Exact and Approximate

Dynamic Programmaing Principles

Contents
1.1 AlphaZero, Off-Line Training, and On-Line Play 2
1.2 Deterministic Dynamic Programming . . . . . . . . . . T
1.2.1 Finite Horizon Problem Formulation . . . . . . . . 7
1.2.2 The Dynamic Programming Algorithm . . . . . . . 11
1.2.3 Approximation in Value Space . . . . . . . . . . 21
1.3 Stochastic Dynamic Programming . . . . . . . . . . . . 26
1.3.1 Finite Horizon Problems . . . . oo
1.3.2 Approximation in Value Space for StOChathC DP 3T
1.3.3 Infinite Horizon Problems - An Overview . . . . . . 41
1.3.4 Infinite Horizon - Approximation in Value Space . . 49
1.3.5 Infinite Horizon - Policy Iteration, Rollout, and
Newton’s Method . . . . . R
1.4 Examples, Variations, and Sln‘lpllfl(‘d.tl(}llb S R D R
1.4.1 A Few Words About Modeling . . . . . . . . . . 58
1.4.2 Problems with a Termination State . . . . . . 60
1.4.3 State Augmentation, Time Delays, Forecasts, dnd
Uncontrollable State Components . . . . . . . . . 63
1.4.4 Partial State Information and Belief States . . . . . 69
1.4.5 Multiagent Problems and Multiagent Rollout . . . . 72
1.4.6 Problems with Unknown Parameters - Adaptive
Control . . . G T T
1.4.7 Adaptive Contlol by Rollou‘r 'md On Llue
Replanning . . . ... 82
1.5 Reinforcement Learning rll](l Optlm;ll Contl Dl - Some
ARSI T o it o o o ka0 D o oI b o % o ey
6 INotes and Sourcess sl sl e s e g




1.1

2 Exact and Approximate Dynamic Programming Principles Chap. 1

In this chapter, we provide some background on exact dynamic program-
ming (DP), with a view towards the suboptimal solution methods, which
are based on approximation in value space and are the main subject of this
book. We first discuss finite horizon problems, which involve a finite se-
quence of successive decisions, and are thus conceptually and analytically
simpler. We then consider somewhat briefly the more intricate infinite
horizon problems, but defer a more detailed treatment for Chapter 5.

We will discuss separately deterministic and stochastic problems (Sec-
tions 1.2 and 1.3, respectively). The reason is that deterministic problems
are simpler and have some favorable characteristics, which allow the ap-
plication of a broader variety of methods. Significantly they include chal-
lenging discrete and combinatorial optimization problems, which can be
fruitfully addressed with some of the rollout and approximate policy iter-
ation methods that are the main focus of this book.

In subsequent chapters, we will discuss selectively some major algo-
rithmic topics in approximate DP and reinforcement learning (RL), in-
cluding rollout and policy iteration, multiagent problems, and distributed
algorithms. A broader discussion of DP/RL may be found in the author’s
RL textbook [Berl19a], and the DP textbooks [Ber12], [Berl7a], [Ber18al,
the neuro-dynamic programming monograph [BeT96], as well as the liter-
ature cited in the last section of this chapter.

The DP/RL methods that are the principal subjects of this book,
rollout and policy iteration, have a strong connection with the famous
AlphaZero, AlphaGo, and other related programs. As an introduction to
our technical development, we take a look at this connection in the next
section.

AlphaZero, Off-Line Training, and On-Line Play

One of the most exciting recent success stories in RL is the development
of the AlphaGo and AlphaZero programs by DeepMind Inc; see [SHM16],
[SHS17], [SSS17]. AlphaZero plays Chess, Go, and other games, and is
an improvement in terms of performance and generality over AlphaGo,
which plays the game of Go only. Both programs play better than all
competitor computer programs available in 2020, and much better than
all humans. These programs are remarkable in several other ways. In
particular, they have learned how to play without human instruction, just
data generated by playing against themselves. Moreover, they learned how
to play very quickly. In fact, AlphaZero learned how to play chess better
than all humans and computer programs within hours (with the help of
awesome parallel computation power, it must be said).

Perhaps the most impressive aspect of AlphaZero/chess is that its
play is not just better, but it is also very different than human play in
terms of long term strategic vision. Remarkably, AlphaZero has discovered



Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 3

new ways to play chess, a game that has been studied intensively by humans
for hundreds of years.

