
第

5
章

程 序 分 析

 摘要:程序分析是计算机科学中通过系统化方法研究程序行为、结构、性能或

安全性的技术,旨在理解、验证或优化软件。它通过自动化或半自动化的工具,帮
助开发者发现代码缺陷、提升效率、保障安全,并辅助复杂系统的维护。程序分析

是编译器设计、软件工程和安全领域的重要基础。本章拟重点介绍常见的各种程

序分析方法,包括控制流分析、数据流分析、抽象解释、符号执行、污点分析、关联

关系分析、依赖关系分析、因果关系分析、修改影响分析、修改传播分析等,旨在向

读者展示丰富多彩的程序分析方法。深入的学习需要结合推荐阅读完成。

􀳁 5.1 概 述

程序分析(ProgramAnalysis)是软件缺陷检测的主流方法之一,它通过自动

化或半自动化的工具,帮助开发者发现代码缺陷、提升效率、保障安全,并辅助复

杂系统的维护。例如,通过控制流分析可以发现程序代码、算法中隐含的死循环、
死锁、条件冲突等方面的缺陷;通过数据流分析可以发现变量定义和使用方面的

缺陷;通过修改影响分析可以确定缺陷的影响范围;通过依赖关系分析可以进行

缺陷根源分析和定位;通过因果关系分析可以发现代码中存在的因果关系缺陷、
逻辑关系缺陷等。

实际上,程序分析主要有以下五大方面的作用:①发现缺陷,识别潜在的逻辑

错误、内存泄漏、安全漏洞等;②优化性能,分析代码执行效率,定位瓶颈(如冗余

计算、低效算法);③验证正确性,确保程序行为符合预期(如并发程序的线程安全

性);④辅助重构,分析代码依赖关系,支持模块化或架构调整;⑤安全审计,检测

恶意代码或合规性问题(如未加密的敏感数据传输)。
根据是否需要运行被分析的程序,程序分析被划分成静态分析(Static

Analysis)和动态分析(DynamicAnalysis)两种技术。实际应用中,静态分析适合

在早期开发阶段快速发现代码问题,动态分析适合在测试阶段验证程序行为和性

能,而现代程序分析工具(如Coverity、KLEE等)通常会混合使用静态分析和动态

分析两种技术,即混合分析(HybridAnalysis)技术,通过符号执行(Symbolic
Execution)等提升程序分析效果。下面分别介绍一下静态分析、动态分析和混合

分析。
(1)静态分析:在不实际运行程序的情况下,通过分析代码、结构或文档来检

第5章 程序分析 63

查程序的行为和属性。简单来说就是只分析程序代码本身。除了能够检查并排除程序中的

安全漏洞和错误之外,静态分析的思想还可以被用于代码编译器来优化代码。为了实现代

码优化,软件工程师需要借助多种方法来进行静态分析,其中最重要的方法之一就是流分析

技术。流分析技术是一种比较传统的编译器优化技术,使用流分析技术可以在确定一个指

定程序的相对路径的同时,保证程序内容的真实性。流分析技术大体上分为数据流分析和

控制流分析,从逻辑关系上而言,控制流分析要先于数据流分析,起着先导性的作用。
(2)动态分析:在程序运行过程中,通过监控其行为和输出来分析程序的实际表现。

动态分析方法可以有效地挖掘由软件实现缺陷导致的软件漏洞、检测由软件隐藏功能导致

的软件后门,以及检测由恶意代码攻击引起的软件运行状态异常等等。动态分析的常用方

法主要包括动态执行监控、符号执行、Fuzz测试等。
(3)混合分析:一种结合静态分析和动态分析的技术,旨在提高程序分析的精度和效

率。这种方法首先通过静态分析获取初步的程序不变性信息,然后对静态分析结果中不确

定的部分进行动态分析,通过观察程序运行时各个对象的状态变化进行验证和补充。
静态分析和动态分析是两种互补的程序分析技术,各有各的优势,它们的比较如表5.1

所示。

表5.1 静态分析和动态分析比较

维 度 静态分析(StaticAnalysis) 动态分析(DynamicAnalysis)

执行时机 不运行程序(编译前) 运行程序(测试/运行时)

覆盖率 理论全覆盖(所有代码路径) 依赖测试用例(实际执行路径)

