Unit 3 Discrete Mathematic

Text A About Discrete Mathematic

1. Introduction to discrete mathematics

Discrete® Mathematics is the general term® for several branches of mathematics,
which is based on the study of mathematical structures that are fundamentally discrete rather

than continuous. In contrast to® real numbers that have the property® of varying

“smoothly 7, the objects studied in discrete mathematics-such as integers, graphs, and

statements in logic-do not vary smoothly in this way, but have distinct®, separated

113

"' Discrete mathematics therefore excludes® topics in continuous

values.
mathematics®” such as calculus® and analysis. Discrete objects can often be
enumerated® by integers. More formally, discrete mathematics has been characterized as
the branch of mathematics dealing with countable sets® (sets that have the same
cardinality® as subsets® of the integers, including rational® numbers but not real
numbers). However, there is no exact, universally agreed, definition of the term “discrete
mathematics. ” Indeed, discrete mathematics is described less by what is included than® by
what is excluded; continuously varying quantities and related notions®.

Research in discrete mathematics increased in the latter half of the twentieth century

partly due to the development of digital computers which operate in discrete steps and store

B

— A
A
TR, A XA
HeBR HE+
MR
Mo
[iE Ve S
T4
A
LT

RN

DA POBE0O0000O00C

w
N

data in discrete bits®. Concepts and notations® from discrete mathematics are useful in
studying and describing objects® and problems in branches of® computer science, such as
computer algorithms® programming languages, cryptography®, automated theorem
proving, and software development. Conversely® computer implementations® are

significant.
2. Topics in discrete mathematics

Theoretical computer science includes areas of discrete mathematics relevant to
computing. It draws heavily on graph theory and logic. Included within theoretical computer
science is the study of algorithms for computing mathematical results. Computability®
studies what can be computed in principle, and has close ties to logic, while complexity
studies® the time taken by computations. Automata theory and formal language theory are
closely related to computability. Computational geometry applies algorithms to
geometrical® problems, while computer image analysis applies them to representations of
images. Theoretical computer science also includes the study of various continuous
computational topics.

Logic is the study of the principles of valid reasoning and inference®, as well as® of
consistency soundness® and completeness®. For example, in most systems of logic
(but not in intuitionistic logic®) Peirce’s law (((P—Q) —P)—P) is a theorem®. For
classical logic, it can be easily verified® with a truth table. The study of mathematical proof

is particularly important in logic, and has applications to automated® theorem proving and

fii %k

e

G, Uik
43X

R/

AU
A b

S
A
M
JUfar i
HEWT , HERL

t

— 3Pk, AR
SERE

L F g
SETR,
Lsana

i F 3k

BRSO OEEB®E 6

.35 .

formal verification® of software.

Logical formulas are discrete structures, as are proofs, which form finite trees or, more
generally, directed acyclic graphstructures®(with each inference step combining one or
more premise® branches to give a single conclusion). The truth values of logical formulas
usually form a finite set, generally restricted to two values; true and false, but logic can also
be continuous-valued, e. g., fuzzy logic. Concepts such as infinite proof trees or infinite
derivation® trees have also been studied, e. g. infinitary logic.

Set theory is the branch of mathematics that studies sets, which are collections of
objects, such as {blue, white, red| or the (infinite) set of all prime numbers. Partially®
ordered sets and sets with other relations have applications in several areas.

In discrete mathematics, countable sets (including finite sets) are the main focus. The

beginning of set theory as a branch of mathematics is usually marked by Georg Cantor’s work

distinguishing between different kinds of infinite set, motivated by the study of

trigonometric series®, and further development of the theory of infinite sets is outside the

scope of® discrete mathematics. "* Indeed, contemporary work® in descriptive set theory

makes extensive use of traditional continuous mathematics.

Graph theory, the study of graphs and networks, is often considered part of
combinatory, but has grown large enough and distinct® enough, with its own kind of
problems, to be regarded as® a subject in its own right Which in all areas of® math and
science have extensive application.

