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We will now consider abstract DP models that are intermediate between
the contractive models of Chapter 2, where all stationary policies involve a.
contraction mapping, and noncontractive models to be discussed in Chapter
4, where there are no contraction-like assumptions (although there are some
compensating conditions, including monotonicity).

A representative instance of such an intermediate model is the deter-
ministic shortest path problem of Example 1.2.7, where we can distinguish
between two types of stationary policies: those that terminate at the des-
tination from every starting node, and those that do not. A more general
instance is the stochastic shortest path (SSP for short) problem of Example
1.2.6. In this problem, the analysis revolves around two types of stationary
policies y: those with a mapping T}, that is a confraction with respect to
some norm, and those with a mapping T}, that is not a contraction with
respect to any norm (it can be shown that the former are the ones that
terminate with probability 1 starting from any state).

In the models of this chapter, like in SSP problems, we divide policies
into two groups, one of which has favorable characteristics. We loosely
refer to such models as semicontractive to indicate that these favorable
characteristics include contraction-like properties of the mapping 7},. To
develop a more broadly applicable theory, we replace the notion of contrac-
tiveness of T}, with a notion of S-regularity of 1, where S is an appropriate
set of functions of the state (roughly, this is a form of “local stability” of
T,., which ensures that the cost function .J,, is the unique fixed point of T},
within S, and that 7}.J converges to .J, regardless of the choice of .J from
within S). We allow that some policies are S-regular while others are not.

Note that the term “semicontractive” is not used in a precise mathe-
matical sense here. Rather it refers qualitatively to a collection of models
where some policies have a regularity/contraction-like property but others
do not. Moreover, regularity is a relative property: the division of policies
into “regular” and “irregular” depends on the choice of the set 5. On the
other hand, typically in practical applications an appropriate choice of S
is fairly evident.

Our analysis will involve two types of assumptions:

(a) Favorable assumptions, under which we obtain results that are nearly
as strong as those available for the contractive models of Chapter 2.
In particular, we show that J* is a fixed point of T', that the Bellman
equation J = TJ has a unique solution, at least within a suitable
class of functions, and that variants of the VI and PI algorithms are
valid. Some of the VI and PI approaches are suitable for distributed
asynchronous computation, similar to their Chapter 2 counterparts
for contractive models.

(b) Less favorable assumptions, under which serious difficulties may oc-
cur: J* may not be a fixed point of T', and even when it is, it may not
be found using the VI and PI algorithms. These anomalies may ap-



3.1

Sec. 3.1 Pathologies of Noncontractive DP Models 109

pear in simple problems, such as deterministic and stochastic shortest
path problems with some zero length cycles. To address the difficul-
ties, we will consider a restricted problem, where the only admissible
policies are the ones that are S-regular. Under reasonable conditions
we show that this problem is better-behaved. In particular, J;, the
optimal cost function over the S-regular policies only, is the unique
solution of Bellman’s equation among functions J € S with J = Jg,
while VI converges to Jg starting from any J € S with J = Jg.
We will also derive a variety of PI approaches for finding .J ; and an
S-regular policy that is optimal within the class of S-regular policies.

We will illustrate our analysis in Section 3.5, both under favorable and
unfavorable assumptions, by means of four classes of practical problems.
Some of these problems relate to finding a path to a destination in a graph
under stochastic or set membership uncertainty, while others relate to the
control of a continuous-state system to a terminal state. In particular, we
will consider SSP problems, affine monotonic problems, including problems
with multiplicative or risk-sensitive exponential cost function, minimax-
type shortest path problems, and continuous-state deterministic problems
with nonnegative cost, such as linear-quadratic problems.

The chapter is organized as follows. In Section 3.1, we illustrate the
pathologies regarding solutions of Bellman'’s equation, and the VI and PI
algorithms. To this end, we use four simple examples, ranging from finite-
state shortest path problems, to continuous-state linear-quadratic prob-
lems. These examples provide orientation and motivation for S-regular
policies later. In Section 3.2, we formally introduce our abstract DP model,
and the notion of an S-regular policy. We then develop some of the basic
associated results relating to Bellman’s equation, and the convergence of
VI and PI, based primarily on the ideas underlying the PI algorithm. In
Section 3.3 we refine the results of Section 3.2 under favorable conditions,
obtaining results and algorithms that are almost as powerful as the ones for
contractive models. In Section 3.4 we develop a complementary analytical
approach, which is based on the use of perturbations and applies under less
favorable assumptions. In Section 3.5, we discuss in detail the application
and refinement of the results of Sections 3.2-3.4 in some important shortest
path-type practical contexts. In Section 3.6, we focus on variants of VI and
Pl-type algorithms for semicontractive DP models, including some that are
suitable for asynchronous distributed computation.

