数据分组与频数统计

音

数据分组就是根据统计研究任务,按照一定的要求,把研究的社会现象总体划 分为若干个性质相同的组。而一组测量值中,落在各组内的数据个数就称为频数。

数据分组与频数统计的目的是为了区分现象的不同类型,研究总体的内部结构,分析现象间的依存关系。

- ☑ 离散型数据与连续型数据的特点
- ☑ 离散型数据的分组
- ☑ 连续型数据的分组
- ☑ 利用函数统计频数
- 🗹 利用直方图统计频数
- 🗹 运用直方图统计图表

5.1 数据分组

在统计学中,数据按变量值是否连续,可分为离散数据与连续数据两种。分清数据性质才能 选择合适的分组方式。

- 离散数据:其数值只能用自然数或整数单位计算。例如,企业个数、职工人数、设备台数等,只能按计量单位数计数。
- 连续数据:在一定区间中可以任意取值,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如,生产零件的规格尺寸、身高的测量值、体重的测量值等。

5.1.1 离散型数据分组——单项式分组

对于离散型的变量,如果变量值的变动幅 度小,就可以一个变量值对应一组,称单项式 分组。如居民家庭按儿童数分组、毕业生按年 龄分组等,均可采用单项式分组。

1. COUNTIF 分组统计

如图 5-1 所示,记录了某企业中在相同条 件下不同工人的生产数量数据(篇幅限制,只 显示部分记录),要求对工人生产数量的水平 进行分析。由于抽样的生产数量变化幅度不 大,此时可以使用单项式分组,一个数据分为 一组,即每个生产数量都是离散型数据分组的 界限。

1	A	В	c
1	抽样编号	操作人	生产数量
2	1	李为洋	58
3	2	杨依娜	59
4	3	朱子进	60
5	4	曹正	59
6	5	郭丽	61
7	6	王雪峰	60
8	7	吴东梅	61
9	8	张以军	60
10	9	孙倩	62
11	10	简志能	60
12	11	李军	61
13	12	顾源	60
14	13	刘维	61
15	14	李婷婷	62
16	15	周玉杰	58
17	16	华新伟	59
18	17	邹志志	60
19	18	韩志	59
20	19	吴伟云	61
21	20	杨清	60
22	21	李欣	58
23	22	金鑫	61
24	23	华涵涵	62
25	24	张玮	60
26	25	聂新余	60

图 5-1

① 在工作表空白位置建立生产数量分布表格并 建立人数统计标识,如图 5-2 所示。

-						
4	A	В	с	D	E	F
1	抽样编号	操作人	生产数量		生产数量	人数
2	1	李为洋	58		58	
3	2	杨依娜	59		59	
4	3	朱子进	60		60	
5	4	曹正	59		61	
6	5	郭丽	61		62	
7	6	王雪峰	60		\square	
8	7	吴东梅	61			
9	8	张以军	60			
10	9	孙倩	62			
11	10	简志能	60			
12	11	李军	61			
13	12	顾源	60			
14	13	刘维	61			
15	14	李婷婷	62			
16	15	周玉杰	58			

图 5-2

2 选中 F2 单元格,在编辑栏中输入公式: =COUNTIF(\$C\$2:\$C\$31,E2)

按 Enter 键即可计算出生产数量为 58 件的人数, 如图 5-3 所示。

F2	F2 ▼ : × ✓ fx =COUNTIF(\$C\$2:\$C\$31,E2)						
4	A	В	С	D	E	F	
1	抽样编号	操作人	生产数量		生产数量	人数	
2	1	李为洋	58		58	3	
3	2	杨依娜	59		59		
4	3	朱子进	60		60		
5	4	曹正	59		61		
6	5	郭丽	61		62		
7	6	王雪峰	60				
8	7	吴东梅	61				
9	8	张以军	60				
10	9	孙倩	62				
			图 5_3				

⑧ 将光标定位到 F2 单元格右下角,向下填充公 式至 F6 单元格,即可计算出其他生产数量的人数, 如图 5-4 所示。

87

_
ш.
\times
0
ж
<u>w</u>
\sim
Õ
~
Û
不
H.
4立
坈
1
lΤ
1
分
//
ᆂ
171
—
11
17F
1,5
d b
T
44
비니
Щ
<u></u>
ガリ
±
r à
<u>) YY</u>
Я П
\sim
ŻLI
TXC .
止舌
77.0
++L
充了
5
举
<u> </u>
ЦШ
hХ

F2	F2 ▼ : × ✓ fx =COUNTIF(\$C\$2:\$C\$31,E2)								
1	A	В	С	D	Е	F			
1	抽样编号	操作人	生产数量		生产数量	人数			
2	1	李为洋	58		58 (3			
3	2	杨依娜	59		59	4			
4	3	朱子进	60		60	10			
5	4	曹正	59		61	9			
6	5	郭丽	61		62	4			
7	6	王雪峰	60						
8	7	吴东梅	61						
9	8	张以军	60						
10	9	孙倩	62						
11	10	简志能	60						
12	11	李军	61						
13	12	顾源	60						