Graphs are one of the prime objects of study in Discrete Mathematics. They are among
the most ubiquitous® models of both natural and human-made structures. They can model
many types of relations and process dynamics in physical, biological and social systems. In
computer science, they represent networks of communication, data organization,
computational devices, the flow of computation, etc. In Mathematics, they are useful in

Geometry and certain parts of topology®, e. g. Knot Theory®. Algebraic graph theory

Bk

A 1) JC R B £
g7

EIE 3]
ot
ENEEE
SRR
X

E1E

TE BT A B 55k
WA A
by

&5 e

506000886

W
(@)

has close links with group theory. There are also continuous graphs, however for the most
part research in graph theory falls within the domain® of discrete mathematics.

Operations research provides techniques for solving practical problems in business and
other fields—problems such as allocating resources to maximize profit, or scheduling project
activities to minimize risk. Operations research techniques include linear programming and
other areas of optimization®, queuing theory, scheduling theory, network theory.
Operations research also includes continuous topics such as continuous-time Markov
process? continuous-time martingales®, process optimization, and continuous
and hybrid® control theory.

Although topology is the field of mathematics that formalize® and generalizes® the
intuitive® notion of “continuous deformation®” of objects, it gives rise to many
discrete topics; this can be attributed in part to the focus on topological invariants, which
themselves usually take discrete values. See combinatorial topology®, topological
graph theory®, topological combinatorics®, computational topology®, discrete

topological space®, finite topological space®.
Words

algorithm n. (47) Bk &% R (algorithm 9 8 ;)
automate adj. (B 717) B 20 b i 5 ALAR AL Y

bit n. (%) M%» iz

calculu n. (47) B AR

cardinality n. (4) 5 ’ﬂkf(s B

computability n. (4) BRI N3

conversely adv. (&) R H,

S,

itk

L] By 7R AT R AR
TS]

TR AL B SR A T e
Rk

— Ak

ER

BRI

HAEHED

RS

Rk

R EEN

B s

A R)

20908090008 B S

« 37 .

cryptography n. (%47) EA B &

derivation n. (4) Bl Wk AR R

discrete adj. (B 2&H) B, RS

distinct adj. (F7KH) U B 5 R B O AR A R KA Y

domain n. (%1) G A

enumerate n. (43d) Mk 2K A

exclude vt. &vi. (37) Hbrs HF; B4 2 H

formalize vt. &vi. () B R A B IE K 3 RALK

generalize vt. &vi. (#h17) R S e — Ak

geometrical adj. (#7%17) JUAT 8y, JLAT # By

hybrid n. (%47) A

implementation n. (£47) 5L

inference n. (£474) HFE 0 BT

intuitive adj. (F7K7) HaW; EERR N

notation n. (417) 5 it

notion n. (£474) WA /N

object n. (47) LURINPSE

optimization n. (£474) wEWL, ZHL

partially adv. (&|7) B 7 H 5 e 4 Hy

premise vt. &vi. (3h1d) 5l SRR H 4 A - BT R

property n. (%1) M B, MR 5 I 5 B A AT

rational adj. (F7K17) A B T MY

subsets n. (47) F & 4 (subset & %)

theorem n. (471) TR

topology n. (%47) o3 R RS

ubiquitous adj. (%) LimBGAEMN; TR AEN

verification n. (47) A, B % L

verified adj. (B 7R) B A&y, B 2
Phrases

as well as oy e —FE AR i EL

be regarded as WA K 2 s 3 S 1k =

combinatorial topology HewiF; 4 emI

complexity studies g MR

computational topology it &4 4

consistency soundness — B M, T ER

contemporary work YR AE B

.38 -

continuous deformation EHEE

continuous mathematics HEERF
continuous-time Markov process % S Ef A By By /R] R i AR
continuous-time martingales 4 AT JE]
countable sets &
directed acyclic graphstructures H O TR A
discrete topological space - €Nl
distinct enough AL
finite topological space AR 33 = 5]
in all areas of XSy Tlp
in branches of K
in contrast to 2T
intuitionistic logic ER D& 2
knot theory ERER [] A4ER
the general term for —f R B
the scope of &
topological combinatorics HI A A
topological graph theory P 6 9 Fh
trigonometric series = A RH
Exercises

[Ex1] Answer the questions according to the text:

(1) What is Discrete Mathematic?