检测能力 语法错误、潜在漏洞、代码风格问题 运行时的错误、性能问题、内存泄漏

误报率 较高 较低

工具举例 ESLint、SonarQube VValgrind、GNUDebugger、Fuzzing工具

 在软件定义中我们知道:程序=指令+数据,意味着正常的程序中只有指令(即用程序

语言写的代码)和数据两种东西,其中指令控制程序的执行,形成控制程序执行的序列,又称

控制流(ControlFlow);数据是程序的处理对象,就是流动在程序中的各种变量,它们的取

值随着被定义、被使用而不停地在发生变化,形成数据流(DataFlow)。由于程序中只有控

制流和数据流这两种流,控制流分析(CFA)和数据流分析(DFA)显然是最根本的两种程序

分析技术,它们是任何其他程序分析技术的前提和基础。为此,我们先介绍控制流分析、数
据流分析,然后再介绍其他的程序分析技术,包括抽象解释(AbstractInterpretation)、符号

执行、污点分析(TaintAnalysis)、关系分析(RelationAnalysis)、依赖分析(Dependency
RelationshipAnalysis)、因果分析(Cause-EffectAnalysis)、修改影响分析、修改传播分析

(ChangePropagationAnalysis,CPA)等。

􀳁 5.2 控制流分析

5.2.1 什么是控制流分析

 控制流分析(CFA)是程序分析中的一种技术,主要用于研究程序代码的执行顺序和逻

64 软件全方位缺陷检测技术

辑路径。它通过分析程序中的控制结构(如条件分支、循环、函数调用等),推断程序在运行

时的可能行为,从而支持优化、错误检测或安全验证等任务。
在控制流分析过程中,有两个重要的核心概念:控制流结构和控制流图。其中,控制流

结构包括:顺序执行、条件分支(如if-else、switch)、循环(如for、while)和函数调用(可能涉

及跨函数的控制流跳转、过程间分析)。常见的控制流结构图如图5.1所示。

图5.1 常见的控制流结构图

控制流图(ControlFlowGraph,CFG)也叫控制流程图,由弗朗西斯·艾伦(FrancesE.
Allen)于1970年提出的,是程序分析中程序的一种图形化表示方法,用于描述程序在执行

过程中可能的控制流路径。CFG通过节点(基本块)和边(控制转移)展示代码的结构,广泛

应用于编译器优化、软件测试、漏洞检测等领域。CFG的基本块(BasicBlock)是一个满足

以下条件的连续执行的代码序列:①单一入口,只能从块的第一条指令进入;②单一出口,
只能从块的最后一条指令离开(如跳转、分支或函数返回);③内部无分支,块内没有跳转指

令或分支目标。CFG的边(Edge)表示基本块之间的控制转移关系,例如:①顺序执行,块

A执行后无条件进入块B;②条件分支,块A末尾是if语句,根据条件跳转到块B或块C;

③循环结构,块A末尾跳转到自身或之前的块,形成循环。

CFG的主要作用包括:①程序分析,检测死代码、不可达路径、循环复杂度等;②编译

器优化,如常量传播、死代码消除、循环展开;③测试覆盖,生成测试用例以覆盖所有分支或

路径;等等。

5.2.2 控制流图构造

正常情况下,控制流图的构造包含以下几个步骤。
步骤1:划分基本块(下面是一个示例代码片段)。

 1 //基本块 1

2 a = 1;

3 b = 2;

4 if (a > b) goto L1;

5

6 //基本块 2

7 c = a + b;

8 goto L2;

9

10 //基本块 3(标签 L1)

11 L1:

第5章 程序分析 65

 12 c = a - b;

13

14 //基本块 4(标签 L2)

15 L2:

16 return c;

(1)确定入口指令:①函数的起始指令;②跳转指令的目标标签(如L1:);③紧跟在

跳转指令后的指令(如if(x)gotoL1的下一条指令)。
(2)划分基本块:从入口指令开始,按顺序添加指令,直到遇到跳转指令或分支目标

指令。
步骤2:连接基本块(构建边)。①顺序执行:若块A的最后一条指令不是跳转语句,则

块A的下一个块是块B(按代码顺序)。②条件分支:若块A末尾是if(cond)gotoXelse
gotoY,则添加两条边:A→ X和 A→ Y。③无条件跳转:若块A末尾是gotoX,则添加

一条边 A→ X。④函数调用与返回:通常将函数调用视为顺序执行,但需注意调用后的返

回点(可能需特殊处理)。
步骤3:处理复杂结构。①循环:块末尾跳转到之前的块,形成环(如 while循环)。

②switch-case:每个case对应一个分支边。③异常处理:需用额外边表示异常跳转路径。
从程序的特点来看,控制流分析可分为两大类:过程内控制流分析和过程间控制流分