图 5-4

由统计结果看到,生产数量为60和61的 人最多。

知识扩展

COUNTIF 函数用于统计指定区域中 符合指定条件的单元格数目。本例中公式 "=COUNTIF(\$C\$2:\$C\$31,E2)"表示统计出 \$C\$2:\$C\$31 单元格区域中等于 E2 单元格数 据的记录条数,即统计 \$C\$2:\$C\$31 单元格 区域中"58"的个数。

因为这个公式建立后需要向下复制,因 此设计公式时要注意对数据源的引用方式, 不想变化的需要使用绝对引用方式。本例 中的第一个参数为用于统计判断的区域,是 始终不变的,所以使用绝对引用方式;而当 公式向下复制时,需要改变的是第二个参 数(即被统计的对象),所以得到相对引用 方式。

2. 数据透视表分组统计

离散型数据的单项式分组也可以使用数据 透视表功能快速实现。

●选中表格任意单元格区域,在"插入"选项卡的"表格"组中单击"数据透视表"按钮,如图 5-5 所示。

2 打开"创建数据透视表"对话框,保持默认选项,如图 5-6 所示。

❸ 单击 " 确定 " 按钮创建数据透视表。设置 " 生产数量 " 字段为行标签,再设置 " 操作人 " 字段 为值标签,如图 5-7 所示。

图 5-6

88

④ 在"数据透视表工具""设计"选项卡的 "布局"组中单击"报表布局"按钮,在下拉列表中 单击"以表格形式显示",如图 5-8 所示。此时可以 让"生产数量"这个字段名称显示出来,如图 5-9 所示。

图 5-8

	A	В	
1			
2			
3	生产数量 💌	计数项:操作人	
4	58	3	
5	59	4	
6	60	10	
7	61	9	
8	62	4	
9	总计	30	
10			

图 5-9

6 将 B3 单元格中的名称更改为"人数"(选中单元格,在编辑栏中去输入),如图 5-10 所示。

В3	•	$\times \checkmark f_x$	人数
1	A	В	С
1			
2			
3	生产数量 💌	人数	
4	58	3	
5	59	4	
6	60	10	
7	61	9	
8	62	4	
9	总计	30	
10			

5.1.2 离散型数据分组-组距式分组

如果离散变量值的变动幅度很大,个数 很多,则可以把整个变量值依次划分为几个区 间,各变量值按其大小确定所归并的区间,区 间的距离称为组距,这样的分组称为组距式分 组。在组距式分组中,相邻组既可以有确定的 上下限,也可以将相邻组的组限重叠。

如图 5-11 所示,表格中记录了某种技能考 试的成绩数据(篇幅限制,只显示部分记录), 显然调查的数据是离散型的,最低分是 68 分, 最高分是 99 分,变化幅度很大,此时应该将性 质相似的数据分为同组,性质悬殊的分为不同 的组。将数据分为 0~70、70~80、80~90 以及 90~100 这 4 个区间,因此 70、80 和 90 这 3 个数字就成了离散型数据的分组界限。

在表格空白处将数据分为 " <=70 "、" 70-80 "、
 " 80-90 "、" 90-100 " 4 组数据,如图 5-11 所示。

	A	В	С	D	E	F	G	
1	幇	支能考试/	成绩数据分		区间	数量		
2	1组	2组	3组	4组		<=70		
3	89	82	78	98		70-80		
4	98	87	90	99		80-90		
5	69	80	77	96		90-100		
6	87	73	85	94				
7	85	85	82	96				
8	85	90	91	88				
9	95	70	90	94				
10	68	89	87	96				
11	78	87	82	98				
12	82	78	86	96				
13	85	81	91	82				
14	98	96	94	98				
15	99	98	96	92				
16	91	91	97	87				
17	96	94	87	82				
18	96	97	96	94				

图 5-11

2 选中 G2 单元格,在编辑栏中输入公式:

=COUNTIF(A3:D18,"<=70")

按 Enter 键,即可统计出小于等于 70 分的人数, 如图 5-12 所示。

3 选中 G3 单元格,在编辑栏中输入公式:

=COUNTIFS(A3:D18,">70",A3:D18,"<=80")

按 Enter 键,即可计算出分数在 70 ~ 80 分的人数,如图 5-13 所示。

Excel 2019 在统计分析工作中的典型应用	
(视频教学版	

G2	f_2 \forall : $\times \sqrt{f_x}$ =COUNTIF(A3:D18,"<=70")						0")
1	A	В	С	D	E	F	G
1	某	技能考试。	成绩数据分	祈		区间	数量
2	1组	2组	3组	4组		<=70	3
3	89	82	78	98		70-80	
4	98	87	90	99		80-90	
5	69	80	77	96		90-100	
6	87	73	85	94			
7	85	85	82	96			
8	85	90	91	88			
9	95	70	90	94			
10	68	89	87	96			
11	78	87	82	98			
12	82	78	86	96			
13	85	81	91	82			
14	98	96	94	98			
15	99	98	96	92			
16	91	91	97	87			
17	96	94	87	82			
18	96	97	96	94			

