_2 > 0$,求证:

- (1) 若 $\frac{f(x)}{x}$ 单调减少,则 $f(x_1+x_2) < f(x_1) + f(x_2)$;
- (2) 若 $\frac{f(x)}{x}$ 单调增加,则 $f(x_1 + x_2) > f(x_1) + f(x_2)$.

证明 (1) 不妨设 $x_1 < x_2$,由于已知 $\frac{f(x)}{x}$ 单调减少,所以 $\frac{f(x_2)}{x_2} < \frac{f(x_1)}{x_1}$,即 $x_1 f(x_2) < x_2 f(x_1)$.类似地,当 $x_1 < x_2 < x_1 + x_2$ 时,有 $\frac{f(x_1 + x_2)}{x_1 + x_2} < \frac{f(x_2)}{x_2} < \frac{f(x_1)}{x_1}$,从而 $x_2 f(x_1 + x_2) < (x_1 + x_2) f(x_2)$ 成立,即 $x_2 f(x_1 + x_2) < x_1 f(x_2) + x_2 f(x_2) < x_2 f(x_1) + x_2 f(x_2)$,所以 $f(x_1 + x_2) < f(x_1) + f(x_2)$.

(2) 不妨设 $x_1 < x_2$,由于 $\frac{f(x)}{x}$ 单调增加,所以 $\frac{f(x_2)}{x_2} > \frac{f(x_1)}{x_1}$,即 $x_1 f(x_2) > x_2 f(x_1)$,类似地,当 $x_1 < x_2 < x_1 + x_2$ 时, $\frac{f(x_1 + x_2)}{x_1 + x_2} > \frac{f(x_2)}{x_2} > \frac{f(x_1)}{x_1}$,从而 $x_2 f(x_1 + x_2) > (x_1 + x_2) f(x_2)$ 成立,即 $x_2 f(x_1 + x_2) > x_1 f(x_2) + x_2 f(x_2) > x_2 f(x_1) + x_2 f(x_2)$,所以 $f(x_1 + x_2) > f(x_1) + f(x_2)$.

例 6 设 f(x) 是以正数 a 为周期的周期函数,且已知当 $0 < x \le a$ 时, $f(x) = x^3$,试求周期函数 f(x).

解 设 $x = \overline{x} + na$, 其中 $0 < \overline{x} \le a$, 则 $na < x \le (n+1)a$, $\overline{x} = x - na$, $f(\overline{x}) = \overline{x}^3$, n = x - na

 $0,\pm 1,\pm 2,\cdots$. 由已知条件 $f(x) = x^3 (0 < x \le a)$, 可得

$$f(\overline{x}) = f(x - na) = (x - na)^3.$$

由周期函数的定义可知, $f(x) = f(\overline{x})$, 所以 $f(x) = (x - na)^3$, $n = 0, \pm 1, \pm 2, \cdots$

四、习题选解

1. 指出下列各函数的奇偶性:

(1)
$$f(x) = x^2 \cos x$$
; (2) $f(x) = \frac{1 - \cos x}{1 + \sin^2 x}$;

(3)
$$f(x) = \frac{1}{2} (e^x - e^{-x});$$
 (4) $f(x) = \ln(x + \sqrt{1 + x^2}).$

解 (1) 因为 $f(-x) = (-x)^2 \cos(-x) = x^2 \cos x = f(x)$, 所以 f(x) 为偶函数.

(2) 因为
$$f(-x) = \frac{1 - \cos(-x)}{1 + \sin^2(-x)} = \frac{1 - \cos x}{1 + \sin^2 x} = f(x)$$
,所以 $f(x)$ 为偶函数.

(3) 因为
$$f(-x) = \frac{1}{2} \left[e^{-x} - e^{-(-x)} \right] = -\frac{1}{2} \left(e^{x} - e^{-x} \right) = -f(x)$$
,所以 $f(x)$ 为奇函数.

所以 f(x) 为奇函数.

2. 下列函数中哪些是有界的?

(1)
$$y = 2\sin(\omega x + \varphi)$$
; (2) $y = \frac{1}{1+x^2}$; (3) $y = \frac{1}{1-x^2}$; (4) $y = x\cos x$.