Pathologies of Noncontractive DP Models

In this section we provide a general overview of the analytical and compu-
tational difficulties in noncontractive DP models, using for the most part
shortest path-type problems. For illustration we will first use two of the
simplest and most widely encountered finite-state DP problems: deter-



110 Semicontractive Models Chap. 3

ministic and SSP problems, whereby we are aiming to reach a destination
state at minimum cost. ¥ We will also discuss an example of continuous-
state shortest path problem that involves a linear system and a quadratic
cost function.

We will adopt the general abstract DP model of Section 1.2. We give
a brief description that is adequate for the purposes of this section, and
defer a more formal definition to Section 3.2. In particular, we introduce
a set of states X, and for each = € X, the nonempty control constraint set.
U(z). For each policy p, the mapping 7}, is given by

(T J)(2) = H (z, p(z), J), YeeX
where H is a suitable function of (x,u,.JJ). The mapping T" is given by

(TJ)(x) = 1?€ )H(a:, ) YeeX
uel(x

The cost function of a policy m = {po, pt1,---} is

Jx(z) = limsup Jx n(2) = limsup(Tp Ty, -+ Ty, J)(z), € X

N—=oo N—oo

where .J is some function. f We want to minimize J over m, i.e., to find
J*(z) = inf Jx(z), reX
kig

and a policy that attains the infimum.

For orientation purposes, we recall from Chapter 1 (Examples 1.2.1
and 1.2.2) that for a stochastic optimal control problem involving a finite-
state Markov chain with state space X = {1, n}, transition probabilities
Pay(u), and expected one-stage cost function g, the mapping H is given by

H(z,u,J) = g(z,u) + > pey(u)J(y), z€X

y=1

and J(z) = 0. The SSP problem arises when there is an additional ter-
mination state that is cost-free, and corresponding transition probabilities
pat(u), x € X.

T These problems are naturally undiscounted, and cannot be readily ad-
dressed by introducing a discount factor close to 1, because then the optimal
policies may exhibit undesirable behavior. In particular, in the presence of dis-
counting, they may involve moving initially along a small-length cycle in order
to postpone the use of an optimal but unavoidably costly path until later, when
the discount factor will reduce substantially the cost of that path.

1 In the contractive models of Chapter 2, the choice of .J is immaterial, as we
discussed in Section 2.1. Here, however, the choice of .J is important, and affects
important characteristics of the model, as we will see later.
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A more general undiscounted stochastic optimal control problem in-
volves a stationary discrete-time dynamic system where the state is an
element of a space X, and the control is an element of a space U. The
control uy is constrained to take values in a given set U(zy) C U, which
depends on the current state xy [uy € U(zy), for all ;. € X]. For a policy
7w = {10, pt1,- - -}, the state evolves according to a system equation

T = f 2k, pr(ar), wi), k=01, (3.1)

where wy. is a random disturbance that takes values from a space W. We
assume that wy, k = 0,1, -, are characterized by probability distributions
P(- | 24, ux) that are identical for all k, where P(wy, | @), uy) is the prob-
ability of occurrence of wj., when the current state and control are x; and
uy, respectively. Here, we allow infinite state and control spaces, as well as
problems with discrete (finite or countable) state space (in which case the
underlying system is a Markov chain). However, for technical reasons that
relate to measure-theoretic issues, we assume that W is a countable set. |
Given an initial state xg, we want to find a policy = = {po, p1,-++},
where pi : X — U, pp(xg) € U(zy), for all x, € X, k = 0,1,---, that

minimizes g
Jx(xg) = limsup £ {Zg(mt.m(:ﬁ),w;) } (3.2)

A=3o0 t=0

subject to the system equation constraint (3.1), where g is the one-stage
cost function. The corresponding mapping of the abstract DP problem is

H(z,u,J) = E{g(z,u,w) + J(f(z,u,w))}

and J(z) = 0. Again here, (T}, - Ty, J)(z) is the expected cost of the
first k + 1 periods using 7 starting from x, and with terminal cost 0.
A discounted version of the problem is defined by the mapping

H(z,u,J) = E{g(z,u,w) + aJ(f(z,u,w))}

where a € (0,1) is the discount factor. It corresponds to minimization of

;‘.

Jr(xo) = limsup £ {Za*g (4, pue (1), u.rt)}
k—oo =0

If the cost per stage g is bounded, then a problem that fits the contractive

framework of Chapter 2 is obtained, and can be analyzed using the methods

of that chapter. However, there are interesting infinite-state discounted

optimal control problems where ¢ is not bounded.