图 5-12

G3		• :	× ✓	fx =	& =COUNTIFS(A3:D18,">70",A3:D18,"<=80")					
	A	В	с	D	E	F	G	Н		
1	幇	支能考试	式绩数据分	祈		区间	数量			
2	1组	2组	3组	4组		<=70	3			
3	89	82	78	98		70-80	6	\Box		
4	98	87	90	99		80-90				
5	69	80	77	96		90-100				
6	87	73	85	94						
7	85	85	82	96						
8	85	90	91	88						
9	95	70	90	94						
10	68	89	87	96						
11	78	87	82	98						
12	82	78	86	96						
13	85	81	91	82						
14	98	96	94	98						
15	99	98	96	92						
16	91	91	97	87						
17	96	94	87	82						
18	96	97	96	94						

图 5-13

知识扩展

COUNTIF 函数用于统计指定区域中 满足多个条件的单元格数目。本例中公式 "=COUNTIFS(A3:D18,">70",A3:D18,"<=80")" 将 ">70" 和 "<=80" 作为两个条件写入参数 中,表示统计出 A3:D18 单元格区域中同时 满足 ">70" 和 "<=80" 这两个条件的单元格 个数。

当只有一个条件时使用 COUNTIF 函数, 有两个条件时使用 COUNTIFS 函数。

④ 选中 G4 单元格,在编辑栏中输入公式:
 =COUNTIFS(A3:D18,">80",A3:D18,"<=90")
 按 Enter 键,即可计算出分数在 80 ~ 90 分的人数,如图 5-14 所示。

G4		•	× ✓	f _x =	COUNTIFS	(A3:D18,">8	0",A3:D18,"	<=90")
1	A	В	С	D	E	F	G	Н
1	某	技能考试	式绩数据分	祈		区间	数量	
2	1组	2组	3组	4组		<=70	3	
3	89	82	78	98		70-80	6	
4	98	87	90	99		80-90	25	[]
5	69	80	77	96		90-100		
6	87	73	85	94				
7	85	85	82	96				
8	85	90	91	88				
9	95	70	90	94				
10	68	89	87	96				
11	78	87	82	98				
12	82	78	86	96				
13	85	81	91	82				
14	98	96	94	98				
15	99	98	96	92				
16	91	91	97	87				
17	96	94	87	82				
18	96	97	96	94				

图 5-14

5 选中 G5 单元格,在编辑栏中输入公式:

=COUNTIF(A3:D18,">90")

按 Enter 键,即可计算出分数在 90 ~ 100 分的 人数,如图 5-15 所示。

G5		•	× ✓	f _x =(COUNTIF(A3:D18,">90)")
	A	В	С	D	E	F	G
1	某	技能考试)	式绩数据分	祈		区间	数量
2	1组	2组	3组	4组		<=70	3
3	89	82	78	98		70-80	6
4	98	87	90	99		80-90	25
5	69	80	77	96		90-100	30
6	87	73	85	94			
7	85	85	82	96			
8	85	90	91	88			
9	95	70	90	94			
10	68	89	87	96			
11	78	87	82	98			
12	82	78	86	96			
13	85	81	91	82			
14	98	96	94	98			
15	99	98	96	92			
16	91	91	97	87			
17	96	94	87	82			
18	96	97	96	94			

图 5-15

由统计结果看到,分数在90~100分的人数是 最多的。

5.1.3 连续型数据分组界限

鉴于连续型变量的特性,连续型数据无法 全部列举其数值,其分组只能是组距式分组。 但在按数量标志分组时,各个分组的数量界限 的选择必须能反映各个样本的本质差异,还需 要根据被研究的现象总体的数量特征,采用适 如图 5-16 所示,登记了东三省主要城市 的海拔高度,根据地貌特征,海拔在 200 m 以 下为平原,海拔介于 200~500 m 为丘陵地带, 海拔高于 500 m 的面积广大地带为高原地带。 根据这种地理学常识来对各个城市的海拔数据 进行分组,以反映数据本质特征,而 200、500 则是该连续型分组的科学界限。

1	A	В	С
1	东	三省海拔召	高度表
2	省份	城市	海拔高度(m)
3		贵阳	1071.2
4		思南	416.3
5		遵义	843.9
6		毕节	1510.6
7		威宁	2237.5
8	黑龙江省	安顺	1392.9
9		独山	972.2
10		兴仁	1378.5
11		鶴岗	228
12		海拉尔	613
13		博克图	739
14		长春	237
15		吉林	184
16	主林劣	四平	164
17	다 111 1	通化	403
18		通辽	180
19		开鲁	235
20		阜新	138
21		抚顺	82
22	辽宁省	沈阳	42
23		锦州	66
24		鞍山	22
25		营口	4
26		丹东	15
27		大连	62