Still, for all of its impressive success and brilliant implementation, Al-
phaZero is couched on well established methodology, which is the subject of
the present book, and is portable to far broader realms of engineering, eco-
nomics, and other fields. This is the methodology of DP, policy iteration,
limited lookahead, rollout, and approximation in value space.}

To understand the overall structure of AlphaZero and related pro-
grams, and their connections to our DP/RL methodology, it is useful to
divide their design into two parts:

(1) Off-line training, which is an algorithm that learns how to evaluate
chess positions, and how to steer itself towards good positions with a
default/base chess player.

(2) On-line play, which is an algorithm that generates good moves in
real time against a human or computer opponent, using the training
it went through off-line.

We will next briefly describe these algorithms, and relate them to DP
concepts and principles.

Off-Line Training and Policy Iteration

An off-line training algorithm like the one used in AlphaZero is the part
of the program that learns how to play through self-training that takes
place before real-time play against any opponent. It is illustrated in Fig.
1.1.1, and it generates a sequence of chess players and position evaluators.
A chess player assigns “probabilities” to all possible moves at any given
chess position (these are the probabilities with which the player selects
the possible moves at the given position). A position evaluator assigns
a numerical score to any given chess position (akin to a “probability” of
winning the game from that position), and thus predicts quantitatively the
performance of a player starting from any position. The chess player and
the position evaluator are represented by two neural networks, a policy

T It is also worth noting that the principles of the AlphaZero design have
much in common with the work of Tesauro [Tes94], [Tes95], [TeG96] on computer
backgammon. Tesauro’s programs stimulated much interest in RL in the middle
1990s, and exhibit similarly different and better play than human backgammon
players. A related impressive program for the (one-player) game of Tetris, also
based on the method of policy iteration, is described by Scherrer et al. [SGG15],
together with several antecedents. Also the AlphaZero ideas have been replicated
by the publicly available program Leela Chess Zero, with similar success. For a
better understanding of the connections of AlphaZero, Tesauro’s programs (TD-
Gammon [Tes94], and its rollout version [TeG96]), and the concepts developed
here, the reader may consult the “Methods” section of the paper [SSS17].



4 Exact and Approximate Dynamic Programming Principles Chap. 1

network and a value network, which accept a chess position and generate
a set of move probabilities and a position evaluation, respectively.f

In the more conventional DP-oriented terms of this book, a position
is the state of the game, a position evaluator is a cost function that gives
the cost-to-go at a given state, and the chess player is a randomized policy
for selecting actions/controls at a given state.}

The overall training algorithm is a form of policy iteration, a DP
algorithm that will be of primary interest to us in this book. Starting from
a given player, it repeatedly generates (approximately) improved players,
and settles on a final player that is judged empirically to be “best” out of
all the players generated.it Policy iteration may be separated conceptually
into two stages (see Fig. 1.1.1).

(1) Policy evaluation: Given the current player and a chess position, the
outcome of a game played out from the position provides a single data.
point. Many data points are thus collected, and are used to train a
value network, whose output serves as the position evaluator for that
player.

i Here the neural networks play the role of function approzimators. By view-
ing a player as a function that assigns move probabilities to a position, and a
position evaluator as a function that assigns a numerical score to a position, the
policy and value networks provide approximations to these functions based on
training with data (training algorithms for neural networks and other approxi-
mation architectures will be discussed in Chapter 4). Actually, AlphaZero uses
the same neural network for training both value and policy. Thus there are two
outputs of the neural net: value and policy. This is pretty much equivalent
to having two separate neural nets and for the purpose of the book, we prefer
to explain the structure as two separate networks. AlphaGo uses two separate
value and policy networks. Tesauro’s backgammon programs use a single value
network, and generate moves when needed by one-step or two-step lookahead
minimization, using the value network as terminal position evaluator.

I One more complication is that chess and Go are two-player games, while
most of our development will involve single-player optimization. However, DP
theory and algorithms extend to two-player games, although we will not discuss
these extensions, except briefly in Chapters 3 and 5 (see Sections 3.6 and 5.5).

T Quoting from the paper [SSS17]: “The AlphaGo Zero selfplay algorithm
can similarly be understood as an approximate policy iteration scheme in which
MCTS is used for both policy improvement and policy evaluation. Policy im-
provement starts with a neural network policy, executes an MCTS based on that
policy’s recommendations, and then projects the (much stronger) search policy
back into the function space of the neural network. Policy evaluation is applied
to the (much stronger) search policy: the outcomes of selfplay games are also
projected back into the function space of the neural network. These projection
steps are achieved by training the neural network parameters to match the search
probabilities and selfplay game outcome respectively.”