T Measure-theoretic issues are not addressed at all in this second edition of
the book. The first edition addressed some of these issues within an abstract
DP context in its Chapter 5 and Appendix C (this material is posted at the
book’s web site); see also the monograph by Bertsekas and Shreve [BeS78], and
the paper by Yu and Bertsekas [YuB15].
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A Summary of Pathologies

The four examples to be discussed in Sections 3.1.1-3.1.4 are special cases
of deterministic and stochastic optimal control problems of the type just
described. In each of these examples, we will introduce a subclass of
“well-behaved” policies and a restricted optimization problem, which is
to minimize the cost over the “well-behaved” subclass (in Section 3.2 the
property of being “well-behaved” will be formalized through the notion
of S-regularity). The optimal cost function over just the “well-behaved”
policies is denoted J (we will also use the notation Jg later). Here is a
summary of the examples and the pathologies that they reveal:

(a) A finite-state, finite-control deterministic shortest path problem (Sec-
tion 3.1.1). Here the mapping 7" can have infinitely many fixed points,
including J* and J. There exist policies that attain the optimal costs
J* and J. Depending on the starting point, the VI algorithm may
converge to J” or to J or to a third fixed point of T' (for cases where
J* £ J, VI converges to J starting from any J = J ). The PI algo-
rithm can oscillate between two policies that attain .J* and J, respec-
tively.

(b) A finite-state, finite-control stochastic shortest path problem (Section
3.1.2). The salient feature of this example is that J” is not a fixed
point of the mapping 7. By contrast J is a fixed point of T'. The VI
algorithm converges to J starting from any J = J, while it does not
converge otherwise.

(¢) A finite-state, infinite-control stochastic shortest path problem (Sec-
tion 3.1.3). We give three variants of this example. In the first variant
(a classical problem known as the “blackmailer’s dilemma”), all the
policies are “well-behaved,” so J* = J, and VI converges to J" start-
ing from any real-valued initial condition, while PI also succeeds in
finding J* as the limit of the generated sequence {J,« }. However, PI
cannot find an optimal policy, because there is no optimal stationary
policy. In a second variant of this example, PI generates a sequence of
“well-behaved” policies {y*} such that J x | J, but {uk} converges
to a policy that is either infeasible or is strictly suboptimal. In the
third variant of this example, the problem data can strongly affect
the multiplicity of the fixed points of T', and the behavior of the VI
and PI algorithms.

(d) A continuous-state, continuous-control deterministic linear-quadratic
problem (Section 3.1.4). Here the mapping 7' has exactly two fixed
points, J* and .J, within the class of positive semidefinite quadratic
functions. The VI algorithm converges to .J starting from all positive
initial conditions, and to J”* starting from all other initial conditions.
Moreover, starting with a “well-behaved” policy, the PI algorithm
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converges to J and to an optimal policy within the class of “well-
behaved” policies.

It can be seen that the examples exhibit wide-ranging pathological
behavior. In Section 3.2, we will aim to construct a theoretical framework
that explains this behavior. Moreover, in Section 3.3, we will derive condi-
tions guaranteeing that much of this type of behavior does not occur. These
conditions are natural and broadly applicable. They are used to exclude
from optimality the policies that are not “well-behaved,” and to obtain
results that are nearly as powerful as their counterparts for the contractive
models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes © = 1,---.n, plus
a destination ¢, and an arc length a,, for each directed arc (x,y). The
objective is to find for each x a directed path that starts at x, ends at f,
and has minimum length (the length of a path is defined as the sum of the
lengths of its ares). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at {. We also view f as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. Thus we will not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undiscounted /noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes = 1,---,n, and the
controls available at = can be identified with the outgoing neighbors of x
[the nodes u such that (z,u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

gy + J(Ti) if u 7(—' t
Ayt ifu=t

I
g
=

H(z,u,J) = {

A stationary policy p defines the subgraph whose arcs are (;L', ,u(ar)),
x=1,...,n. Wesay that pu is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If u is not
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Cost a

Destination
Cost b

Figure 3.1.1. A deterministic shortest path problem with a single node 1 and a
termination node {. At 1 there are two choices; a self-transition, which costs a,
and a transition to t, which costs b.

proper, it is called improper. Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than —oo starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
self-transition, which costs a, and a transition to t, which costs b. The
mapping H, abbreviating .J(1) with just the scalar J, is

H(,u,J) = {a + J if u: self transition JeR

b if w: transition to t

There are two policies here: the policy p that transitions from 1 to ¢,
which is proper, and the policy p/ that self-transitions at state 1, which is
improper. We have

Ty =0b, TyJ=a+J, JeR

and
T.J = min{b, a + J}, JeR

Note that for the proper policy p, the mapping 7}, : R — R is a contraction.
For the improper policy p’, the mapping 7,/ : R — R is not a contraction,
and it has a fixed point within R only if @ = 0, in which case every J € R
is a fixed point.