图 5-16

 在表格空白处将数据分为 <= 200、200~500、
 >500 这 3 组数据,并添加分析表格,如图 5-17 所示。

	A	В	С	D	E	F	G
1	东	三省海拔高	高度表				
2	省份	城市	海拔高度(m)		地貌	组段	数量
3		贵阳	1071.2		平原	<=200	
4		思南	416.3		丘陵	200~500	
5		遵义	843.9		高原	>500	
6		毕节	1510.6				
7		威宁	2237.5				
8	黑龙江省	安顺	1392.9				
9		独山	972.2				
10		兴仁	1378.5				
11		鹤岗	228				
12		海拉尔	613				
13		博克图	739				

图 5-17

2 选中 G3 单元格,在编辑栏中输入公式:

=COUNTIF(C3:C27,"<=200")

按 Enter 键,即可计算出平原地形城市个数,如 图 5-18 所示。

G3	•	: × 🗸	f _x =COUNTIF(C	3:C27,"<=20	0")		
	Å	В	С	D	E	F	G
1	东	三省海拔召	高度表				
2	省份	城市	海拔高度(m)		地貌	组段	数量
3		贵阳	1071.2		平原	<=200	11
4		思南	416.3		丘陵	200~500	
5		遵义	843.9		高原	>500	
6		毕节	1510.6				
7		威宁	2237.5				
8	黑龙江省	安顺	1392.9				

图 5-18

3 选中 G4 单元格,在编辑栏中输入公式: =COUNTIFS(C3:C27,">200",C3:C27,"<=500")

按 Enter 键,即可计算出丘陵地形城市个数,如 图 5-19 所示。

G4	•	: × 🗸	f _x =COUNTIFS(0	:3:C27,">2	00",C3:C27,"	<=500")	
1	A	В	С	D	E	F	G
1	东	三省海拔召	高度表				
2	省份	城市	海拔高度(m)		地貌	组段	数量
3		贵阳	1071.2		平原	<=200	11
4		思南	416.3		丘陵	200~500	5
5		遵义	843.9		高原	>500	
6		毕节	1510.6				
7		威宁	2237.5				
8	黑龙江省	安顺	1392.9				
9		独山	972.2				

图 5-19

4 选中 G5 单元格,在编辑栏中输入公式:

=COUNTIF(C3:C27,">500")

按 Enter 键,即可计算出高原地形城市个数,如 图 5-20 所示。

G5	*	: × 🗸	fx =COUNTIF(C	3:C27,">50	0")		
	A	В	с	D	E	F	G
1	东	三省海拔福	高度表				
2	省份	城市	海拔高度(m)		地貌	组段	数量
3		贵阳	1071.2		平原	<=200	11
4		思南	416.3		丘陵	200~500	5
5		遵义	843.9		高原	>500	9
6		毕节	1510.6				
7		威宁	2237.5				
8	黑龙江省	安顺	1392.9				
9		独山	972.2				
10		兴仁	1378.5				
11		鹤岗	228				
12		海拉尔	613				

图 5-20

频数又称次数。在一组测量值中,当按一定的组距将其分组时出现在各组内的数据个数就称 为频数。按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强

91

度。各组频数的总和等于总体的全部单位数。

频数的表示方法既可以是表,也可以是 图形。

5.2.1 单项式分组的频数统计

单项式分组的频数统计是针对离散型数据 中变量值变动幅度较小,可用于单项式分组的 数据,因此其频数统计方法实际就是 5.1.1 小节 介绍的操作,可以使用 CONTIF 函数或数据透 视表来求解。

如图 5-21 所示,记录了 2019 年某地区对 每个家庭儿童数量的抽样数据(共 100 个数 据),可以统计出频数,并与之前年份的儿童 数量进行比较,以分析二胎政策之后的人口增 加情况。

 ① 在工作表空白部分建立分组表格。选中 G3 单 元格,在编辑栏中输入公式:

=COUNTIF(\$A\$2:\$D\$26,F3)

按 Enter 键,即可计算出儿童数为"1"的家庭数,如图 5-21 所示。

G3		•	\times \checkmark	f _x	=COUN	rif(\$A\$2:\$D\$2	26,F3)
	A	В	с	D	E	F	G
1	某地國	医每个家	庭儿童数	量抽样			
2	1	2	2	3		儿童数	家庭数
3	2	2	1	1		1	56
4	1	2	2	1		2	
5	4	2	1	1		3	
6	1	2	2	1		4	
7	1	1	1	2			
8	2	1	1	2			
9	1	1	1	1			
10	3	2	1	2			
11	1	1	2	1			
12	2	1	1	2			
13	3	1	3	3			
14	2	2	1	2			
15	1	1	1	1			
16	2	2	1	1			
17	2	2	2	2			
18	1	2	2	1			
19	1	1	1	1			
20	2	2	2	2			
21	1	2	1	2			
22	1	1	1	1			
23	1	1	1	1			
24	1	1	2	3			
25	2	2	1	1			
26	1	1	1	1			
				图 5	21		