(2) Why did Discrete Mathematic develop so fast in the twentieth century?
(3) How many topics are there in this chapter,and what are they?

(4) What are the logic formulas?

(5) What does Operations research involve?
[Ex2] Translate into Chinese:

(1) Graph theory is an old subject with modern applications.

(2) Relation between elements of sets is represented using the structure called a
relation.

(3) Much of discrete mathematic is developed of discrete structures, which are used to
represent discrete objects.

(4) Discrete mathematic is the gateway to more advanced courses in all parts of the
mathematical sciences.

.39.

(5) The computer chip is primarily responsible for executing instructions.

(6) Tape must be read or written sequentially, not randomly.

(7) Deselect the text by clicking anywhere outside of the selection on the page or
pressing an arrow key on the keyboard.

(8) Faster than many types of parallel port, a single USB port is capable of chaining

many devices without the need of a terminator.
[Ex3] Choose the best answer:

(1) Very long, complex expressions in program are difficult to write correctly and
difficult to .
A. defend B. detect C. default D. debug
(2) is the study of the principles of valid reasoning and inference, as well as

of consistency, soundness, and completeness.

A. Graph theory B. Logic
C. Topology D. Operation research
(3) The storage area that you can use to copy or move selected text or object

among applications.
A. exponent B. order C. temporary D. superior
(4) Software design is a process. It requires a certain of flair on the
part of the designer.
A. create,amount B. created,amounted

C. creating , mount D. creative, mounted

fit £
71 In contrast to 5515 5| 5 i 2l 3725 4 ; that have the property of varying “smoothly” f) 547 3q] Jy
real numbers , J& i /] ; the objects /) F 1% 3238 ; studied 5% ; do not vary smoothly in this way, but
have distinct, separated values. #M3E 16
72 The beginning of set theory & 3= 1f; as a branch of mathematics & J7 2 R 15 ; is marked,

motivated , and further development of the theory of infinite sets /] Fig1E

Text B Tree

A connected graph® shown in Figure 3-1, that contains no simple circuits® is called

a tree. Trees were used as long ago as 1857, when the English mathematician Arthur Cayley

0 EmKE
o i, [
< 40 -

used them to count certain types of chemical compounds ©. Since that time, trees have
been employed to solve problems in a wide variety of@ disciplines®.

a b a b a b a b
d . i % (4

g % | | N

€ f < f € f ¢ f

G, G, G, G,

Figure 3-1 Graphs

Tree are particularly useful in computer science, for instance, trees are employed to®

construct efficient algorithms for locating items® in a list. They are used to construct

network with the least expensive set of telephone lines storing and transmitting® data. '

Trees can model procedures that are carried out® using a sequence of decisions. This

makes trees valuable in the study® of sorting algorithms.
1. Definitions

A tree is an undirected simple graph G that satisfies any of the following equivalent®

conditions™ .

® (G is connected and has no cycles.
® G has no cycles, and a simple cycle is formed if any edge is added to G.
® G is connected, and it is not connected anymore if any edge is removed from G.

® G is connected and the 3-vertex complete graph K is not a minor of G. i

e Any two vertices® in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also
equivalent to any of the following conditions;

e G is connected and has (n—1) edge.

® G has no simple cycles and has (n—1) edge.

=g
VIS iz 8
ES NS
T
AR, U H
4t R 0
AT

5
SFEY

45

®P0600000006009

<41 -

Which of the graphs shown in Figure 3-1 are trees?

G, and G, are trees, since both are connected graphs with no simple circuits; G, is not a

. . . . W4
tree because ¢ . b . a .d . e is a simple circuit.

In this graph. Finally, G, is not a tree since it is not connected.
2. Facts

(1) A tree with n vertices has (n —1) edges.

(2) A full m-ary tree with i internal vertices contains n =m * i +1 vertices.

