Part |
Laying the Foundation

In this part:

Chapter 1: Welcome to Software Construction 3
Chapter 2: Metaphors for a Richer Understanding of

Software Development.uun e 9
Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites 23

Chapter 4: Key Construction Decisionsccoiuuuunnn... 61

Chapter 1

Welcome to Software
Construction

Contents

®m 1.1 What Is Software Construction?: page 3
B 1.2 Why Is Software Construction Important?: page 6
m 1.3 How to Read This Book: page 8

Related Topics

B Who should read this book: Preface
m Benefits of reading the book: Preface

m Why the book was written: Preface

You know what “construction” means when it’s used outside software development.
“Construction” is the work “construction workers” do when they build a house, a
school, or a skyscraper. When you were younger, you built things out of “construction
paper.” In common usage, “construction” refers to the process of building. The con-
struction process might include some aspects of planning, designing, and checking
your work, but mostly “construction” refers to the hands-on part of creating something.

1.1 What Is Software Construction?

Developing computer software can be a complicated process, and in the last 25 years,
researchers have identified numerous distinct activities that go into software develop-
ment. They include

Problem definition
Requirements development

Construction planning

Detailed design

]
|
|
m Software architecture, or high-level design
|
m Coding and debugging

|

Unit testing

Chapter 1: Welcome to Software Construction

Integration testing
Integration

System testing

Corrective maintenance

If you've worked on informal projects, you might think that this list represents a lot of
red tape. If you've worked on projects that are too formal, you know that this list rep-
resents a lot of red tape! It’s hard to strike a balance between too little and too much
formality, and that’s discussed later in the book.

If you've taught yourself to program or worked mainly on informal projects, you might
not have made distinctions among the many activities that go into creating a software

product. Mentally, you might have grouped all of these activities together as “program-
ming.” If you work on informal projects, the main activity you think of when you think
about creating software is probably the activity the researchers refer to as “construction.”

This intuitive notion of “construction” is fairly accurate, but it suffers from a lack of
perspective. Putting construction in its context with other activities helps keep the
focus on the right tasks during construction and appropriately emphasizes important
nonconstruction activities. Figure 1-1 illustrates construction’s place related to other
software-development activities.

Problem
Definition

Corrective

Detailed
Design

. Maintenance
Requirements

Development

Integration
Coding and

Construction Debugging

Planning

Integration
Testing

Unit
Software Testing
Architecture

System
Testing

Figure 1-1 Construction activities are shown inside the gray circle. Construction focuses on
coding and debugging but also includes detailed design, unit testing, integration testing,
and other activities.

=
1

=
|

. —
KEY POINT

1.1 What Is Software Construction? 5

As the figure indicates, construction is mostly coding and debugging but also involves
detailed design, construction planning, unit testing, integration, integration testing,
and other activities. If this were a book about all aspects of software development, it
would feature nicely balanced discussions of all activities in the development process.
Because this is a handbook of construction techniques, however, it places a lopsided
emphasis on construction and only touches on related topics. If this book were a dog,
it would nuzzle up to construction, wag its tail at design and testing, and bark at the
other development activities.

Construction is also sometimes known as “coding” or “programming.” “Coding” isn’t
really the best word because it implies the mechanical translation of a preexisting
design into a computer language; construction is not at all mechanical and involves
substantial creativity and judgment. Throughout the book, I use “programming” inter-
changeably with “construction.”

In contrast to Figure 1-1’s flat-earth view of software development, Figure 1-2 shows
the round-earth perspective of this book.

Problem)
Definition

Detailed

Conrectve)
Design Mainter

Requirements)
Development

Integration

Coding and
Debugging

Planning

Integration
Testing

Software Unit

Architecture Testing y
m)
Testing

Figure 1-2 This book focuses on coding and debugging, detailed design, construction
planning, unit testing, integration, integration testing, and other activities in roughly these
proportions.

Figure 1-1 and Figure 1-2 are high-level views of construction activities, but what
about the details? Here are some of the specific tasks involved in construction:

m Verifying that the groundwork has been laid so that construction can proceed
successfully

m Determining how your code will be tested

6 Chapter 1: Welcome to Software Construction

Designing and writing classes and routines
Creating and naming variables and named constants
Selecting control structures and organizing blocks of statements

Unit testing, integration testing, and debugging your own code

Reviewing other team members’ low-level designs and code and having them
review yours

Polishing code by carefully formatting and commenting it
m Integrating software components that were created separately

m Tuning code to make it faster and use fewer resources

For an even fuller list of construction activities, look through the chapter titles in the
table of contents.