解 (1) 因为 $|2\sin(\omega x + \varphi)| \le 2$,所以函数 $y = 2\sin(\omega x + \varphi)$ 有界.

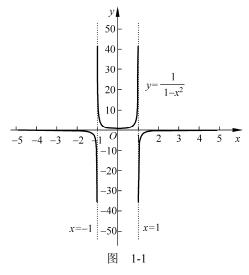
(2) 因为
$$1+x^2 \ge 1$$
,所以 $0 < \frac{1}{1+x^2} \le 1$,故函数 $y = \frac{1}{1+x^2}$ 有界.

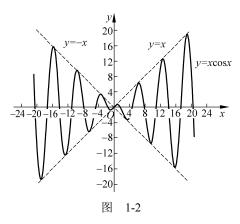
(3) 对任意的
$$M > 1$$
,当 $\sqrt{1 - \frac{1}{M}} < |x| < \sqrt{1 + \frac{1}{M}}$ 时,有 $1 - \frac{1}{M} < x^2 < 1 + \frac{1}{M}$,则 $\left| 1 - x^2 \right| < \frac{1}{M}$,

从而
$$\left| \frac{1}{1-x^2} \right| > M$$
,所以函数 $y = \frac{1}{1-x^2}$ 无界,如图 1-1 所示.

(4) 对任意的 M > 0,存在正整数 k 使得 $2k\pi > M$. 因为当 $x = 2k\pi$ 时, $|y| = |2k\pi \cos(2k\pi)| = 2k\pi > M$,所以函数 $y = x \cos x$ 无界,如图 1-2 所示.

3. 设
$$f(x) = \begin{cases} |\sin x|, & |x| \leq \frac{\pi}{3}, \\ \frac{\sqrt{3}}{2}, & |x| > \frac{\pi}{3}, \end{cases}$$
 求 $f\left(-\frac{\pi}{2}\right), f(0)$ 和 $f\left(\frac{\pi}{6}\right)$, 并作出 $y = f(x)$ 的图形.

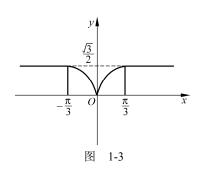




解
$$f\left(-\frac{\pi}{2}\right) = \frac{\sqrt{3}}{2}$$
; $f(0) = \left|\sin 0\right| = 0$; $f\left(\frac{\pi}{6}\right) = \left|\sin\frac{\pi}{6}\right| = \frac{1}{2}$. $y = f(x)$ 的图形如图 1-3 所示.

4. 设函数 f(x) 在数集 X 上有定义,证明 f(x) 在 X 上有界的充分必要条件是它在 X 上既有上界又有下界.

解 设 f(x) 在 X 上有界,即存在 M > 0 ,使得 $|f(x)| \le M$, $x \in X$,即 $-M \le f(x) \le M$, $x \in X$, 亦即 f(x) 在 X 上有上界 M , 有下界 -M .



反之,设 f(x) 在 X 上有上界 K_1 ,有下界 K_2 ,即 $K_2 \le f(x) \le K_1$, $x \in X$,取 $M = \max\{|K_1|, |K_2|\}$,则有 $|f(x)| \le M$, $x \in X$,即 f(x) 在 X 上有界.

第二节 初等函数

一、教学基本要求

- 1. 掌握基本初等函数的性质.
- 2. 理解复合函数的概念.
- 3. 掌握初等函数的概念.
- 4. 会建立简单实际问题的函数关系.

二、答疑解惑

1. 设 f(x) 为奇函数, $\varphi(x)$ 为偶函数,且 $\varphi[f(x)]$ 有意义,那么 $\varphi[f(x)]$ 一定是偶函数吗? **答** 一定是. 因为 $\varphi[f(-x)] = \varphi[-f(x)] = \varphi[f(x)]$,所以 $\varphi[f(x)]$ 是偶函数.

2. 设 f(x) 的定义域是 $\{0,1\}$, $\varphi(x)=1-\ln x$, 复合函数 $f[\varphi(x)]$ 的定义域是什么?

答 因为 f(x) 的定义域是(0,1], 所以对于复合函数 $f[\varphi(x)]$ 来说,应有 $0 < \varphi(x) \le 1$,即 $0 < 1 - \ln x \le 1$,解得 $1 \le x < e$,因此 $f[\varphi(x)]$ 的定义域是[1,e).