② 选中 G3 单元格,向下填充公式至 G7 单元 格中,即可计算出其他儿童数量对应的家庭数,如 图 5-22 所示。

	A	В	С	D	E	F	G
1	某地区	每个家	庭儿童数	量抽样			
2	1	2	2	3		儿童数	家庭数
3	2	2	1	1		1	56
4	1	2	2	1		2	37
5	4	2	1	1		3	6
6	1	2	2	1		4	1
7	1	1	1	2			
8	2	1	1	2			
9	1	1	1	1			
10	3	2	1	2			
11	1	1	2	1			
12	2	1	1	2			
13	3	1	3	3			
14	2	2	1	2			
15	1	1	1	1			
16	2	2	1	1			
17	2	2	2	2			
18	1	2	2	1			
19	1	1	1	1			
20	2	2	2	2			
21	1	2	1	2			
22	1	1	1	1			
23	1	1	1	1			
24	1	1	2	3			
25	2	2	1	1			
26	1	1	1	1			
00							

图 5-22

从统计结果可以看到,频数最高的为"1" 和"2",与2019年之前的年份相比较,可以确 定二孩家庭逐渐增多。

5.2.2 组距式分组的频数统计

组距式分组的频数统计先要确定全距,然 后根据全距确定组数和组距,最后根据分组 的情况来确定组项。确定组项时要注意以下 几点:

 最小值的下限要低于最小值变量,最大 值的上限应高于最大值变量;

组限的确定有利于表现出总体分布的特点,应反映出事物的变化;

• 组限尽可能选取整数。

如图 5-23 所示,登记了全国 50 个城市的 房价数据,现在对这些数据进行分组,并计算 出频数。在 Excel 2019 中,组距式分组的频数 统计一般使用函数 FREQUENCY 来实现,而且 非常方便快捷。

 在表格空白处创建分组过程表格和分组结果 表格,如图 5-24 所示。

2 选中 H2 单元格,在编辑栏中输入公式:=MAX(C2:C51)

按 Enter 键,即可计算出单价中的最大值,如 图 5-25 所示。

1	Α	В	С	D	E
1	排名	城市	单价(元/㎡)	环比	同比
2	1	深圳	69129	-0.0001	0.1867
3	2	北京	62212	-0.0156	-0.0188
4	3	上海	55256	-0.0004	0.0565
5	4	厦门	52583	0.0112	0.0394
6	5	广州	51729	-0.0155	0.1295
7	6	三亚	41075	0.0074	0.1383
8	7	南京	30947	0.0032	0.0076
9	8	杭州	31524	0.0309	-0.0371
10	9	福州	25838	-0.003	-0.0254
11	10	天津	24719	-0.0137	-0.0529
12	11	宁波	23671	-0.0038	0.1603
13	12	苏州	22640	-0.0067	0.0034
14	13	珠海	22309	0.0169	-0.0447
15	14	温州	21382	-0.0018	0.02
16	15	青岛	20535	0.0263	-0.0463
17	16	武汉	18952	-0.0457	0.0563
18	17	丽水	18209	-0.017	0.0227
19	18	东莞	18155	0.0207	0.1533
20	19	金华	16809	0.0148	0.023
21	20	成都	16756	-0.042	0.0871
22	21	无锡	16746	-0.0269	0.1216
23	22	南通	15955	-0.0223	0.1427
24	23		15824	0.0173	0.0027
25	24	济南	15817	0.006	-0.1579
26	25	合肥	15737	0.0239	-0.0065
27	26	常州	15384	0.0351	0.0139
28	27	海口	15043	-0.0152	-0.0176

图 5-23

	А	В	С	D	E	F G	+
1	排名	城市	单价(元/㎡)	环比	同比	分组过	程
2	1	深圳	69129	-0.0001	0.1867	最大值	
3	2	北京	62212	-0.0156	-0.0188	最小值	
4	3	上海	55256	-0.0004	0.0565	全距	
5	4	厦门	52583	0.0112	0.0394	组数	
6	5	广州	51729	-0.0155	0.1295	細距	
7	6	三亚	41075	0.0074	0.1383	组距选取	
8	7	南京	30947	0.0032	0.0076		
9	8	杭州	31524	0.0309	-0.0371		分组结果
10	9	福州	25838	-0.003	-0.0254	组限	区间 频数
11	10	天津	24719	-0.0137	-0.0529		
12	11	宁波	23671	-0.0038	0.1603		
13	12	苏州	22640	-0.0067	0.0034		
14	13	珠海	22309	0.0169	-0.0447		
15	14	温州	21382	-0.0018	0.02		
16	15	青岛	20535	0.0263	-0.0463		
17	16	武汉	18952	-0.0457	0.0563		
18	17	丽水	18209	-0.017	0.0227		
19	18	东莞	18155	0.0207	0.1533		
20	19	金华	16809	0.0148	0.023		