析。过程内控制流分析是对函数内部的程序运行流程的分析,过程间控制流分析是对函数

之间调用关系的分析,其中更为重要的是过程内的控制流分析。无论是过程内控制流分析,
还是过程间控制流分析,控制流图都是一种有效的手段。

5.2.3 过程内控制流分析

1.什么是过程内控制流分析

 过程内控制流分析(Intra-ProceduralControlFlowAnalysis)简称控制流分析(CFA),
是针对单个函数(或过程)内部的控制流路径进行静态分析的技术。它通过构建函数或过程

的CFG,识别代码的执行路径、分支、循环等结构,为编译器优化、代码质量检测和安全分析

提供基础。

CFA的主要作用包括:①理解代码执行逻辑,帮助明确函数内代码的执行顺序(如条

件分支、循环、跳转),识别所有可能的执行路径(例如if-else的不同分支)。②支持程序分

析与优化,包括发现不可达代码(DeadCode)或冗余逻辑、辅助编译器优化(如循环展开、常
量传播),以及发现潜在问题(如无限循环、空指针解引用)等。

2.过程内控制流分析流程

CFA主要包含三个主要步骤。
步骤1:构建控制流图(CFG)。①将函数拆分为基本块,每个块是连续执行的指令序

列;②用边连接基本块,表示控制转移(如顺序执行、条件分支、循环)。图5.2给出了一段

程序的控制流图示例。
步骤2:分析控制流路径。①分支路径:识别所有条件分支的可能走向(例如if的真/

假分支)。②循环结构:检测for、while等循环的入口和出口。③异常处理:跟踪try-catch
块中的异常传播路径(如Java的异常处理)。

66 软件全方位缺陷检测技术

图5.2 控制流图示例

步骤3:标记特殊节点。①入口节点:函数的起始基本块。②出口节点:函数的返回

或终止块(如return、throw)。③交汇点:多个分支汇聚的位置(如if-else后的共同代码)。

3.典型应用场景

CFA应用范围很广,其中典型的应用场景包括编译器优化、静态代码检测和测试覆盖

率分析等。
(1)编译器优化:可以进行如下编译器优化任务。①死代码消除:删除永远无法执行

到的代码。②循环优化:判断循环是否可展开或并行化。③常量折叠:分析条件分支是否

总为固定值(如if(true){…})。
(2)静态代码检测:可以进行如下检测任务。①检测不可达路径:可以发现无法进入

的分支(如if(false){…})。②检测资源泄漏:可以检查函数中是否存在未释放的资源(如
未关闭的文件句柄)。③检测安全漏洞:可以识别可能被攻击者利用的控制流(如未校验的

输入导致代码注入)。
(3)测试覆盖率分析:可以生成测试用例覆盖所有分支(分支覆盖)或路径(路径覆

盖),也可以统计已执行和未执行的代码块(如使用JaCoCo工具)。

CFA是理解单个函数逻辑的核心技术,通过构建CFG和路径分析,为优化代码、提高

安全性和生成测试用例提供关键支持,尽管面临间接跳转和路径爆炸等挑战,结合静态分析

与动态测试,仍能显著提升代码质量与可靠性。

5.2.4 过程间控制流分析

1.什么是过程间控制流分析

 过程间控制流分析(InterproceduralControlFlowAnalysis,ICFA)是在多个函数或方

法之间追踪控制流路径的分析技术。它通过分析函数调用关系、参数传递和返回值,构建跨

函数(跨过程)的控制流模型,以理解程序整体的执行逻辑。与CFA(仅关注单个函数)不
同,ICFA需要处理函数调用、递归、多态等复杂场景,是全局程序分析的核心技术。

ICFA的两个核心概念包括:①跨函数控制流,追踪函数调用链(如A()→B()→C()),分
析调用前后的代码执行路径;②参数与返回值影响,判断函数调用的输入参数如何影响被

调用函数的执行逻辑。

ICFA的主要作用包括:①识别跨函数的安全漏洞(如数据竞争、内存泄漏);②优化全

第5章 程序分析 67

局代码(如函数内联、跨过程常量传播);③支持程序理解(如逆向工程中还原调用关系)。
与CFA不同的是,ICFA难度更大、复杂度更高,面临的挑战更多,典型的挑战如下。
(1)函数调用复杂性:①直接调用,如A()显式调用B(),静态可解析;②间接调用,如

函数指针、虚方法(C++/Java)、反射(Java/Python),需动态或上下文敏感分析(Context-
SensitiveAnalysis);③递归调用:需处理循环调用链(如A()→ A())的终止条件。