3. 分段函数一定不是初等函数吗?

答 不一定. 绝大多数分段函数不是初等函数,但有些函数形式上是分段函数,而实质上是初等函数.例如,函数 $f(x) = \begin{cases} x, & 0 \leq x \leq 1, \\ 2-x, & 1 < x \leq 2, \end{cases}$ $g(x) = \begin{cases} -1, & x > 0, \\ 1, & x < 0 \end{cases}$ 和 $h(x) = \begin{cases} -1, & x < 0, \\ 1, & x < 0 \end{cases}$ 因为在[0,2]上, $f(x) = 1 - |x-1| = 1 - \sqrt{(x-1)^2}$,所以 f(x) 是初等函数.又因为 当 $x \neq 0$ 时, $g(x) = \frac{-|x|}{x} = \frac{-\sqrt{x^2}}{x}$,所以 g(x) 也是初等函数. 而 h(x) 在其定义域内不能用一个式子表示,所以 h(x) 不是初等函数.

三、经典例题解析

题型一 求初等函数的定义域

例 1 求下列各函数
$$f(x)$$
 的定义域: (1) $f(x) = \arcsin \frac{2x}{1+x}$; (2) $f(x+\frac{1}{x}) = \frac{x+x^3}{1+x^4}$.

分析 求初等函数的定义域时,一般要利用基本初等函数和复合函数的定义域来确定 其定义域,如分母不能为零,对数的真数大于零,反三角函数的取值范围,被开方数的符 号与开方次数有关等.

解 (1) 要使函数有意义,须满足
$$\left\{ \frac{|2x|}{|1+x|} \le 1, \text{ pp} \right\} \left\{ \frac{|2x|}{|1+x|}, \text{ 解得} - \frac{1}{3} \le x \le 1, \text{ 所以} \right\}$$

函数的定义域为 $\left[-\frac{1}{3},1\right]$.

(2) 求含有抽象函数 f(x) 的定义域时,一般先求出 f(x) 的解析式. 将所给的解析式变形得

$$f\left(x+\frac{1}{x}\right) = \frac{\frac{1}{x}+x}{\frac{1}{x^2}+x^2} = \frac{x+\frac{1}{x}}{\left(x+\frac{1}{x}\right)^2-2},$$

所以有 $f(x) = \frac{x}{x^2 - 2}$,因此,要使函数 f(x) 有意义,须 $x^2 - 2 \neq 0$,即 $x \neq \pm \sqrt{2}$. 所以函数 的定义域为 $(-\infty, -\sqrt{2}) \cup (-\sqrt{2}, \sqrt{2}) \cup (\sqrt{2}, +\infty)$.

题型二 复合函数的求法

例 2 设
$$f(x) = \frac{1}{1-x}$$
, 求 $f[f(x)]$, $f\left[\frac{1}{f(x)}\right]$.

分析 将函数 y = f(u) 中的变量 u 看做一个整体 $u = \varphi(x)$,代入 y = f(u) 即得 $y = f[\varphi(x)]$.

解 将 f(x) 中的 x 用 f(x) 代替得

$$f(f(x)) = \frac{1}{1 - f(x)} = \frac{1}{1 - \frac{1}{1 - x}} = \frac{x - 1}{x} \quad (x \neq 0),$$

同理得

$$f\left[\frac{1}{f(x)}\right] = \frac{1}{1 - \frac{1}{f(x)}} = \frac{1}{1 - (1 - x)} = \frac{1}{x} \quad (x \neq 0).$$

例 3 设
$$f(x) = \begin{cases} x^2, & x \ge 0, \\ 2x, & x < 0, \end{cases}$$
 $g(x) = \begin{cases} x, & x \ge 0, \\ -2x, & x < 0. \end{cases}$ 当 $x \le 0$ 时,求 $f[g(x)]$.

分析 分段函数在各开区间内要分段处理,然后再单独讨论分段点的取值.

解 因为当x < 0 时,g(x) = -2x > 0 ,所以 $f[g(x)] = [g(x)]^2 = (-2x)^2 = 4x^2$. 又当x = 0 时,g(0) = 0 ,所以f[g(0)] = f(0) = 0 . 综上所述,当 $x \le 0$ 时, $f[g(x)] = 4x^2$.