Sec. 1.1 AlphaZero, Off-Line Training, and On-Line Play 5

Current = 5 “Improved”
Player Policy Policy Player
— Evaluation »| Improvement E

Value Policy
Network Network
Y

A

Self-Learning/Policy Iteration

Figure 1.1.1 Illustration of the AlphaZero off-line training algorithm. It gener-
ates a sequence of position evaluators and chess players. The position evaluator
and the chess player are represented by two neural networks, a value network and
a policy network, which accept a chess position and generate a position evaluation
and a set of move probabilities, respectively.

(2) Policy improvement: Given the current player and its position evalua-
tor, trial move sequences are selected and evaluated for the remainder
of the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results. In Alp-
haZero this is done with a complicated algorithm called Monte Carlo
Tree Search, which will be described in Chapter 2. However, policy
improvement can be done more simply. For example one could try
all possible move sequences from a given position, extending forward
to a given number of moves, and then evaluate the terminal position
with the player’s position evaluator. The move evaluations obtained
in this way are used to nudge the move probabilities of the current
player towards more successful moves, thereby obtaining data that is
used to train a policy network that represents the new player.

On-Line Play and Approximation in Value Space - Rollout

Consider now the “final” player obtained through the AlphaZero off-line
training process. It can play against any opponent by generating move
probabilities at any position using its off-line trained policy network, and
then simply play the move of highest probability. This player would play
very fast on-line, but it would not play good enough chess to beat strong
human opponents. The extraordinary strength of AlphaZero is attained
only after the player obtained from off-line training is embedded into an-
other algorithm, which we refer to as the “on-line player.”f In other words
AlphaZero plays on-line much better than the best player it has produced

T Quoting from the paper [SSS17]: “The MCTS search outputs probabilities
of playing each move. These search probabilities usually select much stronger
moves than the raw move probabilities of the neural network.”



6 Exact and Approximate Dynamic Programming Principles Chap. 1

e |
Lookahead Tree
e .
Truncated Terminal
Current ot e L~ >®
Position Rf’“““t Position
- using an Evaluation
4 Off-Line Obtained e
Afnnh bl Player |~
B o mm
ﬂ"'g!-ﬁ?
e -
e ——>®
States xpyo

Figure 1.1.2 [llustration of an on-line player such as the one used in AlphaGo,
AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position, it
generates a lookahead tree of multiple moves up to a given depth, then runs the
off-line obtained player for some more moves, and then evaluates the effect of the
remaining moves by using the position evaluator of the off-line obtained player.

with sophisticated off-line training. This phenomenon, policy improvement
through on-line play, is centrally important for our purposes in this book.

Given the policy network/player obtained off-line and its value net-
work/position evaluator, the on-line algorithm plays roughly as follows (see
Fig. 1.1.2). At a given position, it generates a lookahead tree of all possible
multiple move and countermove sequences, up to a given depth. It then
runs the off-line obtained player for some more moves, and then evaluates
the effect of the remaining moves by using the position evaluator of the
value network. The middle portion, called “truncated rollout,” may be
viewed as an economical substitute for longer lookahead. Actually trun-
cated rollout is not used in the published version of AlphaZero [SHS17];
the first portion (multistep lookahead) is quite long and implemented effi-
ciently, so that the rollout portion is not essential. However, rollout is used
in AlphaGo [SHM16]. Moreover, many chess and Go programs use a limited
form of rollout, called quiescence search, which aims to resolve imminent
threats and highly dynamic positions before invoking the position evalu-
ator. Rollout is instrumental in achieving high performance in Tesauro’s
1996 backgammon program [TeG96]. The reason is that backgammon in-
volves stochastic uncertainty, so long lookahead is not possible because of
rapid expansion of the lookahead tree with every move.j

T Tesauro’s rollout-based backgammon program [TeG96] uses only a value
network, called TD-Gammon, which was trained using an approximate policy



1.2

Sec. 1.2 Deterministic Dynamic Programming T

We should note that the preceding description of AlphaZero and re-
lated games is oversimplified. We will be adding refinements and details
as the book progresses. However, DP ideas with cost function approxima-
tions, similar to the on-line player illustrated in Fig. 1.1.2, will be central
for our purposes. They will be generically referred to as approximation in
value space. Moreover, the conceptual division between off-line training
and on-line policy implementation will be important for our purposes.

Note also that these two processes may be decoupled and may be
designed independently. For example the off-line training portion may be
very simple, such as using a known heuristic policy for rollout without
truncation, or without terminal cost approximation. Conversely, a sophis-
ticated process may be used for off-line training of a terminal cost function
approximation, which is used immediately following one-step or multistep
lookahead in a value space approximation scheme.

Deterministic Dynamic Programming

In all DP problems, the central object is a discrete-time dynamic system
that generates a sequence of states under the influence of control. The
system may evolve deterministically or randomly (under the additional
influence of a random disturbance).

1.2.1 Finite Horizon Problem Formulation

In finite horizon problems the system evolves over a finite number N of time
steps (also called stages). The state and control at time k of the system will
be generally denoted by z; and uy, respectively. In deterministic systems,
T4+ is generated nonrandomly, i.e., it is determined solely by xy and wuy.
Thus, a deterministic DP problem involves a system of the form

Tr+1 = fe(@h, ur), k=0,1,--+,N -1 (1.1)
where £ is the time index, and

xy. is the state of the system, an element of some space,

uy is the control or decision variable, to be selected at time k from some
given set Ug(zx) that depends on xy,

iteration scheme developed several years earlier [Tes94]. TD-Gammon is used to
generate moves for the truncated rollout via a one-step or two-step lookahead
minimization. Thus the value network also serves as a substitute for the policy
network during the rollout operation. The terminal position evaluation used at
the end of the truncated rollout is also provided by the value network. The middle
portion of Tesauro’s scheme (truncated rollout) is important for achieving a very
high quality of play, as it effectively extends the length of lookahead from the
current position.



8 Exact and Approximate Dynamic Programming Principles Chap. 1

Control uy

Deterministic Transition Terminal Cost

Trir = fi (@, ug) gn(zn)
. Cost gr(k, uk) .

Stage k Future Stages

Figure 1.2.1 Illustration of a deterministic N-stage optimal control problem.
Starting from state xy,, the next state under control uy, is generated nonrandomly,
according to

1 = frl@p, ur)

and a stage cost gp(xp,uy) is incurred.

Jr is a function of (xy,us) that describes the mechanism by which the
state is updated from time k to time k + 1,

N is the horizon, i.e., the number of times control is applied.

The set of all possible xj, is called the state space at time k. It can be
any set and may depend on k. Similarly, the set of all possible u;, is called
the control space at time k. Again it can be any set and may depend on k.
Similarly the system function f; can be arbitrary and may depend on k.7

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gy (x, ux), accumulates over
time. Formally, g is a function of (z,u) that takes real number values,
and may depend on k. For a given initial state ¢, the total cost of a control
sequence {ug, -, uy—1} is

N-1

J(zojuo, -+, un—1) = gn(zn) + Z G (Tk, uk) (1.2)
;i‘.:ﬂ

T This generality is one of the great strengths of the DP methodology and
guides the exposition style of this book, and the author’s other DP works. By
allowing arbitrary state and control spaces (discrete, continuous, or mixtures
thereof), and a k-dependent choice of these spaces, we can focus attention on
the truly essential algorithmic aspects of the DP approach, exclude extraneous
assumptions and constraints from our model, and avoid duplication of analysis.

The generality of our DP model is also partly responsible for our choice
of notation. In the artificial intelligence and operations research communities,
finite state models, often referred to as Markovian Decision Problems (MDP),
are common and use a transition probability notation (see Chapter 5). Unfor-
tunately, this notation is not well suited for deterministic models, and also for
continuous spaces models, both of which are important for the purposes of this
book. For the latter models, it involves transition probability distributions over
continuous spaces, and leads to mathematics that are far more complex as well
as less intuitive than those based on the use of the system function (1.1).



Sec. 1.2 Deterministic Dynamic Programming 9

Terminal Ares
Cost gw (o)

e

Initial States

Artificial Terminal
Node

Stage 0 Stage 1 Stage 2 -+ Stage N — 1 Stage N

Figure 1.2.2 Transition graph for a deterministic finite-state system. Nodes
correspond to states xp. Arcs correspond to state-control pairs (zy,u;). An arc
(xp,uy) has start and end nodes xy and xp1 = fr(xp,uy), respectively. The
transition cost gp(xp,up) is viewed as the length of this arc. The problem is
equivalent to finding a shortest path from initial nodes of stage 0 to an artificial
terminal node ¢.

where gn(zn) is a terminal cost incurred at the end of the process. This is
a well-defined number, since the control sequence {ug,---,uy_1} together
with 2y determines exactly the state sequence {z1,--+, 2y} via the system
equation (1.1); see Figure 1.2.1. We want to minimize the cost (1.2) over
all sequences {ug, -+, uy—1} that satisfy the control constraints, thereby
obtaining the optimal value as a function of xg:7