图 5-24

H2		• : >	< 🗸 fx	=MAX(C2:C	51)				
1	А	В	С	D	E	F	G	Н	1 I.
1	排名	城市	单价(元/㎡)	环比	同比		分	组过程	
2	1	深圳	69129	-0.0001	0.1867		最大值	69129	
3	2	北京	62212	-0.0156	-0.0188		最小值		
4	3	上海	55256	-0.0004	0.0565		全距		
5	4	厦门	52583	0.0112	0.0394		组数		
6	5	广州	51729	-0.0155	0.1295		组距		
7	6	三亚	41075	0.0074	0.1383		组距选取		
8	7	南京	30947	0.0032	0.0076				
9	8	杭州	31524	0.0309	-0.0371			分组结果	
10	9	福州	25838	-0.003	-0.0254		组限	区间	频数
11	10	天津	24719	-0.0137	-0.0529				
12	11	宁波	23671	-0.0038	0.1603				

图 5-25

3 选中 H3 单元格,在编辑栏中输入公式:

=MIN(C2:C51)

按 Enter 键,即可计算出单价中的最小值,如 图 5-26 所示。

HЗ		• : :	× √ &	=MIN(C2:C5	i1)				
4	А	в	С	D	E	F	G	Н	I I
1	排名	城市	单价(元/㎡)	环比	同比		分	组过程	
2	1	深圳	69129	-0.0001	0.1867		最大值。	69129	_
3	2	北京	62212	-0.0156	-0.0188		最小值	9857	11
4	3	上海	55256	-0.0004	0.0565		全距		~
5	4	厦门	52583	0.0112	0.0394		组数		
6	5	广州	51729	-0.0155	0.1295		组距		
7	6	三亚	41075	0.0074	0.1383		组距选取		
8	7	南京	30947	0.0032	0.0076				
9	8	杭州	31524	0.0309	-0.0371			分组结果	
10	9	福州	25838	-0.003	-0.0254		组限	区间	频数
11	10	天津	24719	-0.0137	-0.0529				
12	11	宁波	23671	-0.0038	0.1603				
13	12	苏州	22640	-0.0067	0.0034				

图 5-26

④ 选中 H4 单元格,在编辑栏中输入公式:

=H2-H3

按 Enter 键,即可计算出全距,如图 5-27 所示。

H4		* I 🔾	< - v - fx [=H2-H3					
4	А	В	С	D	E	F	G	Н	1
1	排名	城市	单价(元/㎡)	环比	同比		分	组过程	
2	1	深圳	69129	-0.0001	0.1867		最大值	69129	
3	2	北京	62212	-0.0156	-0.0188		最小值	9857	
4	3	上海	55256	-0.0004	0.0565		全距	59272	
5	4	厦门	52583	0.0112	0.0394		组数		
6	5	广州	51729	-0.0155	0.1295		组距		
7	6	三亚	41075	0.0074	0.1383		组距选取		
8	7	南京	30947	0.0032	0.0076				
9	8	杭州	31524	0.0309	-0.0371			分组结果	
10	9	福州	25838	-0.003	-0.0254		组限	区间	频数
11	10	天津	24719	-0.0137	-0.0529				
12	11	宁波	23671	-0.0038	0.1603				
13	12	苏州	22640	-0.0067	0.0034				

图 5-27

⑤ 根据全距,可以将数据分为6组,选中H6单 元格,在编辑栏中输入公式:=H4/H5

按 Enter 键,即可计算出组距,如图 5-28 所示。 ③ 组 距选 取 为 整 数,即 根 据 组 距 结 果 选 择 "10000"。接着在分组结果中根据组距选取对数据源 进行分组,将数据分为 7 组,并设置各个区间,如 图 5-29 所示。

H6		* = >	< 🗸 fx	=H4/H5					
4	А	В	с	D	E	F	G	Н	1
1	排名	城市	单价(元/㎡)	环比	同比		分	组过程	
2	1	深圳	69129	-0.0001	0.1867		最大值	69129	
3	2	北京	62212	-0.0156	-0.0188		最小值	9857	
4	3	上海	55256	-0.0004	0.0565		全距	59272	
5	4	厦门	52583	0.0112	0.0394		组数	6	
6	5	广州	51729	-0.0155	0.1295		组距	9878.666667	l)
7	6	三亚	41075	0.0074	0.1383		组距选取		
8	7	南京	30947	0.0032	0.0076				
9	8	杭州	31524	0.0309	-0.0371			分组结果	
10	9	福州	25838	-0.003	-0.0254		组限	区间	頻数
11	10	天津	24719	-0.0137	-0.0529				
12	11	宁波	23671	-0.0038	0.1603				
13	12	苏州	22640	-0.0067	0.0034				