(2)路径爆炸:多个函数组合调用可能导致路径数量指数级增长。例如,函数A()调
用B()和C(),每个函数内部又有分支。

(3)上下文敏感性:同一函数在不同调用位置的上下文(如参数、全局变量)可能不同,
需区分不同调用场景。例如,B(x =1)和B(x =2)的执行路径可能完全不同。

2.过程间控制流分析流程

步骤1:构建调用图(CallGraph)。调用图的节点为函数,边表示调用关系(如 A →
B)。构建方法包括:①静态分析,基于语法解析(如识别call语句),但对间接调用可能不精

确;②动态分析,通过运行时插桩(如gprof)记录实际调用链,但依赖测试用例覆盖;③混

合分析,结合静态推断和动态反馈(如机器学习预测高频调用路径)。
步骤2:构建过程间控制流图(InterproceduralCFG,ICFG)。ICFG 的结构是将多个

函数的CFG通过调用边(CallEdges)和返回边(ReturnEdges)连接起来。其中,调用边指

从调用点(如A()中的callB())到被调用函数入口(B()的入口块),返回边指从被调用函数

出口(B()的return)返回到调用点的下一指令(A()中callB()之后)。图5.3表示一种过

程间控制流图,其中,节点表示基本模块(或程序语句),实线仍然表示控制流边,圆点虚线表

示调用边,短虚线表示返回边。

图5.3 过程间控制流图示例

步骤3:上下文敏感分析。目的是区分同一函数在不同调用上下文中的行为。实现方

式包括:①调用栈记录,为每个函数调用分配唯一标识(如调用链A()→B()→C()的上下

文);②摘要(Summary),为函数生成输入/输出影响的抽象表示(如参数x>0时返回值y
的范围)。

68 软件全方位缺陷检测技术

3.典型应用场景

ICFA应用范围很广,其中典型的应用场景包括全局死代码消除、数据流分析、安全漏

洞检测和性能优化等。
(1)全局死代码消除:发现未被任何函数调用的代码(如未使用的私有方法)。
(2)数据流分析:跨函数追踪变量传播(如全局变量在多个函数间的修改)。
(3)安全漏洞检测:①内存泄漏,检查资源分配(malloc())和释放(free())是否跨函数

匹配;②SQL注入,追踪用户输入从readInput()到executeQuery()的路径。
(4)性能优化:①内联优化,将高频调用的短函数内联到调用点,减少调用开销;②跨

过程常量传播,若某函数参数始终为常量,直接替换为常量值。

ICFA通过追踪跨函数调用关系,扩展了程序分析的覆盖范围,是程序化、安全保障和

逆向工程的关键技术。尽管ICFA面临间接调用和路径爆炸等挑战,结合上下文敏感分析

和现代工具(如LLVM、CodeQL),仍能有效解决复杂系统中的全局性问题。

5.2.5 过程内控制流分析和过程间控制流分析比较

CFA和ICFA是程序分析中的两种不同方法,它们在范围、复杂性、应用场景等方面存

在显著差异。以下是对两者的详细比较。
(1)从分析范围的角度对比:①CFA仅关注单个函数(过程)内部的执行路径,目标是

构建函数内的控制流图(CFG),分析条件分支、循环、异常处理等结构,识别不可达代码或潜

在错误。例如:分析函数中的if-else、for循环或return语句的路径可能性。②ICFA的范

围跨越多个函数,分析函数调用(如A()→B()→C())及其相互影响,目标是构建整个程

序的控制流图(CFG),考虑函数调用的上下文(参数传递、返回值、副作用等)。例如:追踪

变量在多个函数间的状态变化(如全局变量、参数传递导致的空指针问题)。
(2)从复杂度与挑战的角度对比:①CFA的复杂度低,仅需处理单个函数的线性或分

支结构,无须考虑外部调用。面临的挑战是局部优化(如循环展开、死代码删除)容易实现,
但无法处理跨函数依赖。②ICFA的复杂度高,需处理递归、动态分发(如虚函数、函数指

针)、多线程等场景。面临的挑战包括:调用图构建,即确定所有可能的调用目标(如动态语

言中的函数指针);上下文敏感性,即区分不同调用位置的影响(如递归的不同层次);性能开

销,即全局分析可能导致指数级时间或空间复杂度。
(3)从应用场景角度对比:①CFA主要用于编译器优化,含局部死代码消除、寄存器分

配、基本块重排序;静态代码检查,即检测函数内的逻辑错误(如除零、未初始化变量);提升

代码覆盖率,生成函数内执行路径的测试用例。②ICFA主要用于全局优化(内联展开、跨
函数常量传播、逃逸分析)、安全漏洞检测(追踪跨函数的数据流,如SQL注入、缓冲区溢