With so many activities at work in construction, you might say, “OK, Jack, what activ-
ities are not part of construction?” That's a fair question. Important nonconstruction
activities include management, requirements development, software architecture,
user-interface design, system testing, and maintenance. Each of these activities affects
the ultimate success of a project as much as construction—at least the success of any
project that calls for more than one or two people and lasts longer than a few weeks.
You can find good books on each activity; many are listed in the “Additional
Resources” sections throughout the book and in Chapter 35, “Where to Find More
Information,” at the end of the book.

1.2 Why Is Software Construction Important?

Since you're reading this book, you probably agree that improving software quality
and developer productivity is important. Many of today’s most exciting projects use
software extensively. The Internet, movie special effects, medical life-support systems,
space programs, aeronautics, high-speed financial analysis, and scientific research are
a few examples. These projects and more conventional projects can all benefit from
improved practices because many of the fundamentals are the same.

If you agree that improving software development is important in general, the question
for you as a reader of this book becomes, Why is construction an important focus?

Cross-Reference For details
on the relationship between
project size and the percent-
age of time consumed by
construction, see "Activity
Proportions and Size” in Sec-
tion 27.5.

Cross-Reference For data on
variations among program-
mers, see “Individual Varia-
tion” in Section 28.5.

KEY POINT

1.2 Why Is Software Construction Important? 7
Here’s why:

Construction is a large part of software development Depending on the size of the
project, construction typically takes 30 to 80 percent of the total time spent on a
project. Anything that takes up that much project time is bound to affect the success
of the project.

Construction is the central activity in software development Requirements and
architecture are done before construction so that you can do construction effectively.
System testing (in the strict sense of independent testing) is done after construction
to verify that construction has been done correctly. Construction is at the center of the
software-development process.

With a focus on construction, the individual programmer’s productivity can improve
enormously A classic study by Sackman, Erikson, and Grant showed that the pro-
ductivity of individual programmers varied by a factor of 10 to 20 during construction
(1968). Since their study, their results have been confirmed by numerous other stud-
ies (Curtis 1981, Mills 1983, Curtis et al. 1986, Card 1987, Valett and McGarry 1989,
DeMarco and Lister 1999, Boehm et al. 2000). This book helps all programmers learn
techniques that are already used by the best programmers.

Construction’s product, the source code, is often the only accurate description of the
software In many projects, the only documentation available to programmers is the
code itself. Requirements specifications and design documents can go out of date, but
the source code is always up to date. Consequently, it’s imperative that the source
code be of the highest possible quality. Consistent application of techniques for
source-code improvement makes the difference between a Rube Goldberg contraption
and a detailed, correct, and therefore informative program. Such techniques are most
effectively applied during construction.

Construction is the only activity that’s guaranteed to be done The ideal software
project goes through careful requirements development and architectural design
before construction begins. The ideal project undergoes comprehensive, statistically
controlled system testing after construction. Imperfect, real-world projects, however,
often skip requirements and design to jump into construction. They drop testing
because they have too many errors to fix and they’ve run out of time. But no matter
how rushed or poorly planned a project is, you can’t drop construction; it’s where the
rubber meets the road. Improving construction is thus a way of improving any soft-
ware-development effort, no matter how abbreviated.

8 Chapter 1: Welcome to Software Construction

1.3 How to Read This Book

Key Points

This book is designed to be read either cover to cover or by topic. If you like to read
books cover to cover, you might simply dive into Chapter 2, “Metaphors for a Richer
Understanding of Software Development.” If you want to get to specific programming
tips, you might begin with Chapter 6, “Working Classes,” and then follow the cross ref-
erences to other topics you find interesting. If you're not sure whether any of this applies
to you, begin with Section 3.2, “Determine the Kind of Software You're Working On.”

m Software construction is the central activity in software development; construc-
tion is the only activity that's guaranteed to happen on every project.

m The main activities in construction are detailed design, coding, debugging, inte-
gration, and developer testing (unit testing and integration testing).

® Other common terms for construction are “coding” and “programming.”
m The quality of the construction substantially affects the quality of the software.

®m In the final analysis, your understanding of how to do construction determines
how good a programmer you are, and that’s the subject of the rest of the book.