(3) A full m-ary tree with.

(i) n vertices has i = (n —1)/m internal® vertices and L=[(m -1) = n+1]/m
leaves.

(ii) i internal vertices has n =m * i + 1vertices and L=(m —1) =i +1 leaves.

(iii) Lleaveshasn=(m* L —-1)/(m —1)vertices and i = (L —1)/(m —1) internal

vertices.
3. Tree spices

(1) M-ary tree is a tree with the property that every internal vertex® has no more than
m children.

(2) Binary tree is an m-ary tree with m =2 (each child may be designated as a left or a
right child of its parent).

(3) Ordered tree is a tree in which the children of each internal vertex are linearly®

ordered. **
(4) Balance tree is a tree in which every vertex is at level & or h-1. where h is the height

of the tree. ™

(5) Binary search tree is a binary tree in which the vertices are labeled with items so
that® a label of a vertex is greater than the labels of all vertices in the left subtree of this
vertex is an less than the label of all vertices in the right sub tree of this vertex.

(6) Decision tree is a rooted tree where each vertex represents a possible outcome of a
decision and the leaves represent the possible solutions.

(7) Spanning tree®. a tree containing all vertices of a graph.

(8) Minimum spanning tree®. a spanning tree with smallest possible sum of

weights of its edges. '’

PR
B
Lk
i

A A
B/ R

52966066

o~
S}

4. Tree traversal algorithms

Procedures for systematically visiting every vertex of an ordered rooted tree are called
traversal algorithms®. We will describe three of the most commonly used such algorithms
preorder traversal, inorder traversal, and postorder traversal.

(1) Preorder traversal

Preorder traversal® is listing of the vertices of an ordered rooted tree defined
recursively by specifying that the root is listed. Followed by the first subtree, followed by the
other sub trees in the order they occur from left to right.

Let T be an ordered rooted tree with root r. if T consists only of r, then r is the preorder
traversal of 7. Otherwise, suppose that T,,T,,---, T, are the sub trees® at r from left to
right in 7. The preorder traversal begins by visiting r. It continues by traversing 7, in
preorder, then 7, in preorder, and so on, until 7, is traversed in preorder.

(2) Inorder traversal

Inorder traversal® is a listing of® the vertices of an ordered rooted tree defined
recursively by® specifying that the first sub tree is listed followed by® the root, followed by
the other sub trees in the order they occur from left to right.

Let T be an ordered rooted tree with root r. if T consists only of r, then r is the inorder
traversal of 7. Otherwise, suppose that 7, ,7,,---,T,. are the subtrees at r from left to right
in T. The inorder traversal begins by traversing 7, in inorder. Then visiting », It continues by
traversing 7, in inorder, then 7 in inorder, ---, And finally 7, in inorder.

(3) Postorder traversal

Postorder traversal® is a listing of the vertices of an ordered rooted tree defined

recursively by specifying that the sub trees are listed in the order they occur from left to right,

118

followed by the root.

Let T be an ordered rooted tree with root r if T consists only of r, then r is the post order

traversal of 7. Otherwise, suppose that T, ,T,,---,T,. are the subtrees at r from left to right.

n

The postorder traversal begins by traversing 7, in postorder, then 7, in postorder,---, Then
T,

n*

in postorder, and ends by visiting r.

BTl R RES
il PP 3k D
T
Pl
IES
HE
J5i e i

(I I)

.43 .

Words

circuit n. (47) WL PR
compound vt. &vi. () B R R A A ARt 5 A
connected graph n. (%)] EE A
discipline n. (47) KA
equivalent adj. (%) S A R U
inorder traversal n. (47) H R A
internal n. (£474) WEB By WA B W
item n. (417) ME; % H AN
preorder traversal n. (&) L2
transmitting vt. &vi. (1) i K5
vertex n. (471]) WA BILTG [R]TRT
vertice n. (%47) il & s KT KT
Phrases

be carried out H#HAT
be employed to EES
defined by XA
followed by Kt E
in a wide variety of AT AW
in the study EX TR

it £

1 storing and transmitting data & network /EE 1 . BRI I 2 MATHAEE S5
D HLTR LRI 4, R AEAE , A B