J(x) = min  J(zoiuo, -, un—1)
up el (xy)
k=0, N-—1

Discrete Optimal Control Problems

There are many situations where the state and control spaces are naturally
discrete and consist of a finite number of elements. Such problems are often
conveniently described with an acyclic graph specifying for each state x;. the
possible transitions to next states x;41. The nodes of the graph correspond
to states z; and the arcs of the graph correspond to state-control pairs
(zg,ux). BEach arc with start node xj corresponds to a choice of a single
control uy € Ug(xy) and has as end node the next state fi(zg,ux). The
cost of an arc (xy, uy.) is defined as gy (xy, uy); see Fig. 1.2.2. To handle the
final stage, an artificial terminal node ¢ is added. Each state xxy at stage
N is connected to the terminal node ¢ with an arc having cost gy (zn).
Note that control sequences {ug, - - -, uny—1} correspond to paths orig-
inating at the initial state (a node at stage 0) and terminating at one of the
nodes corresponding to the final stage N. If we view the cost of an arc as

T Here and later we write “min” (rather than “inf”) even if we are not sure
that the minimum is attained. Similarly we write “max” (rather than “sup”)
even if we are not sure that the maximum is attained.



10 Exact and Approximate Dynamic Programming Principles Chap. 1

Figure 1.2.3 The transition graph of the deterministic scheduling problem of
Example 1.2.1. Each arc of the graph corresponds to a decision leading from
some state (the start node of the arc) to some other state (the end node of the
arc). The corresponding cost is shown next to the arc. The cost of the last
operation is shown as a terminal cost next to the terminal nodes of the graph.

its length, we see that a deterministic finite-state finite-horizon problem is
equivalent to finding a minimumn-length (or shortest) path from the initial
nodes of the graph (stage 0) to the terminal node t. Here, by the length of
a path we mean the sum of the lengths of its arcs.}

Generally, combinatorial optimization problems can be formulated as
deterministic finite-state finite-horizon optimal control problem, as we will
discuss in greater detail in Chapters 2 and 3. The idea is to break down
the solution into components, which can be computed sequentially. The
following is an illustrative example.

Example 1.2.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has been
performed. (Thus the sequence CDAB is allowable but the sequence CDBA

T It turns out also that any shortest path problem (with a possibly nona-
cyclic graph) can be reformulated as a finite-state deterministic optimal control
problem. See [Berl7a], Section 2.1, and [Ber91], [Ber98] for extensive accounts
of shortest path methods, which connect with our discussion here.



Sec. 1.2 Deterministic Dynamic Programming 11

is not.) The setup cost C,., for passing from any operation m to any other
operation n is given (cf. Fig. 1.2.3). There is also an initial startup cost Sa or
Se for starting with operation A or C, respectively. The cost of a sequence
is the sum of the setup costs associated with it; for example, the operation
sequence ACDB has cost Sa + Cac +Cep + Cpa.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.2.3. Here the problem is deterministic, i.e., at a
given state, each choice of control leads to a uniquely determined state. For
example, at state AC the decision to perform operation D leads to state ACD
with certainty, and has cost Cep. Thus the problem can be conveniently
represented with the transition graph of Fig. 1.2.3. The optimal solution
corresponds to the path that starts at the initial state and ends at some state
at the terminal time and has minimum sum of arc costs plus the terminal
cost.

1.2.2 The Dynamic Programming Algorithm

In this section we will state the DP algorithm and formally justify it. The
algorithm rests on a simple idea, the principle of optimality, which roughly
states the following; see Fig. 1.2.4.

Principle of Optimality

Let {uf.---.u%_,} be an optimal control sequence, which together
with zo determines the corresponding state sequence {z7,---.z} } via
the system equation (1.1). Consider the subproblem whereby we start
at xj at time k and wish to minimize the “cost-to-go” from time £ to
time N,
N-1
ge(@pu) + Y gm(@m,um) + gy (en)
m=k+1

over {uy, -, uy—1} with w,, € Up(2,), m=k,---, N — 1. Then the
truncated optimal control sequence {ujy.---,u} _,} is optimal for this
subproblem.

The subproblem referred to above is called the fail subproblem that
starts at x. Stated succinctly, the principle of optimality says that the
tail of an optimal sequence is optimal for the tail subproblem. Its intuitive
justification is simple. If the truncated control sequence {uj.---,u%_,}
were not optimal as stated, we would be able to reduce the cost further
by switching to an optimal sequence for the subproblem once we reach x}



12 Exact and Approximate Dynamic Programming Principles Chap. 1

Zi Tail subproblem
® @ - -
0 k N Time

{uaa"'e uzs "'au);\!_l}

A
|

Optimal control sequence

Figure 1.2.4 Schematic illustration of the principle of optimality. The tail
{up,---,uy_,} of an optimal sequence {ug,---,u};_,} is optimal for the tail
subproblem that starts at the state xj of the optimal state trajectory.