Chapter 2

Metaphors for a Richer
Understanding of Software
Development

Contents

m 2.1 The Importance of Metaphors: page 9
B 2.2 How to Use Software Metaphors: page 11
B 2.3 Common Software Metaphors: page 13

Related Topic
B Heuristics in design: “Design Is a Heuristic Process” in Section 5.1

Computer science has some of the most colorful language of any field. In what other
field can you walk into a sterile room, carefully controlled at 68°F, and find viruses,

Trojan horses, worms, bugs, bombs, crashes, flames, twisted sex changers, and fatal

errors?

These graphic metaphors describe specific software phenomena. Equally vivid meta-
phors describe broader phenomena, and you can use them to improve your under-
standing of the software-development process.

The rest of the book doesn’t directly depend on the discussion of metaphors in this
chapter. Skip it if you want to get to the practical suggestions. Read it if you want to
think about software development more clearly.

2.1 The Importance of Metaphors

Important developments often arise out of analogies. By comparing a topic you under-
stand poorly to something similar you understand better, you can come up with
insights that result in a better understanding of the less-familiar topic. This use of met-
aphor is called “modeling.”

The history of science is full of discoveries based on exploiting the power of meta-
phors. The chemist Kekulé had a dream in which he saw a snake grasp its tail in its
mouth. When he awoke, he realized that a molecular structure based on a similar ring
shape would account for the properties of benzene. Further experimentation con-
firmed the hypothesis (Barbour 1966).

10 Chapter 2: Metaphors for a Richer Understanding of Software Development

The kinetic theory of gases was based on a “billiard-ball” model. Gas molecules were
thought to have mass and to collide elastically, as billiard balls do, and many useful
theorems were developed from this model.

The wave theory of light was developed largely by exploring similarities between light
and sound. Light and sound have amplitude (brightness, loudness), frequency (color,
pitch), and other properties in common. The comparison between the wave theories
of sound and light was so productive that scientists spent a great deal of effort looking
for a medium that would propagate light the way air propagates sound. They even
gave ita name —“ether”—but they never found the medium. The analogy that had been
so fruitful in some ways proved to be misleading in this case.

In general, the power of models is that they’re vivid and can be grasped as conceptual
wholes. They suggest properties, relationships, and additional areas of inquiry. Some-
times a model suggests areas of inquiry that are misleading, in which case the meta-
phor has been overextended. When the scientists looked for ether, they overextended
their model.

As you might expect, some metaphors are better than others. A good metaphor is sim-
ple, relates well to other relevant metaphors, and explains much of the experimental
evidence and other observed phenomena.

Consider the example of a heavy stone swinging back and forth on a string. Before
Galileo, an Aristotelian looking at the swinging stone thought that a heavy object
moved naturally from a higher position to a state of rest at a lower one. The Aristote-
lian would think that what the stone was really doing was falling with difficulty. When
Galileo saw the swinging stone, he saw a pendulum. He thought that what the stone
was really doing was repeating the same motion again and again, almost perfectly.

The suggestive powers of the two models are quite different. The Aristotelian who saw
the swinging stone as an object falling would observe the stone’s weight, the height to
which it had been raised, and the time it took to come to rest. For Galileo’s pendulum
model, the prominent factors were different. Galileo observed the stone’s weight, the
radius of the pendulum’s swing, the angular displacement, and the time per swing.
Galileo discovered laws the Aristotelians could not discover because their model led
them to look at different phenomena and ask different questions.

Metaphors contribute to a greater understanding of software-development issues in
the same way that they contribute to a greater understanding of scientific questions.
In his 1973 Turing Award lecture, Charles Bachman described the change from the
prevailing earth-centered view of the universe to a sun-centered view. Ptolemy’s earth-
centered model had lasted without serious challenge for 1400 years. Then in 1543,
Copernicus introduced a heliocentric theory, the idea that the sun rather than the
earth was the center of the universe. This change in mental models led ultimately to
the discovery of new planets, the reclassification of the moon as a satellite rather than
as a planet, and a different understanding of humankind’s place in the universe.

The value of metaphors
should not be underesti-
mated. Metaphors have the
virtue of an expected behav-
for that is understood by all.
Unnecessary communication
and misunderstandings are
reduced. Learning and edu-
cation are quicker. In effect,
metaphors are a way of
internalizing and abstracting
concepts, allowing one's
thinking to be on a higher
plane and low-level mistakes
to be avoided.