H2 MAER A SR — DMRUR— AT R LA G, B R DU AR SR S

W3 GREERMN,3ATSHRTE K, EAR—1 G BREGRE,

F4 B G, ME G, B, KA ENTEEA B %A R A 1 EL TR Gy AR, R ebade J&:
{7 B [

S5 F i Ordered tree; & fjid]; is;in which 5| 5 —4~ & & M\] ; the children 2 5€ M 1Y F2 15 ; are
ordered J2& & MIWTH T . X AJTEIN & SO PR B I NIRRT T A 2 et HuHE 7 04

6 Fi&. Balance tree; & 3f1A; is;in which 5| S—4~E 15 A ;every vertex gy TG F 185, X4)
T SO PR R TR TUSUERTE A B A — 1)2, T h ZZR = B .

H7 B/NERR BRI ECH B NI

78 F1E: Postorder traversal ; JH1E ; is; 15 a listing of the vertices of an ordered rooted tree; by 5|
FARE .

.44 -

Associated Reading

Topics in Discrete Mathematics

Discrete mathematics is the study of mathematical structures that are fundamentally
discrete rather than continuous. The main topics in discrete mathematics have as the
following

(a) Theoretical computer science

(b) Information theory

(¢) Logic

(d) Set theory

(e) Combinatorics

(f) Graph theory

(g) Probability

(h) Number theory

(i) Algebra

(j) Calculus of finite differences, discrete calculus or discrete analysis

(k) Geometry

(1) Topology

(m) Operations research

(n) Game theory, decision theory, utility theory, social choice theory

(o) Discretization

(p) Discrete analogues of continuous mathematics

(q) Hybrid discrete and continuous mathematics

R B AR T

(a) HBTHEHLELY

(b) fERIE

(c) B

(d) &k

(e) HEHC7

(f) Klig

(g) #EFiL

(h) #ug

(i) L%

(J) ZE0riEA, B R AT 5 0 Uk B B H o A

(k) JUfap2

(1) #hbss

.45 .

(m) 8%

(n) FZRE RSFGE BUHHHE AP iie
(o) HHL

(p) ESHCA B R

(q) BEHMESRGEC

. 46 -

Unit 4 Software Engineering

Text A Software Processes

A software process is a set of activities that leads to the production of a software
product. These activities may involve the development of software from scratch® in a

standard programming language like Java or C. Increasingly, however, new software is

developed by extending and modifying existing systems and by configuring® and

integrating® off-the-shelf software or system components. '

Software processes are complex and, like all intellectual® and creative processes, rely
on people making decisions and judgments. Because of® the need for judgment and
creativity, attempts to automate® software processes have met with® limited success.
Computer-aided software engineering (CASE) tools can support some process activities.

However, there is no possibility, at least® in the next few years, of more extensive

automation where software takes over® creative design from the engineers involved in the

2
software process.

One reason the effectiveness of CASE tools is limited is because of the immense®
diversity of software processes. There is no ideal process, and many organizations have
developed their own approach to software development. Processes have evolved to exploit the
capabilities of the people in an organization and the specific characteristics of the systems that
are being developed. For some systems, such as critical systems, a very structured
development process is required. For business systems, with rapidly changing requirements,
a flexible, agile process is likely to be more effective.

Although there are many software processes, some fundamental® activities are

common to all software processes;

it

[IN=A
CPIRE
B
HF
i B 3k
SEHL
=
-
LN
FARMY

256000000000

<47 -

(1) Software specification the functionality of the software and constraints® on its
operation must be defined.

(2) Software design and implementation the software to meet the specification
must be produced.

(3) Software validation® the software must be validated to ensure that it does what
the customer wants.

(4) Software evolution the software must evolve to meet changing customer needs.

Although there is no ‘ideal’ software process, there is scope® for improving the
software process in many organizations. Processes may include outdated techniques or may
not take advantage of the best practice in industrial software engineering. Indeed, many
organizations still do not take advantage of® software engineering methods in their
software development.