(since the preceding choices of controls, ug,---,u;_,, do not restrict our
future choices).

For an auto travel analogy, suppose that the fastest route from Phoenix
to Boston passes through St Louis. The principle of optimality translates
to the obvious fact that the St Louis to Boston portion of the route is also
the fastest route for a trip that starts from St Louis and ends in Boston.f

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially, by
solving all the tail subproblems of a given time length, using the solution
of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.2.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.2.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.2.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. There is a cost for a transition between
two operations, and the numerical values of the transition costs are shown in
Fig. 1.2.5 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule

T In the words of Bellman [Bel57]: “An optimal trajectory has the prop-
erty that at an intermediate point, no matter how it was reached, the rest of
the trajectory must coincide with an optimal trajectory as computed from this
intermediate point as the starting point.”



Sec. 1.2 Deterministic Dynamic Programming 13

Figure 1.2.5 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we
solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

Tail Subproblems of Length 2: These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.2.5).

State AB: Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC: Here the possibilities are to (1) schedule operation B and then
D, which has cost 5, or (2) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.2.5.

State C'A: Here the possibilities are to (1) schedule operation B and then



14

Exact and Approximate Dynamic Programming Principles Chap. 1

D, which has cost 3, or (2) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 3, as shown next to node CA in Fig. 1.2.5.

State C'D: Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3: These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (1) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (2) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.2.5.

State C': Here the possibilities are to (1) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (2) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node C in Fig. 1.2.5.

Original Problem of Length 4: The possibilities here are (1) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (2) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.2.5.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation, i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.2.5, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problems
by translating into mathematical terms the heuristic argument underlying
the principle of optimality. The algorithm constructs functions

ete.

J;-'('TN)! J;-'—I (mf\"—l):' Tt Jg(ﬂ:u)

sequentially, starting from J;,-‘ and proceeding backwards to .J ;,_1, J;,_z,

The value J: (z1) represents the optimal cost of the tail subproblem

that starts at state xy at time k.



Sec. 1.2 Deterministic Dynamic Programming 15

Tail subproblem
Tk Optimal Cost J; ()

s > > V
0 k
Tail subproblem
Tpt1  Opt. Cost Jf | (wr41) v
Tail subproblem
'JL;. Zry1 Opt. Cost J (2, 4) i
0
o Tail mlbproblenl”
Jr+1 Opt. Cost J7,  (71,,) W

Figure 1.2.6 Illustration of the DP algorithm. The tail subproblem that starts

at xy at time k minimizes over {uy,---,uy_1} the “cost-to-go” from k to N,
N-1
grlzp, ug) + E gm(Tm,um) +gn(zn)
m=k+1

To solve it, we choose uy to minimize the (1st stage cost + Optimal tail problem
cost) or

Ry =, min o)+ I (fulorw)]
up €U (wr)

DP Algorithm for Deterministic Finite Horizon Problems

Start with
JL(:BN) = gn(zN), for all zx (1.3)

and for k=0,---,N — 1, let

Ji(zx) = min [gk(.rk._ ug) + Jpyq (Frl@n, uk))}, for all =
up €U (z)
(1.4)

The DP algorithm together with the construction of the optimal cost-
to-go functions J,:(.-r;:) are illustrated in Fig. 1.2.6. Note that at stage k, the
calculation in Eq. (1.4) must be done for all states x; before proceeding
to stage k — 1. The key fact about the DP algorithm is that for every
initial state xp, the number J; (zo) obtained at the last step, is equal to
the optimal cost J*(xg). Indeed, a more general fact can be shown, namely
that for all k =0,1,---, N — 1, and all states z;. at time k, we have

Je(e) = min }J(am-:uk-_---;tw—l) (1.5)
s



16 Exact and Approximate Dynamic Programming Principles Chap. 1

where J(zp;ug, -+ -, un—1) is the cost generated by starting at zj and using
subsequent controls ug, .-, uny_1:

N-1
J(zpiug, - unv—1) = gnv(zn) + Z gi(we, ur) (1.6)

t=k

Thus, J; (%) is the optimal cost for an (N — k)-stage tail subproblem
that starts at state x; and time k, and ends at time N.7 Based on the
interpretation (1.5) of J{ (xx), we call it the optimal cost-to-go from state
x). at stage k, and refer to J;; as the optimal cost-to-go function or optimal
cost function at time k. In maximization problems the DP algorithm (1.4)
is written with maximization in place of minimization, and then J is
referred to as the optimal value function at time k.