—rFernando J. Corbato

LN
KEY POINT

2.2 How to Use Software Metaphors 11

Bachman compared the Ptolemaic-to-Copernican change in astronomy to the change
in computer programming in the early 1970s. When Bachman made the comparison
in 1973, data processing was changing from a computer-centered view of information
systems to a database-centered view. Bachman pointed out that the ancients of data
processing wanted to view all data as a sequential stream of cards flowing through a
computer (the computer-centered view). The change was to focus on a pool of data on
which the computer happened to act (a database-oriented view).

Today it’s difficult to imagine anyone thinking that the sun moves around the earth.
Similarly, it’s difficult to imagine a programmer thinking that all data could be viewed
as a sequential stream of cards. In both cases, once the old theory has been discarded,
it seems incredible that anyone ever believed it at all. More fantastically, people who
believed the old theory thought the new theory was just as ridiculous then as you
think the old theory is now.

The earth-centered view of the universe hobbled astronomers who clung to it after a
better theory was available. Similarly, the computer-centered view of the computing
universe hobbled computer scientists who held on to it after the database-centered
theory was available.

It’s tempting to trivialize the power of metaphors. To each of the earlier examples, the
natural response is to say, “Well, of course the right metaphor is more useful. The
other metaphor was wrong!” Though that’s a natural reaction, it’s simplistic. The his-
tory of science isn’t a series of switches from the “wrong” metaphor to the “right” one.
It’s a series of changes from “worse” metaphors to “better” ones, from less inclusive to
more inclusive, from suggestive in one area to suggestive in another.

In fact, many models that have been replaced by better models are still useful. Engineers
still solve most engineering problems by using Newtonian dynamics even though, the-
oretically, Newtonian dynamics have been supplanted by Einsteinian theory.

Software development is a younger field than most other sciences. It’s not yet mature
enough to have a set of standard metaphors. Consequently, it has a profusion of com-
plementary and conflicting metaphors. Some are better than others. Some are worse.

How well you understand the metaphors determines how well you understand soft-

ware development.

Use Software Metaphors

A software metaphor is more like a searchlight than a road map. It doesn’t tell you
where to find the answer; it tells you how to look for it. A metaphor serves more as a
heuristic than it does as an algorithm.

An algorithm is a set of well-defined instructions for carrying out a particular task. An
algorithm is predictable, deterministic, and not subject to chance. An algorithm tells

12 Chapter 2: Metaphors for a Richer Understanding of Software Development

Cross-Reference For details
on how to use heuristics in
designing software, see
“Design Is a Heuristic Pro-
cess” in Section 5.1.

you how to go from point A to point B with no detours, no side trips to points D, E,
and F, and no stopping to smell the roses or have a cup of joe.

A heuristic is a technique that helps you look for an answer. Its results are subject to

chance because a heuristic tells you only how to look, not what to find. It doesn’t tell
you how to get directly from point A to point B; it might not even know where point A
and point B are. In effect, a heuristic is an algorithm in a clown suit. It’s less predict-

able, it's more fun, and it comes without a 30-day, money-back guarantee.

Here is an algorithm for driving to someone’s house: Take Highway 167 south to Puy-
allup. Take the South Hill Mall exit and drive 4.5 miles up the hill. Turn right at the
light by the grocery store, and then take the first left. Turn into the driveway of the
large tan house on the left, at 714 North Cedar.

Here’s a heuristic for getting to someone’s house: Find the last letter we mailed you.

Drive to the town in the return address. When you get to town, ask someone where

our house is. Everyone knows us—someone will be glad to help you. If you can’t find
anyone, call us from a public phone, and we’ll come get you.

The difference between an algorithm and a heuristic is subtle, and the two terms over-
lap somewhat. For the purposes of this book, the main difference between the two is
the level of indirection from the solution. An algorithm gives you the instructions
directly. A heuristic tells you how to discover the instructions for yourself, or at least
where to look for them.

Having directions that told you exactly how to solve your programming problems
would certainly make programming easier and the results more predictable. But pro-
gramming science isn’t yet that advanced and may never be. The most challenging
part of programming is conceptualizing the problem, and many errors in program-
ming are conceptual errors. Because each program is conceptually unique, it’s difficult
or impossible to create a general set of directions that lead to a solution in every case.
Thus, knowing how to approach problems in general is at least as valuable as knowing
specific solutions for specific problems.

How do you use software metaphors? Use them to give you insight into your program-
ming problems and processes. Use them to help you think about your programming
activities and to help you imagine better ways of doing things. You won’t be able to
look at a line of code and say that it violates one of the metaphors described in this
chapter. Over time, though, the person who uses metaphors to illuminate the soft-
ware-development process will be perceived as someone who has a better understand-
ing of programming and produces better code faster than people who don’t use them.