例 4 设
$$f(x) = \begin{cases} \sqrt{x}, & x \ge 0, \\ \ln(1-x), & x < 0, \end{cases}$$
 且 $\Delta x > 0$, 求 $\frac{f(\Delta x) - f(0)}{\Delta x}$ 和 $\frac{f(-\Delta x) - f(0)}{-\Delta x}$.

解 由于
$$f(0) = 0$$
,且当 $\Delta x > 0$ 时, $f(\Delta x) = \sqrt{\Delta x}$, $f(-\Delta x) = \ln(1 + \Delta x)$, 所以
$$\frac{f(\Delta x) - f(0)}{\Delta x} = \frac{\sqrt{\Delta x}}{\Delta x} = \frac{1}{\sqrt{\Lambda x}}, \quad \frac{f(-\Delta x) - f(0)}{-\Delta x} = -\frac{\ln(1 + \Delta x)}{\Delta x}.$$

四、习题选解

- 1. 求下列各函数的定义域:
- (1) $y = \tan(x-2)$; (2) $y = \sqrt{x^2 3x 10} + \ln(1+x)$.

解 (1)要使函数有意义,须使 $x-2\neq k\pi+\frac{\pi}{2}$ (k 为整数),所以定义域为所有 $x\neq k\pi+\frac{\pi}{2}+2$ 的实数构成的集合,其中 k 为整数.

- (2) 要使函数有意义,须使 $x^2-3x-10 \ge 0$,且1+x>0,所以定义域为 $[5,+\infty)$.
- 2. 指出下列各函数的复合过程:
- (1) $y = \sin^2 x$; (2) $y = \sin x^2$; (3) $y = e^{\sqrt{\sin x}}$; (4) $y = \ln[\ln(\ln x)]$.

解 (1) $y = u^2$, $u = \sin x$.

- (2) $y = \sin u$, $u = x^2$.
- (3) $y = e^u$, $u = \sqrt{v}$, $v = \sin x$.
- (4) $y = \ln u$, $u = \ln v$, $v = \ln x$

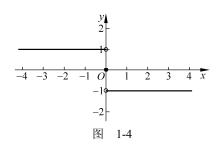
注 分解后的每个函数应为基本初等函数或常数与基本初等函数的和、差、积、商.

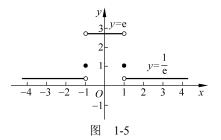
3. 设
$$f(x) = \begin{cases} 1, & |x| < 1, \\ 0, & |x| = 1, \ g(x) = e^x, \ 求 f[g(x)] 和 g[f(x)], 并分别作出它们的图形. \\ -1, & |x| > 1, \end{cases}$$

解
$$f[g(x)] = f(e^x) =$$

$$\begin{cases} 1, & |e^x| < 1, \\ 0, & |e^x| = 1, \text{即 } f[g(x)] = \begin{cases} 1, & x < 0, \\ 0, & x = 0, \text{其图形如图 1-4 所示.} \\ -1, & |e^x| > 1, \end{cases}$$

$$g[f(x)] = e^{f(x)} = \begin{cases} e^{1}, & |x| < 1, \\ e^{0}, & |x| = 1, \text{即} g[f(x)] = \begin{cases} e, & |x| < 1, \\ 1, & |x| = 1, \text{其图形如图 1-5 所示.} \\ e^{-1}, & |x| > 1, \end{cases}$$





- 4. 设 f(x) 满足 $3f(x) 2f\left(\frac{1}{x}\right) = x + 1$,求 f(x).
- 解 由已知条件可知 $3f\left(\frac{1}{x}\right) 2f(x) = \frac{1}{x} + 1$,与原方程联立解得 $f(x) = \frac{3x}{5} + \frac{2}{5x} + 1$.

第三节 数列的极限

一、教学基本要求

- 1. 理解数列极限 $\lim_{n\to\infty} x_n = a$ 的概念.
- 2. 了解数列极限的几何意义.

二、答疑解惑

1. 若n越大, $|x_n - a|$ 越小,则数列 $\{x_n\}$ 就以a为极限吗?

