µÚ1½² ÊýÁеļ«ÏÞ£º¸ÅÄî¡¢Ö¤Ã÷¡¢ÐÔÖÊÓë¼ÆËã¹ØÓÚÊýÁеĻù±¾ÄÚÈÝÒÔ¼°µÈ²î¡¢µÈ±ÈÊýÁеÄÐÔÖÊ£¬Çë²Î¿´È˽ÌB°æ½Ì²Ä£¬±¾ÎIJ»ÔÙ׸Êö¡£ ¹ØÓÚÊýÁеĸÅÄÓÐÈçϼ¸µãÐèҪעÒâ¡£ £¨1£© ÊýÁÐÊÇÒ»ÁÐÓÐÐòµÄÊý£¬Õâ¸ö¡°Êý¡±¿ÉÒÔÊÇʵÊý£¬¿ÉÒÔÊǸ´Êý¡£ £¨2£© Ò»¸öÊýÁи÷ÏîÖ®¼äÓмȶ¨µÄ˳Ðò£¬¸Ä±äÁËÕâ¸ö˳Ðò£¬¾Í³ÉÁËÁíÒ»¸öÊýÁС£ £¨3£© ÊýÁв»Ò»¶¨ÒªÓйæÂÉ£¬¿ÉÒÔÊǺÜËæ»úµÄÒ»ÁÐÊý¡£ £¨4£© ÊýÁеıíʾÓÐÁ½ÖÖ£ºÊýÁÐͨÏʽ£¬ÒÔ¼°´ø³õʼÏîµÄµÝÍÆ¹«Ê½¡£È±Ê§Á˳õʼÏîµÄµÝÍÆ¹«Ê½´ú±í×ÅÕâ×éÊýÁв¢²»ÊÇΨһµÄ¡£ ΪʲôҪÑо¿ÊýÁУ¿ ÊýÁÐÊÇÒÔÒ»ÖÖ×ÔÈ»µÄ·½Ê½¶ÔÏÖÏóµÄ¼Ç¼¡ª¡ªÕâ¸ö¡°×ÔÈ»µÄ·½Ê½¡±ÊÇÖ¸¡°°´ÕÕ¹Û²âµÄ´ÎÐò¡±£¬Õâ¸ö¡°ÏÖÏ󡱿ÉÒÔÓÉ×ÔÈ»»úÖÆËù¾ö¶¨£¬Ò²¿ÉÒÔÓÉÂß¼­»úÖÆ¾ö¶¨£¬¶þÕߺܶàʱºòÓÐËù½»²æ¡£Ñо¿ÊýÁУ¬ÆäʵÊÇÔÚ½èÖúÊýѧȥÑо¿±»¼Ç¼ÏÂÀ´µÄÐÅÏ¢£¬ÒÔÇó½øÒ»²½¿´ÇåÏÖÏó¡£ Àý1ª²1 СÃ÷ϲ»¶³ÔÆ»¹û£¬µ«Ã¿Ìì³Ô¼¸¸ö²»Ò»¶¨¡£½«Ð¡Ã÷´Ó³öÉú¿ªÊ¼µÚnÌì³ÔÆ»¹ûµÄÊýÁ¿an¼Ç¼ÏÂÀ´£¬ÕâÑù¾ÍÐγÉÁËÒ»¸öÊýÁÐ{an}¡£ºÜÈÝÒ×´Óʵ¼ÊÇé¿ö¿´³öan¡Êÿðþ½‹£¬ÇÒÊýÁÐ{an}ΪÓÐÇîÊýÁС££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£©Õâ¸öÊýÁÐÖпÉÄÜÔ̺¬×ÅÄÄЩÐÅÏ¢ÄØ£¿ ÏÔÈ»£¬Ð¡Ã÷²»¿ÉÄÜ´Ó³öÉúµÚÒ»Ì쿪ʼ¾Í³ÔÆ»¹û£¬ËùÒÔÕÒµ½×îСµÄʹan£¾0µÄϱên£¬¾ÍÕÒµ½ÁËСÃ÷¿ªÊ¼³ÔÆ»¹ûµÄµÚÒ»ÌìÔÚËûÉúÃüÀïµÄλÖá£ÁíÍ⣬СÃ÷ÿÌì³ÔµÄÆ»¹ûµÄÊýÁ¿ÊÇ·ñËæÄêÁäµÄÔö³¤¶øÔö³¤£¿ÊÇ·ñÊdzÖÐøµØÔö³¤£¿ÊÇ·ñµ½´ïÒ»¶¨ÄêÁäºóÿÌì³ÔµÄÆ»¹ûµÄÊýÁ¿Ç÷ÓÚÎȶ¨£¿Ð¡Ã÷ÿÌì×î¶à³Ô¼¸¸öÆ»¹û£¿ÕâЩÐÅÏ¢¶¼¿ÉÒÔ´ÓÊýÁÐ{an}ÖÐÕÒµ½¡£ ÉÏÊöÊýÁÐ{an}Öаüº¬ÁËСÃ÷ÿÌì³ÔµÄÆ»¹ûÊýÁ¿µÄÒ»ÇÐÐÅÏ¢¡£µ«ÊÇÓеÄÐÅÏ¢ÎÒÃDZØÐëÒªµÈСÃ÷ÕâÒ»Éú½áÊøÖ®ºó²ÅÄܵõ½£¬±ÈÈ硰СÃ÷ÿÌì×î¶à³Ô¼¸¸öÆ»¹û¡±¡£Õâ¶ÔÓÚ¹ØÐÄСÃ÷µÄÈËÀ´Ëµ£¬ÎÞÒÉÊDzпáµÄ¡£ ÊÂʵÉÏ£¬Èç¹ûСÃ÷ÿÌì³Ô¼¸¸öÆ»¹ûÊǾø¶ÔËæ»úµÄÐÐΪ£¬ÄÇôÎÒÃÇÖ»ÄܽÓÊÜÕâ¸ö²Ð¿áµÄÏÖʵ¡£µ«ÊÇ£¬Èç¹ûСÃ÷Êǰ´ÕÕij¸ö¹æÔòÀ´³ÔÆ»¹ûµÄ£¬ÄÇôÎÒÃǾͲ»±Ø·ÇÒªµÈµ½ËûµÄÒ»Éú½áÊøÖ®ºó£¬²ÅÖªÏþËû³ÔÆ»¹ûµÄºÜ¶àÐÅÏ¢¡£ Õâ¸ö¡°¹æÔò¡±¿ÉÒԺܸ´ÔÓ£¬ºÍÌìÆø¡¢ÐÄÇé¡¢½»Í¨Çé¿ö¡¢µ±ÌìÉÏÁËʲô¿Î¡¢µ±ÌìÂèÂè×öµÄÔç²ÍºÏ²»ºÏθ¿ÚµÈÏà¹Ø£»Ò²¿ÉÒԺܼòµ¥£¬±ÈÈçСÃ÷¸ø×Ô¼º¹æ¶¨´Ó6ËêÉúÈÕÄÇÌ쿪ʼ³ÔÆ»¹û£¬Ã¿¸öÁ¬ÐøµÄ3ÌìÇ¡ºÃ³Ô6¸öÆ»¹û¡£µ«ÊÇÎÞÂÛÔõÑù£¬Ö»ÒªÐ¡Ã÷ÖÆ¶¨µÄ¹æÔòÊÇÈ·¶¨µÄ£¬Éú³ÉµÄÊýÁÐ{an}¾ÍÄÜÒÀ¾ÝÕâ¸ö¹æÔòÕÒµ½Í¨Ïʽ£¬»òÕßÊǵÝÍÆ¹«Ê½¡£ ÀýÈ磬Èç¹ûСÃ÷¸ø×Ô¼º¹æ¶¨´Ó6ËêÉúÈÕÄÇÌ죨¼ÙÉèÊdzöÉúºóµÚ2190Ì죬2190=6¡Á365£©¿ªÊ¼³ÔÆ»¹û£¬Ã¿¸öÁ¬ÐøµÄ3ÌìÇ¡ºÃ³Ô6¸öÆ»¹û£¬ÄÇôÎÒÃǾÍÖªµÀ£º an=0, 1¡Ün¡Ü2189a2190=sa2191=tan=6£­an£­1£­an£­2, n¡Ý2192£¬n¡Êÿðþ½‹* ÆäÖÐ,1£¼s¡Ü6£¬0¡Üt¡Ü6£­s£¬s¡¢t¡Êÿðþ½‹£¨Ë¼¿¼£ºÎªÊ²Ã´£¿£©Îª²ÎÊý¡£ÕâÀïµÄµÝÍÆ¹ØÏµ´Óa2190¿ªÊ¼£¬s¡¢tΪÕâ¸öµÝÍÆ¹ØÏµÖгõʼÁ½ÏîµÄȡֵ¡£È·¶¨ÁËs¡¢t£¬Ò²¾ÍÈ·¶¨ÁËÊýÁÐ{an}¡£ ¼ÙÈçs=2£¬t=3£¬ÄÇô¾Í¿ÉÒÔµÃÖªa2192=6£­2£­3=1£¬½ø¶ø¿ÉµÃ£¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© an=2, n=2190+3k3, n=2191+3k1, n=2192+3k ,k¡Êÿðþ½‹ ÃæÏò½¨Ä£µÄÊýѧµÚ1½²ÊýÁеļ«ÏÞ£º¸ÅÄî¡¢Ö¤Ã÷¡¢ÐÔÖÊÓë¼ÆËãÕâÑùÒ»À´£¬²»Óõȵ½Ð¡Ã÷µÄÒ»Éú½áÊø£¬¾Í¿ÉÒÔÍÆËã³öËû½ñºóÈκÎÒ»Ìì³ÔµÄÆ»¹ûÊýÁ¿£¬Ò²¿ÉÒÔµÃ֪СÃ÷Ò»ÉúÿÌì×î¶à³Ô3¸öÆ»¹û¡£ Ò»¸öÓÐȤµÄÏÖÏóÊÇ£¬ÉÏÃæµÄÕâ¸ö{an}ÓÉÒ»¶ÔÓÐÐòµÄÕûÊý¶Ô(s,t)Ëù¾ö¶¨£¬ÕâÑùµÄÓÐÐòÕûÊý¶ÔËù¶ÔÓ¦µÄ×ø±ê¶¼·Ö²¼ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐÇøÓò 1¡Üx¡Ü60¡Üy¡Ü6£­x ÄÚµÄÕûµã£¨¼´ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©ÉÏ¡£Í¼1ª²1»­³öÁËÕâЩÕûµã¡£ ͼ1ª²1ÇøÓò1¡Üx¡Ü60¡Üy¡Ü6£­xÖÐµÄ Õûµãͼ °´ÕÕСÃ÷ÖÆ¶¨µÄ¹æÔò£¬ËûÔÚ¡°Ã¿Ìì³ÔµÄÆ»¹ûµÄÊýÁ¿¡±Õâ¼þÊÂÉϵÄÐÐΪ£¬Íêȫȡ¾öÓÚÕûÊý¶Ô(s,t)´¦ÓÚÄÄÒ»¸öÕûµãÉÏ¡£Õâ21¸öµã£¨Ë¼¿¼£ºÈçºÎ¼ÆËãµÄ£¿£©Ëù¹¹³ÉµÄ¼¯ºÏ£¬¹¹³ÉÁËÕâ¼þʵIJÎÊý¿Õ¼ä¡£ Àý1ª²2 ÉèÊýÁÐ{an}Âú×ãµÝÍÆ¹ØÏµan=£­13a2n£­1+1,n¡Ý2,n¡Êÿðþ½‹£¬a1=¦Á´ý¶¨¡£ÎÒÃÇÀ´·ÖÎöÕâ¸öÊýÁеÄÇ÷ÊÆ£¬ÒÔ¼°Ê×ÏîµÄÖµ¦Á¶ÔÆäµÄÓ°Ïì¡£ ¸ù¾ÝµÝÍÆ¹ØÏµ£¬ÈÝÒ×ÁгöÈçÏ·½³Ì×é an+1=£­a2n3+1an=£­a2n£­13+1,n¡Ý2,n¡Êÿðþ½‹ Á½Ê½Ïà¼õ¿ÉµÃ an+1£­an=£­a2n£­a2n£­13 an+1£­an=£­an+an£­13£¨an£­an£­1£©£¨1£© Èç¹û0£¼¦Á£¼1£¬Ôò¿ÉÖªan¡Ê£¨0,1£©£¬n¡Êÿðþ½‹*£¨Ë¼¿¼£ºÎªÊ²Ã´£¿£©£¬ÓÚÊÇ 