2.3 Common Software Metaphors 13

2.3 Common Software Metaphors

A confusing abundance of metaphors has grown up around software development.
David Gries says writing software is a science (1981). Donald Knuth says it's an art
(1998). Watts Humphrey says it’s a process (1989). P. J. Plauger and Kent Beck say it’s
like driving a car, although they draw nearly opposite conclusions (Plauger 1993,
Beck 2000). Alistair Cockburn says it’s a game (2002). Eric Raymond says it’s like a
bazaar (2000). Andy Hunt and Dave Thomas say it’s like gardening. Paul Heckel says
it’s like filming Snow White and the Seven Dwarfs (1994). Fred Brooks says that it’s like
farming, hunting werewolves, or drowning with dinosaurs in a tar pit (1995). Which
are the best metaphors?

Software Penmanship: Writing Code

HARD DATA

The most primitive metaphor for software development grows out of the expression

“writing code.” The writing metaphor suggests that developing a program is like writing
a casual letter—you sit down with pen, ink, and paper and write it from start to finish. It
doesn’t require any formal planning, and you figure out what you want to say as you go.

Many ideas derive from the writing metaphor. Jon Bentley says you should be able to
sit down by the fire with a glass of brandy, a good cigar, and your favorite hunting dog
to enjoy a “literate program” the way you would a good novel. Brian Kernighan and
P.J. Plauger named their programming-style book The Elements of Programming Style
(1978) after the writing-style book The Elements of Style (Strunk and White 2000).
Programmers often talk about “program readability.”

For an individual’s work or for small-scale projects, the letter-writing metaphor works
adequately, but for other purposes it leaves the party early—it doesn’t describe soft-
ware development fully or adequately. Writing is usually a one-person activity,
whereas a software project will most likely involve many people with many different
responsibilities. When you finish writing a letter, you stuff it into an envelope and mail
it. You can’t change it anymore, and for all intents and purposes it's complete. Soft-
ware isn’t as difficult to change and is hardly ever fully complete. As much as 90 per-
cent of the development effort on a typical software system comes after its initial
release, with two-thirds being typical (Pigoski 1997). In writing, a high premium is
placed on originality. In software construction, trying to create truly original work is
often less effective than focusing on the reuse of design ideas, code, and test cases
from previous projects. In short, the writing metaphor implies a software-develop-
ment process that’s too simple and rigid to be healthy.

14 Chapter 2: Metaphors for a Richer Understanding of Software Development

Plan to throw one away; you
will, anyhow.
—rFred Brooks

If you plan to throw one
away, you will throw away
two.

—Craig Zerouni

Unfortunately, the letter-writing metaphor has been perpetuated by one of the most

popular software books on the planet, Fred Brooks’s The Mythical Man-Month (Brooks
1995). Brooks says, “Plan to throw one away; you will, anyhow.” This conjures up an
image of a pile of half-written drafts thrown into a wastebasket, as shown in Figure 2-1.

Figure 2-1 The letter-writing metaphor suggests that the software process relies on expen-
sive trial and error rather than careful planning and design.

Planning to throw one away might be practical when you’re writing a polite how-do-
you-do to your aunt. But extending the metaphor of “writing” software to a plan to
throw one away is poor advice for software development, where a major system
already costs as much as a 10-story office building or an ocean liner. It’s easy to grab
the brass ring if you can afford to sit on your favorite wooden pony for an unlimited
number of spins around the carousel. The trick is to get it the first time around—or to
take several chances when they're cheapest. Other metaphors better illuminate ways
of attaining such goals.

Software Farming: Growing a System

0

KEY POINT
Further Reading For an
illustration of a different
farming metaphor, one that's
applied to software mainte-
nance, see the chapter “On
the Origins of Designer Intu-
ition" in Rethinking Systems
Analysis and Design (Wein-
berg 1988).

In contrast to the rigid writing metaphor, some software developers say you should

envision creating software as something like planting seeds and growing crops. You

design a piece, code a piece, test a piece, and add it to the system a little bit at a time.
By taking small steps, you minimize the trouble you can get into at any one time.

Sometimes a good technique is described with a bad metaphor. In such cases, try to
keep the technique and come up with a better metaphor. In this case, the incremental
technique is valuable, but the farming metaphor is terrible.