Once the functions Jg Jeeey J’;r have been obtained, we can use a for-
ward algorithm to construct an optimal control sequence {ug, -, u}y_,}
and state trajectory {z},-.-,x% } for the given initial state zo.

Construction of Optimal Control Sequence {uf,---, u}_,}

Set
uf € arg  min [gn(;l.‘g,ﬂo) + J;(fo(xo,uﬂ))]
ug€lp(xp)
and
7 = fo(xo, ug)

Sequentially, going forward, for k =1,2,---, N — 1, set

T We can prove this by induction. The assertion holds for k = N in view of
the initial condition Jy(zn) = gn(xn). To show that it holds for all k, we use
Egs. (1.5) and (1.6) to write

N-1

Ji(xz) =  min gn(zn) + Z gi(Te, we)

upelly(ay)

t=k,-,N-1 t=Fk
N-1
= min i (T, ur) + min gn(zn) + E Gl ue)
ug €Uk (xg) uy €U (x¢)
t=k+1,-- N—1 t=k+1

min [QA-(-’BA-« ug) + Ji g1 (fr (s, w«))]
uj..ef.."k[::k}

where for the last equality we use the induction hypothesis. A subtle mathemati-
cal point here is that, through the minimization operation, the functions J; may
take the value —oo for some xy. Still the preceding induction argument is valid

even if this is so. The books [BeT96] and [Berl8a] address DP algorithms that
allow infinite values in various operations such as minimization.



Sec. 1.2 Deterministic Dynamic Programming 17

uf € arg min [ Sz, ug) + J; (2T ] 1.7
k gu;\.eU;\.(mp QK( k ﬂ) ,g+1(f-‘i( k K)) ( )

and
Ty = fr(@h, ui)

Note an interesting conceptual division of the optimal control se-
quence construction: there is “off-line training” to obtain I: by precompu-
tation [cf. Egs. (1.3)-(1.4)], which is followed by real-time “on-line play” to
obtain u}, [cf. Eq. (1.7)]. This is analogous to the two algorithmic processes
described in Section 1.1 in connection with chess and backgammon.

Figure 1.2.5 traces the calculations of the DP algorithm for the schedul-
ing Example 1.2.1. The numbers next to the nodes, give the corresponding
cost-to-go values, and the thick-line arcs give the construction of the opti-
mal control sequence using the preceding algorithm.

DP Algorithm for General Discrete Optimization Problems

We have noted earlier that discrete deterministic optimization problems,
including challenging combinatorial problems, can be typically formulated
as DP problems by breaking down each feasible solution into a sequence of
decisions/controls, as illustrated with the scheduling Example 1.2.1. This
formulation often leads to an intractable DP computation because of an
exponential explosion of the number of states as time progresses. However,
a DP formulation brings to bear approximate DP methods, such as rollout
and others, to be discussed shortly, which can deal with the exponentially
increasing size of the state space. We illustrate the reformulation by an
example and then generalize.

Example 1.2.2 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the travel time
between each pair of cities. We wish to find a minimum time travel that visits
each of the cities exactly once and returns to the start city. To convert this
problem to a DP problem, we form a graph whose nodes are the sequences
of k distinct cities, where k = 1,---, N. The k-city sequences correspond to
the states of the kth stage. The initial state zp consists of some city, taken
as the start (city A in the example of Fig. 1.2.7). A k-city node/state leads
to a (k4 1)-city node/state by adding a new city at a cost equal to the travel
time between the last two of the k + 1 cities; see Fig. 1.2.7. Each sequence of
N cities is connected to an artificial terminal node ¢ with an arc of cost equal
to the travel time from the last city of the sequence to the starting city, thus
completing the transformation to a DP problem.