0£¼an+an£­13¡Ü23£¨2£© ½áºÏ£¨1£©Ê½ºÍ£¨2£©Ê½£¬¿ÉµÃ£¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© an+1£­an£¼23an£­an£­1£¨3£© Õâ¸ö½á¹ûÒâζ×ÅËæ×ÅnµÄÔö´ó£¬ÊýÁеĺóÒ»ÏîÓëǰһÏîµÄ²îµÄ¾ø¶ÔÖµ»áÔ½À´Ô½Ð¡¡£Õâ¾ÍºÃÏñÒ»¸öÈËÑØÖ±Ïß¡°ÌøÎ衱£¬Ã¿Ò»²½¿ÉÄÜÏòǰ¿ÉÄÜÏòºó£¬µ«Ëæ×Åʱ¼äµÄÍÆÒÆ£¬Ã¿²½µÄ¿ç¶ÈÔ½À´Ô½Ð¡¡£Ò»¸ö×ÔÈ»µÄÎÊÌâÊÇ£º×îºóÕâ¸öÈ˻᲻»áÇ÷½üÓÚijһ¸öλÖ㿻ص½ÊýÁÐ{an}£¬an»á²»»áÇ÷½üÓÚijһ¸öֵĨ£¿ ½èÖú¼ÆËã»ú£¬ÎÒÃDz»·ÁʵÑ鼸¸ö¦ÁµÄÊýÖµ£¬¿´Ò»Ï´¦ÓÚ£¨0,1£©Çø¼äÉϵIJ»Í¬¦Áȡֵ¶ÔÓ¦ÊýÁÐ{an}µÄǰ10ÏîµÄÊýÖµ¡£ ´Ó±í1ª²1ÖпÉÒÔ¿´µ½£¬ËäÈ»³õʼֵ¦ÁµÄȡֵ²»Í¬£¬µ«ÊÇÖ»ÒªËü´¦ÓÚ£¨0,1£©Çø¼äÄÚ£¬Ôòan¾ù»áÖð½¥Ç÷½üÓÚ0.791¸½½ü¡£µ±È»Õâ¸ö½áÂÛÀ´×ÔÓÐÏÞµÄÀý×Ó£¬ÊÇÒ»ÖÖ²»ÍêÈ«¹éÄÉ¡£±í1ª²1²»Í¬µÄ³õʼֵ¦Á¶ÔÓ¦µÄa1~a10µÄÖµ£¨¾«¶È±£ÁôСÊýµãºó3룩¦Áa1a2a3a4a5a6a7a8a9a101/60.1670.9910.6730.8490.7600.8080.7830.7960.7890.7931/30.3330.9630.6910.8410.7640.8050.7840.7950.7890.7921/20.5000.9170.7200.8270.7720.8010.7860.7940.7900.7922/30.6670.8520.7580.8080.7820.7960.7890.7930.7910.7925/60.8330.7690.8030.7850.7950.7900.7920.7910.7920.791ÄÇôµ±¦Á£¾1»òÕߦÁ£¼0ʱ»á²»»áÒ²ÓÐÏàͬ½áÂÛÄØ£¿ ÊÂʵÉÏ£¬Èç¹ûÎÒÃÇÁîa1=¦Á=£­4£¬Ôòa2=£­4.333,a3=£­5.259,a4=£­8.220,a5=£­21.522,a6=£­153.405,a7=£­7843.39,a8=£­2.05¡Á107,a9=£­1.40¡Á1014,a10=£­6.55¡Á1027¡£ Óɴ˿ɼû£¬ÊýÁÐ{an}µÄÇ÷ÊÆÊܳõʼֵa1=¦ÁÓ°Ï죬¶øÇÒ¹æÂɽÏΪ¸´ÔÓ¡£ÄÇôÎÒÃÇÈçºÎÈ¥¹Û²ìÕâ¸ö¹æÂÉÄØ£¿ Ò»¸öºÃµÄ°ì·¨ÊÇͨ¹ý»­Í¼À´¹Û²ì¡£ Èçͼ1ª²2Ëùʾ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÉÏ»­³öµÝÍÆ¹«Ê½an=£­13a2n£­1+1Ëù¶ÔÓ¦µÄº¯Êýy=£­13x2+1µÄº¯ÊýͼÏñ£¬ÒÔ¼°º¯Êýy=xµÄͼÏñ¡£ÔÚxÖáÉÏȡһµã(a1,0)£¬¹ýÕâ¸öµã×÷xÖáµÄ´¹Ïߣ¬½»y=£­13x2+1µÄº¯ÊýͼÏñÓÚµãP1£¬ÔòP1µÄ×ø±êΪ(a1,a2)¡£ÔÙ¹ýP1×÷yÖáµÄ´¹Ïߣ¬½»y=xµÄº¯ÊýͼÏñÓÚµãQ1£¬ÔòQ1µÄ×ø±êΪ(a2,a2)¡£ÔÙ¹ýQ1µã×÷xÖáµÄ´¹Ïß½»y=£­13x2+1µÄº¯ÊýͼÏñÓÚµãP2£¬Æä×ø±êΪ(a2,a3)¡£ÔÙ¹ýP2×÷yÖáµÄ´¹Ïߣ¬½»y=xµÄº¯ÊýͼÏñÓÚµãQ2£¬ÔòQ2µÄ×ø±êΪ£¨a3,a3£©¡£ÔÙ¹ýQ2µã×÷xÖáµÄ´¹Ïß½»y=£­13x2+1µÄº¯ÊýͼÏñÓÚµãP3£¬Æä×ø±êΪ(a3,a4)¡£Èç´ËÍù¸´£¬¼´¿ÉµÃµ½µãÁÐPn£¬ÆäÖÐPnµÄºá×ø±ê¼´Îªan¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© ͼ1ª²2ÀûÓÃͼÐηÖÎöµÝÍÆ¹«Ê½an=£­13a2n£­1+1,n¡Ý2,n¡Êÿðþ½‹µÄ±ä»¯Ç÷ÊÆ (a) a1¡Ê(x1,0)ʱ£»(b) a1¡Ê(0,x2)ʱ£»(c) a1¡Ê£¨x2,3£©Ê±£»(d) a1¡Ê£¨3,£­x1£©Ê±£»(e) a1£¼x1ʱ£»(f) a1£¾£­x1ʱ Õâ¸ö¹ý³ÌÀïÉæ¼°y=£­13x2+1ºÍy=xÁ½¸öº¯ÊýµÄͼÏñ£¬ÕâÁ½¸öº¯ÊýÓÐÁ½¸ö½»µã£¬Æäºá×ø±ê·Ö±ðΪx1=£­3£­212,x2=£­3+212¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© ´Óͼ1ª²2Öй۲죬¶ÔÓÚa1¡Ê(x1,0)¡¢a1¡Ê(0,x2)¡¢a1¡Ê£¨x2,3£©ºÍa1¡Ê£¨3,£­x1£©ËÄÖÖÇé¿ö£¬Pn¾ùÖð½¥Ç÷½üÓÚy=xµÄͼÏñÓëy=£­13x2+1µÄͼÏñÔÚµÚÒ»ÏóÏ޵Ľ»µã¡£ÈÝÒ×¼ÆËã³ö´Ë½»µãµÄ×ø±êΪ£­3£­212,£­3+212£¬ËüµÄºá×ø±êµÄ½üËÆÖµÎª0.7912¡£ÕâÊÇ·ñºÍ±í1ª²1ÖÐanµÄÊýÖµÇ÷ÓÚ0.791µÄÏÖÏóÓÐijÖÖ±ØÈ»µÄÁªÏµÄØ£¿¶ø¶ÔÓÚa1£¼x1ºÍa1£¾£­x1Á½ÖÖÇé¿ö£¬an²¢Ã»ÓÐÊÕÁ²µ½Ä³Ò»¸öÖµ£¬¶øÊÇ·¢É¢µ½ÎÞÇîÔ¶¡£ ͨ¹ýͼ1ª²2µÄͼÐηÖÎö£¬²ÂÏë³öÒÔϽáÂÛ¡££¨Ë¼¿¼£ºÕâ¸ö²ÂÏëÊÇÈçºÎÐγɵģ¿£© ²ÂÏë1ª²1£º ¶ÔÓÚÀý1ª²2ÖеÄÊýÁÐ{an}¼°x1=£­3£­212,x2=£­3+212£¬µ±a1¡Ê(x1,£­x1)ʱ£¬{an}¡°ÊÕÁ²¡±µ½x2£»µ±a1£¾£­x1»òa1£¼x1ʱ£¬{an}¡°·¢É¢¡±£»µ±a1=x1»òa1=£­x1ʱ£¬{an}¡°ÊÕÁ²¡±µ½x1¡£ Õâ¸ö¡°²ÂÏ롱Æäʵ²¢²»ÍêÉÆ£¬ÒòΪ²¢Ã»Óж¨ÒåʲôÊÇ¡°ÊÕÁ²¡±£¬Ê²Ã´ÊÇ¡°·¢É¢¡±£¬Ò²¾ÍÎÞ´ÓÖ¤Ã÷ÉõÖÁÅжÏËüµÄ¶Ô´í¡£ ΪÁ˽â¾öÕâ¸öÎÊÌ⣬¾ÍÐèÒª¶Ô¡°ÊýÁеļ«ÏÞ¡±¸ø³öÊýѧµÄÐÎʽ»¯¶¨Òå¡£ÀúÊ·ÉÏ£¬¹ØÓÚ¼«Ï޵͍Ò壬ºÜ¶àÊýѧ¼Ò¶¼ÓйýÃèÊö£¬µ«Ö±µ½µÂ¹úÊýѧ¼Òκ¶ûË¹ÌØÀ­Ë¹ÔÚ¿ÂÎ÷¡¢°¢±´¶ûµÈÈ˵Ť×÷»ù´¡ÉÏÌá³ö¦Åª²NÓïÑÔºó£¬Õâ¸ö¸ÅÄî²Å±ä³ÉÁËÂß¼­ÑÏÃܵĿÉÒÔÓÃÀ´ÂÛÖ¤ºÍ±æÎöµÄ¹¤¾ß¡£ ¶¨Òå1ª²1£º ÒÑÖªÊýÁÐ{an}£¬Èô´æÔÚij¸öÊýÖµa£¬Ê¹µÃªÐ¦Å£¾0£¬ªöN£¾0£¬¶ÔÓÚn£¾NµÄan£¬¾ùÓÐan£­a£¼¦Å£¬Ôò³ÆÊýÁÐ{an}ÒÔaΪ¼«ÏÞ£¨»òµÈ¼ÛµØÊÕÁ²µ½a£©£¬¼Ç×÷limn¡ú+¡Þan=a£»·ñÔò£¬³ÆÊýÁÐ{an}ÎÞ¼«ÏÞ¡£ÌØ±ðµØ£¬Èç¹ûªÐM£¾0£¬ªöN£¾0£¬¶ÔÓÚn£¾NµÄan£¬¾ùÓÐan£¾M£¬Ôò³ÆÊýÁÐ{an}·¢É¢¡£ Õâ¸ö¶¨Ò幨עµÄÊÇ£¬¶ÔÓÚÈ·¶¨µÄÊýÖµa£¬ÒÔ¼°ÈÎÒâСµÄ¡°¼ä¸ô¡±¦Å£¬ÊÇ·ñÔÚn³ä·Ö´óÖ®ºó£¬¾ù¿ÉʹµÃanÓëaµÄ¼ä¾à²»³¬¹ý¦Å¡£Èç¹û¸Ã¼ÙÉè³ÉÁ¢£¬ÄÇôÊýÁÐ{an}¾ÍÒÔaΪ¼«ÏÞ£»Èç¹ûÊýÁÐ{an}²»ÒÔÈκÎÊýΪ¼«ÏÞ£¬ÄÇô¾Í³ÆËüûÓм«ÏÞ¡£·¢É¢µÄÊýÁдӾø¶ÔÖµÉÏ¿´ÊÇÎÞ½çµÄ£¬ÕâÒ²ÊÇ¡°·¢É¢¡±Ò»´ÊµÄÓÉÀ´¡£ ½èÓɶ¨Òå1ª²1£¬²ÂÏë1ª²1µÃÒÔ»ñµÃÁËËüÑϸñµÄÊýѧ±íÊö¡£ ²ÂÏë1ª²1¡ä£º ¶ÔÓÚÀý1ª²2ÖеÄÊýÁÐ{an}¼°x1,x2£¬ £¨1£© µ±a1¡Ê(x1,£­x1)ʱ£¬limn¡ú+¡Þan=x2£» £¨2£© µ±a1£¾£­x1»òa1£¼x1ʱ£¬{an}·¢É¢£» £¨3£© µ±a1=x1»òa1=£­x1ʱ£¬limn¡ú+¡Þan=x1¡£ Àý1ª²3 ÀûÓö¨Òå1ª²1Ö¤Ã÷²ÂÏë1ª²1¡ä¡£ »ØÒäx1=£­3+212,x2=£­3+212·Ö±ðΪº¯Êýy=xºÍy=£­13x2+1ͼÏñ×óÓÒÁ½¸ö½»µãµÄºá×ø±ê£¬Ôòx1,x2Ϊ¹ØÓÚxµÄ·½³Ìx2+3x£­3=0µÄÁ½¸öʵÊý¸ù¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© Ê×ÏÈÖ¤Ã÷²ÂÏë1ª²1¡äÖеĽáÂÛ£¨1£©¡£Í¨¹ý¹Û²ìͼ1ª²2Öеģ¨b£©¡¢£¨c£©Á½ÖÖÇé¿ö£¬¿ÉÖªa1¡Ê£Û0,3£ÝµÄÇéÐνÏΪÈÝÒס£ÊÂʵÉÏ£¬Èç¹ûa1¡Ê£Û0,3£Ý£¬Ôòan¡Ê£Û0,1£Ý,n¡Ý2,n¡Êÿðþ½‹¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© (1) ÇéÐÎ1£º a1¡Ê£Û0,3£Ýʱ¡£Í¨¹ý·½³Ì×é an=£­13a2n£­1+1x2=£­13x22+1,n¡Ý2,n¡Êÿðþ½‹ ÉÏÏÂÁ½Ê½Ïà¼õ£¬¿ÉµÃ an£­x2=£­an£­1+x23£¨an£­1£­x2£© an£­x2=an£­1+x23an£­1£­x2 µ±n£¾2ʱ£¬an£­1¡Ê£Û0,1£Ý£¬´Ó¶øan£­1+x2¡Ê£Ûx2,x2+1£Ýª¼£¨0,2£©£¬ÓÚÊÇ an£­1+x23£¼23£¨*£© ´Ó¶ø an£­x2£¼23an£­1£­x2£¬µ±n¡Ý3ʱ ½ø¶øµ±n£¾3ʱÓÐ an£­x2£¼23an£­1£­x2£¼232¡¤an£­2£­x2£¼¡­£¼23n£­2¡¤a2£­x2 £¼23n£­2¡¤a2+x2£¼23n£­2¡Á2 ªÐ¦Å£¾0£¬µ±n£¾3ÇÒn£¾2+log23¦Å2£¬¼´n£¾max3,2+log23¦Å2ʱ£¬an£­x2£¼¦Å¡£¸ù¾Ý¶¨Òå1ª²1£¬ÕâÒâζ×ŵ±a1¡Ê£Û0,3£Ýʱ£¬limn¡ú+¡Þan=x2¡£ (2) ÇéÐÎ2£º a1¡Ê(x1,0)ʱ¡£ ´Ëʱ£¨*£©Ê½²»ÔÙ³ÉÁ¢£¬ÓÚÊÇÎÞ·¨ÓÃÉÏÃæµÄÖ¤Ã÷¹ý³ÌÕÒµ½ªÐ¦ÅºÏÊʵÄN¡£µ«ÊÇͨ¹ý¶Ôͼ1ª²2£¨a£©µÄ¹Û²ì£¬²»ÄÑ·¢ÏÖ¼´Ê¹a1¡Ê(x1,0)£¬µ«¾­¹ýÓÐÏÞ²½µÄµÝÍÆ£¬µ±n³ä·Ö´óÖ®ºó£¬anÈÔ»áÂäÔÚÇø¼ä£Û0,3£ÝÖУ¬½ø¶ø¹é½áµ½ÓëÇéÐÎ1ÀàËÆµÄÇéÐΡ£ÏÂÃæÑϸñÖ¤Ã÷ÕâÒ»µã¡£ µ±a1¡Ê(x1,0)ʱ£¬a2=£­13a21+1£¾a1¡£ÕâÊÇÒòΪx1,x2Ϊº¯Êýy=xÓëy=£­13x2+1µÄͼÏñµÄÁ½¸ö½»µãµÄºá×ø±ê¡£ÓÉÓÚ¶þ´Îº¯Êýy=£­13x2+1¿ª¿ÚÏòÏ£¬ËùÒÔµ±x¡Ê(x1,x2)ʱ£¬y=£­13x2+1µÄº¯ÊýÖµ´óÓÚy=xµÄº¯ÊýÖµ£¬¼´£­13x2+1£¾x¡£ ͬÀí£¬Ö»Òªan£­1¡Ê(x1,0)£¬Ôòan£¾an£­1£¬ÕâÀïn¡Ý2,n¡Êÿðþ½‹¡£ ÓÚÊǵ±a1¡Ê(x1,0)ʱ£¬{an}µÄǰÈô¸ÉÏî»áÖðÏîµÝÔö¡£µ«ÊÇÕâ²¢²»ÄÜ˵Ã÷{an}»áÔÚij¸öʱ¿ÌµÝÔöµ½Çø¼ä£Û0,3£ÝÉÏ£¬ÐèÒª¸üϸÖµطÖÎö¡£ ¢Ù Èôa1¡Ê£Û£­3,0)£¬¿É¶ÏÑÔa2¡Ê£Û0,1)¡£ÕâÊÇÒòΪ£¬Ò»·½Ãæ a2=1£­13a21¡Ý1£­13£¨3£©2=0 ÁíÒ»·½Ãæ a2=1£­13a21£¼1£­13(0)2=1 ×ÛºÏÕâÁ½·½Ã棬¿ÉÖªa2¡Ê£Û0,1)¡£¹Êµ±a1¡Ê£Û£­3,0)ʱ£¬ÓëÇéÐÎ1ͬÀí¿ÉµÃ an£­x2£¼23an£­1£­x2£¬µ±n¡Ý3ʱ ÓÚÊǵ±n£¾3ʱÒÀÈ»ÓÐ an£­x2£¼23n£­2¡Á2 ´Ó¶øªÐ¦Å£¾0£¬µ±n£¾max3,2+log23¦Å2ʱ£¬an£­x2£¼¦Å¡£¸ù¾Ý¶¨Òå1ª²1£¬ÕâÒâζ×ŵ±a1¡Ê£Û£­3,0)ʱ£¬limn¡ú+¡Þan=x2¡£ ¢Ú ¶ÔÓÚa1¡Ê£¨x1,£­3£©£¬Ôò a2=1£­13a21£¼1£­13£¨£­3£©2=0 a2=1£­13a21£¾1£­13x21=x1 ÓÚÊÇa2¡Ê(x1,0)¡£Ôò¹Û²ì·½³Ì×é an+1=£­13a2n+1an=£­13a2n£­1+1,n¡Ý2,n¡Êÿðþ½‹ Á½Ê½Ïà¼õ£¬¿ÉµÃ an+1£­an=£­an+an£­13¡¤£¨an£­an£­1£©,n¡Ý2,n¡Êÿðþ½‹ Èôan£­1¡Ê£¨x1,£­3£©,an¡Ê£¨x1,£­3£©£¬Ôò an+1£­an=£­an+an£­13¡¤£¨an£­an£­1£©£¾233¡¤£¨an£­an£­1£©£¾an£­an£­1 ÕâÒâζ×ÅÖ»Òªan£­1,an¶¼´¦ÓÚÇø¼ä£¨x1,£­3£©ÖУ¬Ôòan+1£­an¾ÍÒª´óÓÚan£­an£­1£¬¼´an£­1,an,an+1µÝÔöÇÒ¼ä¸ôÔ½À´Ô½´ó¡£ÓÚÊDZشæÔÚN0¡Êÿðþ½‹*£¬Ê¹µÃaN0¡Ê£¨£­3,0£©¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© ¸ù¾Ý¢ÙÖÐÖ¤Ã÷£¬Ö»ÒªaN0¡Ê£¨£­3,0£©£¬ÔòaN0+1¡Ê£¨0,1£©£¬½ø¶ø an£­x2£¼23an£­1£­x2£¬µ±n¡ÝN0+2ʱ ÓÚÊǵ±n£¾N0+2ʱ£¬ÀàËÆÓÚÇ°ÃæµÄÖ¤Ã÷£¬¿ÉµÃ an£­x2£¼23n£­£¨N0+1£©¡Á2 ´Ó¶øªÐ¦Å£¾0£¬µ±n£¾maxN0+2,N0+1+log23¦Å2ʱ£¬an£­x2£¼¦Å¡£¸ù¾Ý¶¨Òå1ª²1£¬ÕâÒâζ×ŵ±a1¡Ê£¨x1,£­3£©Ê±£¬limn¡ú+¡Þan=x2Ò²³ÉÁ¢¡£ Óɢٺ͢ڿÉÖª£¬µ±a1¡Ê(x1,0)ʱ£¬½áÂÛ³ÉÁ¢¡£ (3) ÇéÐÎ3£º a1¡Ê£¨3,£­x1£©Ê±¡£ Èôa1¡Ê£¨3,£­x1£©£¬Ôò a2=1£­13a21£¼1£­13£¨3£©2=0 a2=1£­13a21£¾1£­13£¨£­x1£©2=x1 ÓÚÊÇa2¡Ê(x1,0)¡£ ¸ù¾ÝÇéÐÎ2Ö¤Ã÷£¬ªÐ¦Å£¾0£¬µ±n£¾maxN0+2,N0+1+log23¦Å2+1ʱ£¬an£­x2£¼¦Å¡£¸ù¾Ý¶¨Òå1ª²1£¬ÕâÒâζ×ŵ±a1¡Ê£¨3,£­x1£©Ê±£¬limn¡ú+¡Þan=x2Ò²³ÉÁ¢¡£ ×ÛºÏÇéÐÎ1¡¢ÇéÐÎ2¡¢ÇéÐÎ3¿ÉÖª£¬µ±a1¡Ê(x1,£­x1)ʱ£¬limn¡ú+¡Þan=x2³ÉÁ¢¡£ È»ºóÖ¤Ã÷²ÂÏë1ª²1¡äµÄ½áÂÛ£¨2£©£¬ÕâÀïͬÑùÐèÒª·ÖÀàÌÖÂÛ¡£ (4) ÇéÐÎ4£º a1£¼x1ʱ¡£ a2=1£­13a21£¼a1£¼x1£¬Í¬Àí¿ÉµÃan£¼an£­1£¼x1£¬n¡Ý2,n¡Êÿðþ½‹*¡£ ¿¼²ì·½³Ì×é an+1=£­13a2n+1an=£­13a2n£­1+1,n¡Ý2,n¡Êÿðþ½‹ Á½Ê½Ïà¼õ£¬¿ÉµÃ an+1£­an=£­an+an£­13¡¤£¨an£­an£­1£©,n¡Ý2,n¡Êÿðþ½‹ ½ø¶ø an+1£­an=an+an£­13¡¤an£­an£­1£¾2x13¡¤an£­an£­1£¾2an£­an£­1,n¡Ý2,n¡Êÿðþ½‹ an+1£­an£¾2an£­an£­1£¾¡­£¾2n£­2a2£­a1,n¡Ý2,n¡Êÿðþ½‹ ¹Ê an=£¨an£­an£­1£©+£¨an£­1£­an£­2£©+¡­+£¨a2£­a1£©+a1=an£­an£­1+an£­1£­an£­2+¡­+a2£­a1+a1£¾2n£­2a2£­a1+¡­+20a2£­a1+a1£¾2n£­2a2£­a1+¡­+20a2£­a1=a2£­a1¡¤1£­2n£­11£­2=£¨2n£­1£­1£©¡¤a2£­a1 ÓÚÊÇ£¬ªÐM£¾0£¬ÁîN=log2Ma2£­a1+1+1£¬Ôòµ±n£¾Nʱ£¬ an£¾£¨2n£­1£­1£©¡¤a2£­a1£¾M ¸ù¾Ý¶¨Òå1ª²1¿ÉÖª£¬ÊýÁÐ{an}·¢É¢¡£ (5) ÇéÐÎ5£º a1£¾£­x1ʱ¡£ Èôa1£¾£­x1£¬Ôòa2=1£­13a21£¼1£­13£¨£­x1£©2=x1£¬ÓÚÊÇa2£¼x1¡£ÀàËÆÓÚÇéÐÎ4µÄÖ¤Ã÷¹ý³Ì¿ÉÖª£¬ªÐM£¾0£¬ÁîN=log2Ma3£­a2+1+2£¬Ôòµ±n£¾Nʱ£¬ an£¾£¨2n£­2£­1£©¡¤a3£­a2£¾M ÔÙ¸ù¾Ý¶¨Òå1ª²1¿ÉÖª£¬ÊýÁÐ{an}Ò²·¢É¢¡£ ×ÛºÏÇéÐÎ4ºÍÇéÐÎ5¿ÉÖª£¬µ±a1£¾£­x1»òa1£¼x1ʱ£¬{an}·¢É¢¡£ ×îºóÀ´ËµÃ÷²ÂÏë1ª²1¡äÖеĽáÂÛ£¨3£©¡£Êµ¼ÊÉÏ£¬ÎÞÂÛµ±a1=x1ʱ»¹ÊÇa1=£­x1ʱ£¬ÊýÁÐ{an}´ÓµÚ¶þÏʼ¾ùΪ³£Êýx1£¬´Ó¶ølimn¡ú+¡Þan=x1¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© ÖÁ´Ë£¬²ÂÏë1ª²1¡äµÄ½áÂÛÈ«ÊýÖ¤±Ï¡£ ×¢1ª²1£º Àý1ª²3ÂÛÖ¤¹ý³Ì½Ï³¤£¬Çé¿ö½Ï¶à£¬¶ÁÕß¿ÉÄÜ»á²úÉúÀ§»ó¡£µ«ÕâЩÇé¿öµÄÈ·¶¨£¬ÒÔ¼°Ã¿ÖÖÇé¿öÏÂ{an}µÄ×ßÊÆºÍÂÛÖ¤¼¼ÇÉ£¬¶¼ÊÇͨ¹ýÀàËÆÍ¼1ª²2µÄ×÷ͼ·½·¨Ö±¹Û¹Û²ìÖ®ºóÌáÁ¶³öÀ´µÄ¡£Õâ¸ö¹ý³ÌÖо­ÀúÁËÕâÑùµÄ¹ý³Ì£º´ÓÊýѧµÄ·ûºÅÓïÑÔ³ö·¢£¬×ª»¯ÎªÍ¼ÐÎÓïÑÔ£¬ÓÖͨ¹ý¶ÔͼÐεÄÖ±¹ÛÏëÏó£¬ÌáÁ¶³öÑÝÒïµÄ˼·£¬½ø¶øÍ¨¹ý·ûºÅÓïÑÔ¼ÓÒÔÂÛÖ¤¡£ ×¢1ª²2£º ͨ¹ýÀý1ª²3µÄÂÛÖ¤Ìå»á£¬ÔÚÖ¤Ã÷ÊýÁÐÊÕÁ²»òÊÇ·¢É¢Ê±£¬¶ÔÓÚNµÄѰÕÒÖ»ÐèÒª±£Ö¤¡°³ä·Ö´ó¡±¼´¿É£¬²¢²»ÊÇΨһµÄ¡£¶ÁÕßÍêÈ«¿ÉÒÔ½«Ö¤Ã÷ÖеÄNÌæ»»Îª¸ü´óµÄÊý£¬Í¬Ñù¿ÉÒÔ·ûºÏ¶¨Òå1ª²1µÄÒªÇó¡£ÕâÒ²ÊǦŪ²NÓïÑÔµÄÇ¿´óÖ®´¦¡ª¡ª½«Ò»ÇÐÌÖÂÛͨ¹ýNÒýÏò³ä·ÖÔ¶µÄµØ·½¡£ ×¢1ª²3£º