The idea of doing a little bit at a time might bear some resemblance to the way crops
grow, but the farming analogy is weak and uninformative, and it’s easy to replace with
the better metaphors described in the following sections. It’s hard to extend the farm-
ing metaphor beyond the simple idea of doing things a little bit at a time. If you buy
into the farming metaphor, imagined in Figure 2-2, you might find yourself talking
about fertilizing the system plan, thinning the detailed design, increasing code yields
through effective land management, and harvesting the code itself. You'll talk about

2.3 Common Software Metaphors 15

rotating in a crop of C++ instead of barley, of letting the land rest for a year to increase
the supply of nitrogen in the hard disk.

The weakness in the software-farming metaphor is its suggestion that you don’t have
any direct control over how the software develops. You plant the code seeds in the
spring. Farmer’s Almanac and the Great Pumpkin willing, youwll have a bumper crop of
code in the fall.

Figure 2-2 It's hard to extend the farming metaphor to software development
appropriately.

Software Oyster Farming: System Accretion

Cross-Reference For details
on how to apply incremental
strategies to system integra-
tion, see Section 29.2, “Inte-
gration Frequency—Phased
or Incremental?”

Sometimes people talk about growing software when they really mean software accre-
tion. The two metaphors are closely related, but software accretion is the more insight-
ful image. “Accretion,” in case you don’t have a dictionary handy, means any growth or
increase in size by a gradual external addition or inclusion. Accretion describes the
way an oyster makes a pearl, by gradually adding small amounts of calcium carbonate.
In geology, “accretion” means a slow addition to land by the deposit of waterborne
sediment. In legal terms, “accretion” means an increase of land along the shores of a
body of water by the deposit of waterborne sediment.

This doesn’t mean that you have to learn how to make code out of waterborne sedi-
ment; it means that you have to learn how to add to your software systems a small
amount at a time. Other words closely related to accretion are “incremental,” “itera-
tive,” “adaptive,” and “evolutionary.” Incremental designing, building, and testing are
some of the most powerful software-development concepts available.

» o«

In incremental development, you first make the simplest possible version of the sys-
tem that will run. It doesn’t have to accept realistic input, it doesn’t have to perform

realistic manipulations on data, it doesn’t have to produce realistic output—it just has
to be a skeleton strong enough to hold the real system as it’s developed. It might call
dummy classes for each of the basic functions you have identified. This basic begin-

ning is like the oyster’s beginning a pearl with a small grain of sand.

After you've formed the skeleton, little by little you lay on the muscle and skin. You
change each of the dummy classes to real classes. Instead of having your program

16 Chapter 2: Metaphors for a Richer Understanding of Software Development

pretend to accept input, you drop in code that accepts real input. Instead of having
your program pretend to produce output, you drop in code that produces real output.
You add a little bit of code at a time until you have a fully working system.

The anecdotal evidence in favor of this approach is impressive. Fred Brooks, who in
1975 advised building one to throw away, said that nothing in the decade after he
wrote his landmark book The Mythical Man-Month so radically changed his own
practice or its effectiveness as incremental development (1995). Tom Gilb made the
same point in his breakthrough book, Principles of Software Engineering Management
(1988), which introduced Evolutionary Delivery and laid the groundwork for much
of today’s Agile programming approach. Numerous current methodologies are based
on this idea (Beck 2000, Cockburn 2002, Highsmith 2002, Reifer 2002, Martin
2003, Larman 2004).

As ametaphor, the strength of the incremental metaphor is that it doesn’t overpromise.
It's harder than the farming metaphor to extend inappropriately. The image of an oyster
forming a pearl is a good way to visualize incremental development, or accretion.

Software Construction: Building Software

D

o

) M

™
KEY POINT

The image of “building” software is more useful than that of “writing” or “growing”
software. It’s compatible with the idea of software accretion and provides more
detailed guidance. Building software implies various stages of planning, preparation,
and execution that vary in kind and degree depending on what’s being built. When
you explore the metaphor, you find many other parallels.

Building a four-foot tower requires a steady hand, a level surface, and 10 undamaged
beer cans. Building a tower 100 times that size doesn’t merely require 100 times as
many beer cans. It requires a different kind of planning and construction altogether.

If you're building a simple structure—a doghouse, say—you can drive to the lumber
store and buy some wood and nails. By the end of the afternoon, you'll have a new
house for Fido. If you forget to provide for a door, as shown in Figure 2-3, or make
some other mistake, it’s not a big problem; you can fix it or even start over from the
beginning. All you've wasted is part of an afternoon. This loose approach is appropri-
ate for small software projects too. If you use the wrong design for 1000 lines of code,
you can refactor or start over completely without losing much.