Software processes can be improved by process standardization where the diversity® in
software processes across an organization is reduced. This leads to improved communication
and a reduction in training time, and makes automated process support more economical.
Standardization is also an important first step in introducing new software engineering

methods and techniques and good software engineering practice.
Software process models

A software process model is an abstract representation of a software process. Each

process model represents a process from a particular perspective®, and thus provides only

partial® information about that process. ** In this section, I introduce a number of very

general process models (sometimes called process paradigms®) and present these from an
architectural perspective®. That is, we see the framework of the process but not the
details of specific activities.

These generic® models are not definitive® descriptions of software processes.

Rather, they are abstractions of the process that can be used to explain different approaches to

2R

AR

i

FEAFIH

K

PUNSRE-S VL. TP}
;]

Tl

TRR S5

— B 5 5 Y
BER; e T RERY

(I N =]

N
o0

software development. You can think of them as® process frameworks that may be

extended and adapted to create more specific software engineering processes. '

(1) The waterfall model® this takes the fundamental process activities of

specification, development, validation and evolution and represents them as separate process

phases® such as requirements specification®, software design, implementation, testing

and so on.

(2) Evolutionary development® this approach interleaves® the activities of
specification, development and validation. An initial system is rapidly developed from
abstract specifications. This is then refined with customer input to produce a system that
satisfies the customer’s needs.

(3) Component-based software engineering® this approach is based on the
existence of a significant number of reusable components. The system development process
focuses on integrating these components into a system rather than developing them from
scratch.

The waterfall model

The first published model of the software development process was derived® from more
general system engineering processes (Royce, 1970). This is illustrated in Figure 4-1.
Because of the cascade® from one phase to another, this model is known as the waterfall
model or software life cycle. The principal stages of the model map onto fundamental
development activities ;

i. Requirements analysis and definition the system’s services, constraints and
goals are, established by consultation® with system users. They are then defined in
detail® and serve as® a system specification.

ii. System and software design the systems design process partitions® the
requirements to either hardware or® software systems. It establishes overall system

architecture. Software design involves identifying and describing the fundamental software

AR

Fr B

FA ;s B A
AL T R AR
ST R F TR
IRAE

&S

i

HRH

85O0 8

<49 .

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Figure 4-1 The software life cycle

system abstractions and their relationships.

iii. Implementation and unit testing during this stage, the software design is
realized as a set of programs or program units. Unit testing involves verifying® that each
unit meets its specification.

iv. Integration and system testing the individual program units or programs are

integrated and tested as a complete system to ensure that the software requirements have been
16

met. After testing, the software system is delivered to the customer.

v. Operation and maintenance® normally (although not necessarily) this is the
longest life-cycle phase®. The system is installed and put into practical use. Maintenance

involves correcting errors which were not discovered in earlier stages of the life cycle,

improving the implementation of system units and enhancing the system’s services as new

requirements are discovered. "'

In principle, the result of each phase is one or more documents that are approved
(*Signed off’). The following phase : should not start until the previous phase has finished.
In practice, these stages overlap® and fleed information to® each other. ™ During design,

problems with requirements are identified; During coding design problems are found and so
on®. The software process is not a simple linear model but involves a sequence of
iterations® of the development activities.

Because of the costs of producing and approving documents, iterations are costly and

s s K

Bt 54
BAHI AR B
W E S

Bt i

G545

LA

D066 868

W
o

involve significant rework®. Therefore, after a small number of iterations, it is normal to

freeze parts of the development, such as the specification, and to continue with the later

development stages. '’ Problems are left for later resolution, ignored or programmed around.

This premature freezing of requirements may mean that the system won’t do what the user
wants. It may also lead to badly structured systems as design problems are circumvented
by® implementation tricks®.

During the final life-cycle phase (operation and maintenance) , the software is put into
use. Errors and omissions® in the original software requirements are discovered. Program

and design errors emerge and the need for new functionality is identified. The system must

therefore evolve to remain useful. *'° Making these changes (software maintenance) may

involve repeating previous process stages.