答 不一定. 随着 n 的增大, $|x_n-a|$ 越来越小并不意味着 $|x_n-a|$ 一定趋向于零. 例如 $x_n=\frac{1}{n}$, a=-1, $|x_n-a|=\left|\frac{1}{n}+1\right|=1+\frac{1}{n}$. 虽然当 n 越大时, $1+\frac{1}{n}$ 越小, 但数列 $\left\{\frac{1}{n}\right\}$ 并不以 -1 为极限.

2. 若 $\lim_{n\to\infty} x_n = a$, 则 $\lim_{n\to\infty} x_{n+m} = a$ (m 为正整数),对吗?

答 对. 由于 $\lim_{n\to\infty}x_n=a$,所以对于任意给定的 $\varepsilon>0$,总存在正整数 N,使得当 n>N时, $\left|x_n-a\right|<\varepsilon$ 成立. 现在要使 $\left|x_{n+m}-a\right|<\varepsilon$,只要 n+m>N ,即 n>N-m ,于是可取 $N'=\max\{N-m,1\}$,则当 n>N' 时,就有 $\left|x_{n+m}-a\right|<\varepsilon$,由数列极限的定义可知 $\lim_{n\to\infty}x_{n+m}=a$.

3. 在数列极限的定义中, $N = \varepsilon$ 是否存在函数关系?

答 一般来说, $N 与 \varepsilon$ 有关,但不能说它们存在函数关系. 因为对于任意给定的 $\varepsilon > 0$, 如果存在一个满足定义要求的 N_0 ,那么任何大于 N_0 的正整数都可以作为满足定义要求的 N. 这就是说,N的值并不是由 ε 所唯一确定的,根据函数的定义,N与 ε 不存在函数关系.

4. 如果
$$\lim_{n\to\infty} x_n = a$$
,就有 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = 1$ 吗?

答 不一定. 当
$$\lim_{n\to\infty} x_n = a$$
 时, $\lim_{n\to\infty} x_{n+1} = a$. 如果 $a \neq 0$,则 $\lim_{n\to\infty} \frac{x_{n+1}}{x} = 1$. 如果 $a = 0$,则

 $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}$ 可能存在也可能不存在,即使极限存在也未必等于1.例如 $x_n=\frac{2+(-1)^n}{x_n}$, $\lim_{n\to\infty}x_n=0$.

但是
$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \lim_{n\to\infty} \frac{n}{n+1} \cdot \frac{2+(-1)^{n+1}}{2+(-1)^n}$$
 不存在. 又如 $x_n = \frac{1}{2^n}$, $\lim_{n\to\infty} x_n = 0$,但 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \frac{1}{2}$.

5. 如何证明一个数列是发散的?

答 要证明数列 $\{x_n\}$ 发散,即数列 $\{x_n\}$ 不收敛,通常采用以下两种方法:

(1) 找出数列 $\{x_n\}$ 的一个发散的子列; (2) 找出数列 $\{x_n\}$ 的两个有不同极限的子列.

三、经典例题解析

题型一 用定义证明数列极限的存在性

例1 求证 $\lim \sqrt[n]{a} = 1$,其中 a 为常数,且 a > 1.

对任意给定的 $\varepsilon > 0$,要使 $\left| \sqrt[n]{a} - 1 \right| < \varepsilon$,即 $\sqrt[n]{a} - 1 < \varepsilon$,亦即 $\frac{1}{n} < \log_a(\varepsilon + 1)$,只 要 $n > \frac{1}{\log_{\epsilon}(\varepsilon+1)}$ 即可,于是取 $N = \left\lceil \frac{1}{\log_{\epsilon}(\varepsilon+1)} \right\rceil$,则当 n > N 时,都有 $\left| \sqrt[n]{a} - 1 \right| < \varepsilon$ 成立,所 $\lim_{n\to\infty} \sqrt[n]{a} = 1.$

例 2 求证
$$\lim_{n\to\infty} \frac{2n-1}{n^2+n-4} = 0$$
.

求N时,在"放大"的过程中,有时还需要添加一定的限制条件.