2.3 Common Software Metaphors 17

Figure 2-3 The penalty for a mistake on a simple structure is only a little time and maybe
some embarrassment.

If you're building a house, the building process is more complicated, and so are the
consequences of poor design. First you have to decide what kind of house you want to
build—analogous in software development to problem definition. Then you and an
architect have to come up with a general design and get it approved. This is similar to
software architectural design. You draw detailed blueprints and hire a contractor. This
is similar to detailed software design. You prepare the building site, lay a foundation,
frame the house, put siding and a roof on it, and plumb and wire it. This is similar to
software construction. When most of the house is done, the landscapers, painters,
and decorators come in to make the best of your property and the home you've built.
This is similar to software optimization. Throughout the process, various inspectors
come to check the site, foundation, frame, wiring, and other inspectables. This is sim-
ilar to software reviews and inspections.

Greater complexity and size imply greater consequences in both activities. In building
a house, materials are somewhat expensive, but the main expense is labor. Ripping
out a wall and moving it six inches is expensive not because you waste a lot of nails
but because you have to pay the people for the extra time it takes to move the wall. You
have to make the design as good as possible, as suggested by Figure 2-4, so that you
don’t waste time fixing mistakes that could have been avoided. In building a software
product, materials are even less expensive, but labor costs just as much. Changing a
report format is just as expensive as moving a wall in a house because the main cost
component in both cases is people’s time.

18

Chapter 2: Metaphors for a Richer Understanding of Software Development

Figure 2-4 More complicated structures require more careful planning.

What other parallels do the two activities share? In building a house, you won’t try to
build things you can buy already built. Yow'll buy a washer and dryer, dishwasher,
refrigerator, and freezer. Unless you're a mechanical wizard, you won’t consider build-
ing them yourself. You'll also buy prefabricated cabinets, counters, windows, doors,
and bathroom fixtures. If you're building a software system, yow'll do the same thing.
You'll make extensive use of high-level language features rather than writing your own
operating-system-level code. You might also use prebuilt libraries of container classes,
scientific functions, user interface classes, and database-manipulation classes. It gen-
erally doesn’t make sense to code things you can buy ready-made.

If you're building a fancy house with first-class furnishings, however, you might have
your cabinets custom-made. You might have a dishwasher, refrigerator, and freezer
builtin to look like the rest of your cabinets. You might have windows custom-made in
unusual shapes and sizes. This customization has parallels in software development.
If you're building a first-class software product, you might build your own scientific
functions for better speed or accuracy. You might build your own container classes,
user interface classes, and database classes to give your system a seamless, perfectly
consistent look and feel.

Both building construction and software construction benefit from appropriate levels
of planning. If you build software in the wrong order, it’s hard to code, hard to test,
and hard to debug. It can take longer to complete, or the project can fall apart because
everyone’s work is too complex and therefore too confusing when it’s all combined.

Careful planning doesn’t necessarily mean exhaustive planning or over-planning. You
can plan out the structural supports and decide later whether to put in hardwood
floors or carpeting, what color to paint the walls, what roofing material to use, and so

Further Reading For some
good comments about

extending the construction
metaphor, see “What Sup-

2.3 Common Software Metaphors 19

on. A well-planned project improves your ability to change your mind later about
details. The more experience you have with the kind of software you're building, the
more details you can take for granted. You just want to be sure that you plan enough
so that lack of planning doesn’t create major problems later.

The construction analogy also helps explain why different software projects benefit
from different development approaches. In building, you'd use different levels of plan-
ning, design, and quality assurance if you're building a warehouse or a toolshed than if
you're building a medical center or a nuclear reactor. You'd use still different approaches
for building a school, a skyscraper, or a three-bedroom home. Likewise, in software you
might generally use flexible, lightweight development approaches, but sometimes you’ll
need rigid, heavyweight approaches to achieve safety goals and other goals.

Making changes in the software brings up another parallel with building construc-
tion. To move a wall six inches costs more if the wall is load-bearing than if it's merely
a partition between rooms. Similarly, making structural changes in a program costs
more than adding or deleting peripheral features.