The advantages of the waterfall model are that documentation is produced at each phase
and that it fits with other engineering process models. Its major problem is its inflexible®
partitioning of the project into distinct stages. Commitments® must be made at an early
stage in the process, which makes it difficult to respond to changing customer requirements.

Therefore, the waterfall model should only be used when the requirements are well
understood and unlikely to change radically® during system development.

However, the waterfall model reflects the type of process model used in other
engineering projects. Consequently, software processes based on this approach are still used
for software development, particularly when the software project is part of a larger systems

engineering project.

Words
automate vt. &vi. (#h17]) Baifh, Bk
cascade vt. &vi. (1) B E
circumvented vt. &vi. (3h14) HE G E AT
commitment n. (41) AR B4 K XS B
configuring vt. &vi. (#h77) e & 5 Bk
constraint n. (41) 295 RH 4 K&
consultation n. (41) K ERELRK] 295tk
@ EK
@ Eh @lﬁ
@ il
® Hn%
® FOHR ;AR
® TR IE
@ EeH;YIRM

- 51 -

definitive
derived
fundamental
generic
immense
inflexible
integrating
intellectual
interleave
iteration
omission
overlap
paradigm
partial
partition
perspective
phase
radically
scope
scratch
specification
validation

verifying

architectural perspective

at least

be delivered to

because of

adj. (%)
vt. &vi. (3114)
adj. (%)
adj. (7% %)
adj. (F%H)
adj. (7% %)
vt. &vi. (1)
adj. (7 %)

- (&)
(&)

- (&)

. (&)

- (&)

adj. (7% %7)
vt. &vi. (1)

S 3 I I 3

component-based software engineering

evolutionary development

fleed...to

in detail

in earlier stages of the life cycle

take advantage of

takes over

e M s AR R Y IR E B
72 5 48 W

FARH R

Ko — ey Bas AR
E KW, KW T T Fr el
L B 1 B A

A5 HRa s &t
AR EE
R

HERKBGRE

B R, 3% UK
EE;EA

se sk

J1 #P 5 Um & BN RAEEY
s

adj. (F%7%3) % ALty
n. (%47) £, B 3
adv. (&) HRAR b5 A& H 5 DL sk By 07 R
n. (41d) S
n. (41) B
n. (41d) LA U6 A F 5 3R
n. (41) A o AN
vt. &vi. () Bk s R &
Phrases
RREMAE
Y
#% |
E 5w T
BTk TR
ERIFK
R Ak A%
P 4
e A 4 B 3R 6y T R
F| Al
B
-8 R R

the longest life-cycle phase

- 52 .

the waterfall model B A A A
think of AR, B FEBE RN

Exercises

[Ex1] Answer the questions according to the text:

(1) What is the software process?

(2) What are the fundamental activities common to all software processes?

(3) How to improve the software process?

(4) Why do we need to freeze parts of the development after a small number of
iterations?

(5) Why must the system evolve to remain useful?
[Ex2] Translate into Chinese:

(1) A software process is a set of activities that leads to the production of a software
product.

(2) Because of the need for judgement and creativity, attempts to automate software
processes have met with limited success.

(3) One reason the effectiveness of CASE tools is limited is because of the immense
diversity of software processes.

(4) For business systems, with rapidly changing requirements, a flexible, agile process
is likely to be more effective.

(5) A software process model is an abstract representation of a software process.

(6) The system development process focuses on integrating these components into a
system rather than developing them from scratch.

(7) During this stage, the software design is realized as a set of programs or program
units.

(8) The advantages of the waterfall model are that documentation is produced at each

phase and that it fits with other engineering process models.

[Ex3] Choose the best answer

(1) means “Any HTML document a HTTP Server”.
A. Web server B. Web page
C. Web browser D. Web site

(2) The term “ program” means a program written in high-level language.
A. compiler B. executable C. source D. object

(3) Very long complex expressions in program are difficult to write correctly and
.53 .