图 5-28

		0	0	0	r		0			T
1	排名	城市	单价(元/㎡)	环比	同比	F	- · · · · · · · · · · · · · · · · · · ·	组过程		T
2	1	深圳	69129	-0.0001	0.1867		最大值	69129		
3	2	北京	62212	-0.0156	-0.0188		最小值	9857		
4	3	上海	55256	-0.0004	0.0565		全距	59272		
5	4	厦门	52583	0.0112	0.0394		组数	6		
6	5	广州	51729	-0.0155	0.1295		组距	9878.666667		
7	6	三亚	41075	0.0074	0.1383		组距选取	10000		
8	7	南京	30947	0.0032	0.0076					
9	8	杭州	31524	0.0309	-0.0371			分组结果		Τ
10	9	福州	25838	-0.003	-0.0254		组限	区间	频数	Ł
11	10	天津	24719	-0.0137	-0.0529		10000	<=10000		Τ
12	11	宁波	23671	-0.0038	0.1603		20000	10000-20000		Ι
13	12	苏州	22640	-0.0067	0.0034		30000	20000~30000		Т
14	13	珠海	22309	0.0169	-0.0447		40000	30000~40000		Т
15	14	温州	21382	-0.0018	0.02		50000	40000~50000		
16	15	青岛	20535	0.0263	-0.0463		60000	50000~60000		Τ
17	16	武汉	18952	-0.0457	0.0563		70000	60000~70000	/	Τ
		- 1.	10000	0.04.0	0.0003					

图 5-29

⑦选中Ⅱ11:Ⅱ7单元格区域,在编辑栏中输入 公式:

=FREQUENCY(C2:C51, G11:G17)

按 Shift+Ctrl+Enter 组合键,即可计算出各个区间对应的频数,如图 5-30 所示。

		* 1	$\times \checkmark f_x$	{=FREQUENC	CY(C2:C51, G1:	L:G17)}				
	A	В	С	D	E	F	G	Н	1	
抈	名	城市	单价(元/㎡)	环比	同比		分	组过程		
	1	深圳	69129	-0.0001	0.1867		最大值	69129		
	2	北京	62212	-0.0156	-0.0188		最小值	9857		
	3	上海	55256	-0.0004	0.0565		全距	59272		
	4	厦门	52583	0.0112	0.0394		组数	6		
	5	广州	51729	-0.0155	0.1295		组距	9878.666667		
	6	三亚	41075	0.0074	0.1383		组距选取	10000		
	7	南京	30947	0.0032	0.0076					
	8	杭州	31524	0.0309	-0.0371			分组结果		
	9	福州	25838	-0.003	-0.0254		组限	区间	頻数	
	10	天津	24719	-0.0137	-0.0529		10000	<=10000		
	11	宁波	23671	-0.0038	0.1603		20000	10000-20000	34	
	12	苏州	22640	-0.0067	0.0034		30000	20000~30000	7	
	13	珠海	22309	0.0169	-0.0447		40000	30000~40000	2	
	14	温州	21382	-0.0018	0.02		50000	40000~50000	1	
	15	青岛	20535	0.0263	-0.0463		60000	50000~60000	3	
	16	武汉	18952	-0.0457	0.0563		70000	60000~70000	2	
	17	丽水	18209	-0.017	0.0227					
	14 15 16 17	温州 青岛 武汉 丽水	21382 20535 18952 18209	-0.0018 0.0263 -0.0457 -0.017	-0.0463 0.0563 0.0227		60000 70000	40000~50000 50000~60000 60000~70000		

图 5-30

5.3 场数统计直方图

在 Excel 的高级分析工具中有直方图工具,使用此工具可以快速进行频数统计并生成图表。 这是一项非常实用的功能。

5.3.1 加载直方图分析工具

要想使用分析工具对表格数据分析,首先 需要安装分析工具库加载项,加载步骤如下。

●打开表格,单击"文件"选项卡,在打开的面板中单击"选项"命令(如图 5-31 所示),打开 "Excel选项"对话框。单击"加载项"右侧面板的"转 到"按钮(如图 5-32 所示),打开"加载项"对话框。

2 选中"分析工具库"复选框,单击"确定"

通过计算结果,可以看到房价分布在哪个 价格区间的数量最多。

知识扩展

FREQUENCY 函数计算数值在某个区域 内的出现频率,然后返回一个垂直数组。由 于函数 FREQUENCY 返回一个数组,所以它 必须以数组公式的形式输入。函数语法如下:

FREQUENCY(data_array,bins_array)

● data_array: 是一个数组或对一组数 值的引用,要为它计算频率。

● bins_array: 是一个区间数组或对区间的引用,该区间用于对 data_array 中的数 值进行分组。

按钮,如图 5-33 所示。完成加载后,在"数据"选项卡的"分析"组中单击"数据分析"按钮,如图 5-34 所示。单击就可以打开"数据分析"对话框。

数据	公式	审阅	视图	开发工具	♀ 告诉我你想要做什		
	2↓ ZA Z↓ 排	序篇	た。 たり での目 であ	静除 外 動应用 動級 重	□ 显示查询 □ 显示查询 □ III 从表格 m建 □ □ 最近使用的源	数 ?.,	据分析
		排序和	筛选		获取和转换		

在加载了直方图分析工具后,可以一次性 对频数进行统计并自动生成图表。例如当前表 格登记了 100 份调查问卷对某产品的评分情况, 现在对这些数据以 10 为组距进行分组,计算出 频数,并生成频数统计图表。