Finally, the construction analogy provides insight into extremely large software projects.
Because the penalty for failure in an extremely large structure is severe, the structure has
to be over-engineered. Builders make and inspect their plans carefully. They build in
margins of safety; it’s better to pay 10 percent more for stronger material than to have a
skyscraper fall over. A great deal of attention is paid to timing. When the Empire State
Building was built, each delivery truck had a 15-minute margin in which to make its
delivery. If a truck wasn’t in place at the right time, the whole project was delayed.

Likewise, for extremely large software projects, planning of a higher order is needed
than for projects that are merely large. Capers Jones reports that a software system
with one million lines of code requires an average of 69 kinds of documentation
(1998). The requirements specification for such a system would typically be about
4000-5000 pages long, and the design documentation can easily be two or three
times as extensive as the requirements. It’s unlikely that an individual would be able
to understand the complete design for a project of this size—or even read it. A greater
degree of preparation is appropriate.

We build software projects comparable in economic size to the Empire State Building,
and technical and managerial controls of similar stature are needed.

The building-construction metaphor could be extended in a variety of other directions,
which is why the metaphor is so powerful. Many terms common in software develop-
ment derive from the building metaphor: software architecture, scaffolding, construc-

portsthe Roof?” (Starr 2003). tion, foundation classes, and tearing code apart. You'll probably hear many more.

20 Chapter 2: Metaphors for a Richer Understanding of Software Development

Applying Software Techniques: The Intellectual Toolbox

)
O
o "N
KEY POINT

Cross-Reference For details
on selecting and combining
methods in design, see Sec-
tion 5.3, “Design Building
Blocks: Heuristics”

People who are effective at developing high-quality software have spent years accumu-
lating dozens of techniques, tricks, and magic incantations. The techniques are not
rules; they are analytical tools. A good craftsman knows the right tool for the job and
knows how to use it correctly. Programmers do, too. The more you learn about pro-
gramming, the more you fill your mental toolbox with analytical tools and the knowl-
edge of when to use them and how to use them correctly.

In software, consultants sometimes tell you to buy into certain software-development
methods to the exclusion of other methods. That's unfortunate because if you buy
into any single methodology 100 percent, youw'll see the whole world in terms of that
methodology. In some instances, you'll miss opportunities to use other methods bet-
ter suited to your current problem. The toolbox metaphor helps to keep all the meth-
ods, techniques, and tips in perspective—ready for use when appropriate.

Combining Metaphors

D
=
@; L[]
. RN
KEY POINT

Because metaphors are heuristic rather than algorithmic, they are not mutually exclu-
sive. You can use both the accretion and the construction metaphors. You can use
writing if you want to, and you can combine writing with driving, hunting for were-
wolves, or drowning in a tar pit with dinosaurs. Use whatever metaphor or combina-
tion of metaphors stimulates your own thinking or communicates well with others on
your team.

Using metaphors is a fuzzy business. You have to extend them to benefit from the
heuristic insights they provide. But if you extend them too far or in the wrong direc-
tion, they’ll mislead you. Just as you can misuse any powerful tool, you can misuse
metaphors, but their power makes them a valuable part of your intellectual toolbox.

Additional Resources

cc2e.com/0285

Among general books on metaphors, models, and paradigms, the touchstone book is
by Thomas Kuhn.

Kuhn, Thomas S. The Structure of Scientific Revolutions, 3d ed. Chicago, IL: The Univer-
sity of Chicago Press, 1996. Kuhn'’s book on how scientific theories emerge, evolve, and
succumb to other theories in a Darwinian cycle set the philosophy of science on its ear
when it was first published in 1962. It’s clear and short, and it’s loaded with interesting
examples of the rise and fall of metaphors, models, and paradigms in science.

Floyd, Robert W. “The Paradigms of Programming.” 1978 Turing Award Lecture.
Communications of the ACM, August 1979, pp. 455-60. This is a fascinating discus-
sion of models in software development, and Floyd applies Kuhn'’s ideas to the topic.

Key Points

Key Points 21

Metaphors are heuristics, not algorithms. As such, they tend to be alittle sloppy.

Metaphors help you understand the software-development process by relating it
to other activities you already know about.

Some metaphors are better than others.

Treating software construction as similar to building construction suggests that
careful preparation is needed and illuminates the difference between large and
small projects.

Thinking of software-development practices as tools in an intellectual toolbox
suggests further that every programmer has many tools and that no single tool
is right for every job. Choosing the right tool for each problem is one key to
being an effective programmer.

Metaphors are not mutually exclusive. Use the combination of metaphors that
works best for you.