Àý1ª²3µÄÂÛÖ¤¹ý³ÌÖз´¸´Óõ½Á˶þ´Îº¯Êýµ¥µ÷ÐÔÒÔ¼°Í¼ÏñÐÔÖÊ£¬²¢²»Ö¹Ò»´ÎµØÊ¹ÓÃÁËÔÚ½âÎö¼¸ºÎºÍÊýÁÐÖг£Óõġ°½«Á½¸öÒÑÖª·½³Ì×÷²î¡±µÄ¼¼ÇÉ¡£ÕâЩ»ù±¾µÄ֪ʶµãºÍ¼¼ÇÉ£¬ÐèÒªÉÏÉýΪ´¦ÀíÎÊÌâµÄ¾­Ñ飬ÒÔ¹©¾ÙÒ»·´ÈýµØÊ¹Óᣠע1ª²4£º ͼ1ª²2ÖÐËùÓõġ°Í¼Ðη¨¡±£¬Ö»¶Ô¶þ½×µÝÍÆ¹«Ê½£¨¼´Ö»¹ØÓÚÊýÁÐÖÐǰºóÁ¬ÐøÁ½ÏîµÄµÝÍÆ¹«Ê½£©ÓÐЧ£¬¶ÔÓÚÈý½×¼°ÒÔÉϵĵÝÍÆ¹«Ê½£¬´Ë·½·¨Ê§Ð§¡££¨Ë¼¿¼£ºÎªÊ²Ã´£¿£© Àý1ª²4 ϸÖµĶÁÕßÓ¦¸ÃÒѾ­·¢ÏÖ£¬ÔÚÑо¿µÝÍÆ¹«Ê½an=-13a2n-1+1,n¡Ý2,n¡Êÿðþ½‹ʱ£¬Èç¹û½«´ËʽÖеÄan¾ù»»³Éx£¬µÃµ½·½³Ìx=£­13x2+1£¬ËüµÄÁ½¸öʵ¸ùÕýÊÇÀý1ª²3ÂÛÖ¤ÖеÄx1,x2£¬²¢ÇÒµ±ÊýÁÐ{an}´æÔÚ¼«ÏÞʱ£¬Õâ¸ö¼«ÏÞÇ¡ºÃ¾ÍÊÇx2¡£ ÄÇô¶ÔÓÚÒ»°ãµÄµÝÍÆ¹«Ê½ÓÐûÓÐÀàËÆµÄ½áÂÛÄØ£¿Êµ¼ÊÉÏÓÐÒÔ϶¨Àí¡£ ¶¨Àí1ª²1£º ÉèÊýÁÐ{an}ºÍÊýÁÐbn¾ù´æÔÚ¼«ÏÞ£¬ÇÒlimn¡ú+¡Þan=a£¬limn¡ú+¡Þbn=b£¬ÔòÊýÁÐan+bn¡¢ÊýÁÐan£­bnºÍÊýÁÐan¡¤bn¾ù´æÔÚ¼«ÏÞ£¬ÇÒlimn¡ú+¡Þ£¨an¡Àbn£©=a¡Àb£¬limn¡ú+¡Þ£¨an¡¤bn£©=a¡¤b¡£µ±bn¡Ù0,n¡Êÿðþ½‹*ʱ£¬ÊýÁÐanbnÒ²´æÔÚ¼«ÏÞ£¬ÇÒlimn¡ú+¡Þanbn=ab¡£ Ö¤Ã÷£º £¨1£© ÈôÊýÁÐ{an}ºÍÊýÁÐbn¾ù´æÔÚ¼«ÏÞ£¬ÇÒlimn¡ú+¡Þan=a£¬limn¡ú+¡Þbn=b£¬ÔòÓɶ¨Òå1ª²1¿ÉÖª£¬ªÐ¦Å£¾0£¬ªöN1£¾0ʹµÃµ±n£¾N1ʱ£¬ÓÐan£­a£¼¦Å2£¬Í¬Ê±ªöN2£¾0ʹµÃµ±n£¾N2ʱ£¬ÓÐbn£­b£¼¦Å2¡£ÉèN=maxN1,N2£¬Ôòn£¾Nʱ£¬ÓÐ £¨an+bn£©£­£¨a+b£©=(an£­a)+(bn£­b)¡Üan£­a+bn£­b£¼¦Å2+¦Å2=¦Å £¨an£­bn£©£­£¨a£­b£©=(an£­a)£­(bn£­b)¡Üan£­a+bn£­b£¼¦Å2+¦Å2=¦Å ½ø¶øÓɶ¨Òå1ª²1¿ÉÖªlimn¡ú+¡Þ£¨an¡Àbn£©=a¡Àb¡£ £¨2£© ÈôÊýÁÐ{an}ºÍÊýÁÐbn¾ù´æÔÚ¼«ÏÞ£¬ÇÒlimn¡ú+¡Þan=a£¬limn¡ú+¡Þbn=b£¬ÔòÓɶ¨Òå1ª²1¿ÉÖª£¬ªÐ¦Å£¾0£¬ªöN1£¾0£¬Ê¹µÃµ±n£¾N1ʱ£¬ÓÐan£­a£¼¦Å1+a+b£»Í¬Ê±ªöN2£¾0£¬Ê¹µÃµ±n£¾N2ʱ£¬ÓÐbn£­b£¼¦Å1+a+b¡£ÌØ±ðµØ£¬¶ÔÓÚ¦Å=1£¾0£¬ªöN3£¾0£¬Ê¹µÃµ±n£¾N3ʱ£¬ÓÐbn£­b£¼1£¬¼´1£­b£¼bn£¼1+b£¬¹Êµ±n£¾N3ʱ£¬bn£¼1+b¡£ÉèN=max{N1,N2,N3}£¬µ±n£¾Nʱ£¬ÓÐ anbn£­ab=anbn£­abn+abn£­ab ¡Üanbn£­abn+abn£­ab =bnan£­a+abn£­b £¼£¨1+b£©¡¤an£­a+abn£­b £¼£¨1+a+b£©¦Å1+a+b =¦Å ½ø¶øÓɶ¨Òå1ª²1¿ÉÖªlimn¡ú+¡Þ£¨an¡¤bn£©=a¡¤b¡£ £¨3£© ÈôÊýÁÐbn¾ù´æÔÚ¼«ÏÞÇÒlimn¡ú+¡Þbn=b¡Ù0£¬Ôò¶Ôb2£¾0£¬´æÔÚN1£¾0£¬Ê¹µÃµ±n£¾N1