1 在数据旁建立组限(组距以10为区间)。在
 "数据"选项卡的"分析"组中单击"数据分析"按
 钮(如图 5-35 所示),打开"数据分析"对话框。

图 5-35

2 选择"直方图"工具(如图 5-36 所示),单击"确定"按钮进入"直方图"对话框,按如图 5-37 所示设置各项参数,并选中"图表输出"复选框。注 意"输入区域"为整个数据区域,"接收区域"为设 置的组限。

图 5-36

3 单击"确定"按钮即可快速统计频数并生成 直方图,如图 5-38 所示。

④ 由于图表中默认包含有一个"其他"分类, 可以通过设置取消此分类。选中图表并单击鼠标右 键,在弹出的右键菜单中单击"选择数据"命令,如 图 5-39 所示。

⑤打开"选择数据源"对话框,重新设置图表数据区域为"=直方图!\$F\$11:\$G\$16",如图 5-40所示。

6 在"水平(分类)轴标签"区域单击"编辑"
 按钮,打开"轴标签"对话框。拖动选择"F11:F16"
 单元格区域为轴标签,如图 5-41 所示。

⑦ 单击"确定"按钮回到"选择数据源"对话框,选中"系列1"系列,然后单击"删除"按钮,如图 5-42 所示。

图 5-42

⑧ 单击"确定"按钮得到调整好的直方图,如
 图 5-43 所示。

④ 在数据系列上单击鼠标右键,在打开的右键

菜单中执行"添加数据标签""添加数据标签"命令(如图 5-44 所示),即可在图表上显示出"值"数据标签,即每个分组区间的频数值是多少,如图 5-45 所示。

图 5-44

① 选中图表,单击图表右上角出现的"图表样式"按钮,在展开的列表中找到想使用的样式,单击即可套用(鼠标指针指向即时预览),如图 5-46 所示。利用此方法可以达到一键美化图表的目的。

最后为图表添加上能表达主题的标题文 字,效果如图 5-47 所示。

5.3.3 应用直方图统计图表

从 Excel 2016 开始, Excel 在图表类别中 提供了"直方图"统计图表类型,可对同一列 数据进行频数分布统计。针对 5.3.2 小节中的数 据,为了能顺利创建图表,还需要对源数据进 行处理,下面来介绍具体操作步骤。

1 将源数据改为到一列显示(可以复制工作表 来完成此操作),如图 5-48 所示。

② 选中 A2:A101 单元格区域,单击"插入"选项卡,在"图表"选项组中单击"插入统计图表"下 拉按钮,在其下拉菜单中选择"直方图"子图表类型,如图 5-49 所示。

③执行上述命令后即可立即插入默认图表,如 图 5-50 所示。

文	供 开始	插入	页面布局	公式	数据	审阅 视图	報助	Q
	「 」 振 推荐的 「現表 数据送视 表格	表格 表	□	● 載 推 『 图	? ∭、	· 山 · 八、· · 山 · 广、· · <u>首方图</u>		enus 17
A2	-	: ×	√ f _x	55			<u> Ah</u> h	
	Â	B	C	D	F	箱形图		
1	n	100份词》	告的评分	D	E	11		
2	55	83	02	70		1 6 6 9		
3	87	93	60	68				- 1
1	66	69	63	67		山 更多统	計图表(M)	
5	90	79	82	93		2日 茶竹	5	
6	68	64	99	97		细跖	10.4	
7	78	62	88	74		细跖洗取	10.1	
	63	50	80	51			**	
9	94	61	83	48				
10	67	80	76	92				
11	68	83	94	83				
12	84	97	92	100				
13	82	75	59	99				
14	50	77	83	57				
15	89	90	93	51				
16	82	65	83	77				
17	94	84	50	74				
18	78	92	75	98				
19	86	83	76	80				
20	56	50	87	74				
21	68	81	81	92				
22	97	50	89	81				
23	52	88	91	97				
24	100	98	54	97	-			
25	92	- <u>/5</u>	07	50				
20	98	- 30	67	- 33				
28	03				-			
20	69							
30	79							

图 5-49

④ 对于默认图表需要根据实际情况更改箱体宽度,即各个箱体以多少为区间进行分组。这时就要

考虑当前的组距了。在水平轴的标题上双击鼠标,打 开"设置坐标轴格式"右侧窗格,单击"坐标轴选 项"标签,在"箱宽度"框中设置值为"10"(即组距 值),设置"溢出箱"为"100","下溢箱"为"50", 如图 5-51 所示。设置后可以看到图表效果,如图 5-52 所示。

● 接着再在箱体上单击鼠标右键,在打开的右 键菜单中执行"添加数据标签" "添加数据标签" 命令,如图 5-53 所示。

⑥添加数据标签后再为图表重新输入标题,得 到的直方图如图 5-54 所示。从直方图中可以清晰地 看到数据的分组情况以及频数统计值。

图 5-54