We now consider the optimal cost J*, the fixed points of T" within R,
and the behavior of the VI and PI methods for different combinations of
values of @ and b.

(a) If a > 0, the optimal cost, J* = b, is the unique fixed point of 7', and
the proper policy is optimal.
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(b) If @ = 0, the set of fixed points of T' (within R) is the interval (—o0. b].
Here the improper policy is optimal if b = 0, and the proper policy is
optimal if b< 0 (both policies are optimal if b = 0).

(¢) If a =0 and b > 0, the proper policy is strictly suboptimal, yet its cost
at state 1 (which is b) is a fixed point of T. The optimal cost, J* = 0,
lies in the interior of the set of fixed points of T', which is (—o0,b).
Thus the VI method that generates {T*J} starting with J # J~
cannot find J*. In particular if J is a fixed point of T, VI stops at J,
while if .J is not a fixed point of T (i.e., J > b), VI terminates in two
iterations at b # .J*. Moreover, the standard PI method is unreliable
in the sense that starting with the suboptimal proper policy pu, it
may stop with that policy because 1,.J, = b = min{b, J,} = TJ,
(the improper /optimal policy ' also satisfies T}, J, = T'J,, so a rule
for breaking the tie in favor of pt is needed but such a rule may not
be obvious in general).

(d) If @ = 0 and b < 0, the improper policy is strictly suboptimal, and
we have J* = b. Here it can be seen that the VI sequence {T*.J}
converges to J* for all J = b, but stops at .J for all J < b, since the
set of fixed points of T is (—o0,b]. Moreover, starting with either
the proper policy or the improper policy, the standard form of PI
may oscillate, since T),J,» =TJ, and T,,/.J, = TJ,, as can be easily
verified [the optimal policy p also satisfies T,.J, = T'J,, but it is not
clear how to break the tie; compare also with case (¢) above].

(e) If @ < 0, the improper policy is optimal and we have J* = —oc.
There are no fixed points of 7" within R, but J* is the unique fixed
point of T within the set [—o0,00]. The VI method will converge to
J* starting from any J € [—oc0, oc]. The PI method will also converge
to the optimal policy starting from either policy.

3.1.2 Stochastic Shortest Path Problems

We consider the SSP problem, which was described in Example 1.2.6 and
will be revisited in Section 3.5.1. Here a policy is associated with a station-
ary Markov chain whose states are 1,---,n, plus the cost-free termination
state t. The cost of a policy starting at a state a is the sum of the expected
cost of its transitions up to reaching . A policy is said to be proper, if in
its Markov chain, every state is connected with ¢t with a path of positive
probability transitions, and otherwise it is called improper. Equivalently, a
policy is proper if its Markov chain has ¢ as its unique ergodic state, with
all other states being transient.

In deterministic shortest path problems, it turns out that .J, is always
a fixed point of T),, and J* is always a fixed point of T'. This is a generic
feature of deterministic problems, which was illustrated in Section 1.1 (see
Exercise 3.1 for a rigorous proof). However, in SSP problems where the
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Cost 0

Ju(1)=0

Destination
Cost 0

Figure 3.1.2. An example of an improper policy p, where Jy, is not a fixed
point of Ty,. All transitions under p are shown with solid lines. These transitions
are deterministic, except at state 1 where the next state is 2 or 5 with equal
probability 1/2. There are additional high cost transitions from nodes 1, 4, and
7 to the destination (shown with broken lines), which create a suboptimal proper
policy. We have J* = J,; and J* is not a fixed point of T

cost per stage can take both positive and negative values this need not be
so, as we will now show with an example due to [BeY16].

Let us consider the problem of Fig. 3.1.2. It involves an improper
policy p, whose transitions are shown with solid lines in the figure, and
form the two zero length cycles shown. All the transitions under p are
deterministic, except at state 1 where the successor state is 2 or 5 with
equal probability 1/2. The problem has been deliberately constructed so
that corresponding costs at the nodes of the two cycles are negatives of
each other. As a result, the expected cost at each time period starting
from state 1 is 0, implying that the total cost over any number or even
infinite number of periods is 0.

Indeed, to verify that J,,(1) = 0, let ¢; denote the cost incurred at

N=1

time k, starting at state 1, and let sy(1) = > ¢ denote the N-step
k=0

accumulation of ¢ starting from state 1. We have

sy(1)=0 ifN=1lor N=4+3t,t=0,1,---
sn(l) =1 or sy(1) = —1 with probability 1/2 each
if N=24+3orN=3+3t=0,1,---