对任意给定的 $\varepsilon > 0$,限制n > 4,要使 $\left| \frac{2n-1}{n^2+n-4} - 0 \right| < \frac{2n}{n^2} = \frac{2}{n} < \varepsilon$,只要 $n > \frac{2}{c}$ 即 可,于是取 $N = \max\left\{4, \left\lceil \frac{2}{\varepsilon} \right\rceil\right\}$,则当 n > N 时,都有 $\left| \frac{2n-1}{n^2+n-4} - 0 \right| < \varepsilon$ 成立,所以 $\lim_{n \to \infty} \frac{2n-1}{n^2 + n - 4} = 0.$

$$\lim_{n\to\infty} n^2 + n - 4$$

题型二 求数列的极限

例 3 设数列
$$x_n = (1+k)^n + (1-k)^n$$
,证明 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \begin{cases} 1+|k|, & k\neq 0, \\ 1, & k=0. \end{cases}$

证明 当
$$k = 0$$
 时, $x_n = 2$, 所以 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1$.

$$\stackrel{\text{def}}{=} k > 0 \text{ ft}, \quad \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(1+k)^{n+1} + (1-k)^{n+1}}{(1+k)^n + (1-k)^n} = \lim_{n \to \infty} \frac{1+k + \left(\frac{1-k}{1+k}\right)^n (1-k)}{1 + \left(\frac{1-k}{1+k}\right)^n}, \quad \text{ft} \left| \frac{1-k}{1+k} \right| < 1,$$

可知
$$\lim_{n\to\infty} \left(\frac{1-k}{1+k}\right)^n = 0$$
,所以 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = 1+k$.

类似可证,当 k < 0 时, $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1 - k$.

四、习题选解

- 1. 填空题:
- (1)数列有界是它收敛的_____条件;
- (2) 对于数列 $\left\{\frac{n-1}{n+1}\right\}$, 当n最小为_____时, 可使 $\left|\frac{n-1}{n+1}-1\right| < 10^{-3}$;

(3)
$$\lim_{n\to\infty} \left(1 - \frac{1}{n^2}\right) = ____;$$
 (4) $\lim_{n\to\infty} \frac{3^n}{4^n} = ____;$ (5) $\lim_{n\to\infty} \frac{a}{\sqrt{n}} = ____ (a 为任意实数).$

解 (1) 应填"必要但不充分".

- (2) 应填 2000. 因为要使 $\left|\frac{n-1}{n+1}-1\right| = \left|\frac{2}{n+1}\right| < 10^{-3}$,只要 n+1>2000,即 n>1999,且 n为正整数,所以 n 最小为 2000.
 - (3) 应填 1. (4) 应填 0. (5) 应填 0.
 - 2. 根据数列极限的定义证明 $\lim_{n\to\infty} \frac{1}{n^2} = 0$.

证明 对任意给定的 $\varepsilon > 0$,要使 $\left| \frac{1}{n^2} - 0 \right| < \varepsilon$,只要 $n > \frac{1}{\sqrt{\varepsilon}}$ 即可,取 $N = \left[\frac{1}{\sqrt{\varepsilon}} \right]$,则当 n > N 时,都有 $\left| \frac{1}{n^2} - 0 \right| < \varepsilon$,所以 $\lim_{n \to \infty} \frac{1}{n^2} = 0$.

3. 设数列 $\{x_n\}$ 有界,且 $\lim_{n\to\infty}y_n=0$,证明 $\lim_{n\to\infty}x_ny_n=0$.

证明 因为数列 $\{x_n\}$ 有界,所以存在M>0,使得对于一切n都有 $|x_n| \leq M$.对任意给定的 $\varepsilon>0$,由于 $\lim_{n\to\infty}y_n=0$,故对 $\varepsilon_1=\frac{\varepsilon}{M}>0$,存在正整数 N,使得当 n>N 时,有 $|y_n|<\varepsilon_1=\frac{\varepsilon}{M}$,从而有

$$|x_n y_n - 0| = |x_n| |y_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon$$
,

所以 $\lim_{n\to\infty} x_n y_n = 0$.

4. 对于数列 $\left\{x_{n}\right\}$,如果 $\left\{x_{2k-1} \to a(k \to \infty) \mathrel{\mathbb{L}} x_{2k} \to a(k \to \infty)$,证明 $\lim_{n \to \infty} x_{n} = a$.