出)、程序理解(可视化函数调用关系,分析系统级行为)。
(4)从性能与精度权衡角度对比:①CFA的优点是快速、低开销,适合实时或大规模代

码的初步检查;缺点是可能遗漏跨函数问题(如参数传递导致的空指针)。②ICFA的优点

是全面性高,能发现复杂交互导致的问题;缺点是资源消耗大,需在精度与效率间权衡(如上

下文敏感或不敏感)。

CFA和ICFA的对比如表5.2所示。

第5章 程序分析 69

表5.2 CFA和ICFA的对比

维 度 过程内控制流分析(CFA) 过程间控制流分析(ICFA)

分析范围 单个函数 跨函数调用

复杂度 低 高(需处理递归、动态绑定等)

适用场景 局部优化、简单错误检测 全局优化、安全漏洞分析

性能 高效 取决于资源

精度 受限于函数边界 更全面,但依赖上下文处理策略

 实际应用中,二者常结合使用:先通过ICFA确定关键调用链路,再针对特定函数进行

深度CFA。

􀳁 5.3 数据流分析

5.3.1 什么是数据流分析

 数据流分析(DFA)是程序分析中的一种技术,旨在追踪程序中数据的定义、使用和传

播过程,分析变量或表达式在程序执行时的可能状态(如值、生命周期、依赖关系等)。它通

过静态或动态方法,推导数据在程序中的流动路径,从而支持代码优化、错误检测和安全

验证。
数据流(DataFlow)是一组有序的有起点和终点的由变量的定义及使用产生的序列,包

括输入流和输出流两种。其中,①变量定义(DEF):将数据存储起来,存储单元的内容改

变。②变量使用(USE):将数据取出来,存储单元的内容不变。
数据流图(DataFlowGraph,DFG):程序的数据流图也称为DEF-USE图,它勾画了

程序中变量在不同基本块间的定义和使用流。
(1)用DEF[i]表示在基本块i中定义的变量集合。程序中的变量声明、赋值语句、输入

语句和传址调用都可以用来定义变量。
(2)用USE[i]表示在基本块i中有使用的变量集合。其中,C-USE[i]表示在基本块i中

计算使用(C-USE)的变量集合;P-USE[i]表示在基本块i中谓词使用(P-USE)的变量集合。变

量的C-USE表示该变量被用在赋值语句表达式、下标表达式、输出语句中,或者被当做参数传

递给调用函数;变量的P-USE表示该变量被用在条件表达式中(如if和while语句)。

5.3.2 数据流图构造

正常情况下,数据流图的构造包含以下几个步骤。
步骤1:计算DFG中每个基本块i的DEF[i]、C-USE[i]和P-USE[i]。
步骤2:将节点集N中的每个节点i(每个节点对应DFG中的一个基本块)与DEF[i]、

C-USE[i]和P-USE[i]关联起来。
步骤3:针对每个具有非空P-USE集并且在条件C处结束的节点i,如果条件C为真

时执行的是边(i,j),C为假时执行的是边(i,k),分别将边(i,j)和(i,k)与C、! C关联

起来。

70 软件全方位缺陷检测技术

DEF-USE对:勾画了变量的一次特定的定义和使用。我们只关心两种类型的DEF-
USE对:一种是由定义及其C-USE构成的DEF-USE对,另一种是由定义及其P-USE构

成的DEF-USE对,分别用集合DCU和DPU来描述这两类DEF-USE对。

DEF-clear路径:假设变量x在节点i中定义(记作Di(x)),在节点j中使用,考虑路径

p=(i,n1,n2,...,nk,j),k≥0,路径p从节点i开始,结束于节点j,并且节点i、j在子路

径n1,n2,...,nk中未出现,如果变量x没有在子路径n1,n2,...,nk中被重定义,称p是

变量x的DEF-clear路径。在这种情况下,也称x在节点i处的定义,即Di(x)在节点j处是

活跃的。
常见的变量定义和使用缺陷包括:①变量被定义了,但从来没有被使用;②使用的变

量没有被定义;③变量在使用之前被多次定义。
通过数据流分析和数据流测试可以发现这些数据流缺陷。
数据流测试:根据代码中变量的使用情况进行的测试,主要关注软件中的数据定义和

使用。数据流测试的详细内容参见本书第7章。
下面介绍常见的数据流分析,包括可到达定义分析、变量活性分析、可用表达式分析、不

可达路径分析和过程间数据流分析等。

5.3.3 过程内数据流分析

过程内数据流分析(Intra-proceduralDataFlowAnalysis)简称数据流分析(DFA),是

一种静态程序分析技术,专注于在单个函数或过程内部追踪数据的定义、使用和传播,以推

断程序执行时的数据状态变化。它不涉及跨函数调用的分析(如参数传递、返回值或全局变

量影响),仅关注当前函数或过程内的控制流和数据流关系。

DFA的主要作用包括:①变量状态推断:分析变量在函数内的定义(赋值)和使用情

况,例如:确定变量在某一节点是否已被初始化,或者检测变量是否在未被定义前就被使用

(如未初始化错误)。②优化与验证:支持编译器优化(如删除冗余赋值、常量传播),发现潜

在缺陷(如内存泄漏、不可达代码)。③路径敏感分析:根据控制流分支(如if/else)推断不

同路径下的数据状态。

DFA面临的挑战与局限性有:①循环处理:循环结构可能导致数据流方程需要多次迭

代才能收敛。例如:循环中变量的重复赋值需通过迭代确定最终状态。②路径敏感性不

足:若分析不考虑具体分支条件(如if(x>0)),结果可能过于保守。可以结合符号执行或

路径敏感分析进行改进。③指针与别名问题:若函数内存在指针操作,需额外分析指针指

向关系。例如:*p=10可能修改多个变量的值。
一些典型的DFA应用场景包括:①编译器优化:删除死代码(如未被使用的变量赋

值),常量折叠(如将2+3替换为5)。②静态代码检查:检测未初始化变量、冗余代码,发
现潜在错误(如除零风险)。③安全分析:追踪敏感数据(如密码)在函数内的传播路径,防
止泄露。

DFA的主要类型包括:可到达定义分析、变量活性分析、可用表达式分析、不可达路径

分析以及常量传播。其中,常量传播(ConstantPropagation)推断变量是否为常量值,并替

换变量为常量以优化代码。例如:下面的C代码中存在常量传播现象。

第5章 程序分析 71

 1 const int a = 100;

2 int b = a * 2; //可优化为 int b = 200;

1.可到达定义分析

可到达定义(ReachingDefinition):简单地讲,分析某个变量的定义(如赋值语句)能到

达哪些使用点。准确地讲,在节点p的一个定义d,到节点q是可达的,当且仅当这个定义

在从p到q的所有路径上不会被重新定义(即被Kill了)。例如,在图5.4中,节点1处定义

了j=0和k=0,对节点6来说,j的这个定义是可到达的,k的这个定义就不是可到达的,
因为k在节点4或者节点5被重新定义了,在节点1的定义被Kill了。图5.4中节点编号

和节点编号是不一致的。

图5.4 可到达定义示例

2.变量活性分析

变量活性分析用于判断变量在某个节点是否可能被后续代码使用。具体来讲,如果节

点p处的变量v可以在控制流图中以p为起始点的某条路径中被使用,则称其在节点p上

是活跃的(Live),否则是死的(Dead)。也可以说,程序在某个节点时,如果存在一段程序可

执行,稍后读取一个变量而不在其间写入该变量,则该变量在这个节点是活跃的。例如,在
图5.4中,变量j在节点1被定义,在节点3被使用,而其间没有重新定义,因此称变量j在

节点4(及节点3处)是活跃的。而在节点6被重新定义了,之前在节点1定义的变量j在节

点6之后就是死的。

3.可用表达式分析

可用表达式(AvailableExpressions)是编译原理和数据流分析中的一个重要概念,主要

用于优化编译器中的公共子表达式消除(CommonSubexpressionElimination,CSE)。它

的核心作用是识别程序中哪些表达式(例如a+b或x*y)在某个节点(如基本块入口/出

口)是可用的(即之前已被计算且未被修改),从而避免重复计算。
也就是说,在程序执行到某个位置时,如果一个表达式的结果在之前的所有路径上已经

被计算过,并且其操作数在之后未被修改,则该表达式在此位置是可用的。可用表达式具有

两个重要性质:①可用性。表达式的结果可以直接复用,无须重新计算;②安全性:复用不

会导致错误(例如操作数未被修改)。
下面是一个可用表达式的代码示例,对语句6来说,a+b就是可用表达式。