18

Exact and Approximate Dynamic Programming Principles Chap. 1

Initial State xq

1
27[ AC |
20 3

18[aBc| 4[aBp| 19[acB| 24{acp| 21[aDB]| 25

ADC |

3 3 4 4 20 20

15|ABC‘.D| 1[&131)(1 15lqc13r)| |ACDB| 1|Am3c_1 5P‘DCB|

1 h\/‘.ﬂ 1
A

Terminal State ¢

5

Matrix of Intercity
Travel Costs

Figure 1.2.7 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix
at the bottom. We form a graph whose nodes are the k-city sequences and
correspond to the states of the kth stage, assuming that A is the starting city.
The transition costs/travel times are shown next to the arcs. The optimal
costs-to-go are generated by DP starting from the terminal state and going
backwards towards the initial state, and are shown next to the nodes. There is
a unique optimal sequence here (ABDCA), and it is marked with thick lines.
The optimal sequence can be obtained by forward minimization [cf. Eq. (1.7)],
starting from the initial state axq.

The optimal costs-to-go from each node to the terminal state can be
obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N. This makes the DP solution intractable for large N. As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed in future chapters.

Let us now extend the ideas of the preceding example to the general



Sec. 1.2 Deterministic Dynamic Programming 19

Stage . e are N
S Stage 2 Stage 3 Stage
age g
O :
__,_...--"""Ch . :
Artificial 1Ct:..________ : [0 T __1»O
Initial State . == ; :
bC{J 0T > O
B % h-‘ : ""\\ :
: '&:J o= 0
lc)-_-:""‘.””# . P~ : :
uy — I
o s O —a — 1,0
States dhied
. States States =
(uo) sALES States

(o, u1) (1o, w1, uz) = (uo, -, UN-1)

Cost G(u)

Figure 1.2.8 Formulation of a discrete optimization problem as a DP problem
with N stages. There is a cost (G(u) only at the terminal stage on the arc con-
necting an N-solution u = (ug, -, uy_—1) upon reaching the terminal state. Note
that there is only one incoming arc at each node.

discrete optimization problem:

minimize G(u)
subject to ue U

where U is a finite set of feasible solutions and G(u) is a cost function. We
assume that each solution u has N components; i.e., it has the form u =
(wo,---,un—1), where N is a positive integer. We can then view the prob-
lem as a sequential decision problem, where the components ug. -+, un—1
are selected one-at-a-time. A k-tuple (ug,---,ug—1) consisting of the first
k components of a solution is called a k-solution. We associate k-solutions
with the kth stage of the finite horizon DP problem shown in Fig. 1.2.8.
In particular, for k = 1,---, N, we view as the states of the kth stage all
the k-tuples (ugp,- -+, ur—1). For stage k =0,---, N — 1, we view uy, as the
control. The initial state is an artificial state denoted s. From this state,
by applying ug, we may move to any “state” (ug), with up belonging to the
set

Uo = {iio | there exists a solution of the form (to, @1, --,in-1) € U}

Thus Uy is the set of choices of ug that are consistent with feasibility.

More generally, from a state (ug, - - -, ur—1), we may move to any state
of the form (ug,- -, ur—1,ux), upon choosing a control uy that belongs to
the set

Uk(uo, - -+, up—1) = {uy | for some U4y, -, Uy—1 we have

(woy -+ Up—1, Upy Upg1, -+ + TUN-1) € U}



20 Exact and Approximate Dynamic Programming Principles Chap. 1

These are the choices of 1 that are consistent with the preceding choices
g, -+, Up—1, and are also consistent with feasibility. The last stage cor-
responds to the N-solutions u = (up,-+-,un—1), and the terminal cost is
G(u); see Fig. 1.2.8. All other transitions in this DP problem formulation
have cost 0.
Let
.};(uu, sl uk_l)

denote the optimal cost starting from the k-solution (ug,---,ug—1), i.e.,
the optimal cost of the problem over solutions whose first & components
are constrained to be equal to ug, - - -, ug—;. The DP algorithm is described
by the equation

& . *
Jip(woy -+ up—1) = | i -)'Hl(ﬂ-tls srey Uk—1, Uk)
g €U (1. g 1)

with the terminal condition
JR’(“U\ L uN—"l) = G(“’Uf i euN-l)

This algorithm executes backwards in time: starting with the known func-
tion .J :.f = (G, we compute JR'_I, then J :\‘,_2, and so on up to computing .]3‘ :
An optimal solution (ug.---.u%_,) is then constructed by going forward
through the algorithm

. * -
uj, € arg min S (g, - ug_q,ug), k=0,---,N-1 (1.8)
”L‘GU-'\‘(“(I'”"“!\:—}_)

first compute wg, then u}, and so on up to wy_,; cf. Eq. (1.7).

Of course here the number of states typically grows exponentially with
N, but we can use the DP minimization (1.8) as a starting point for the use
of approximation methods. For example we may try to use approximation
in value space, whereby we replace J;: 41 Wwith some suboptimal Ji4+1 in Eq.
(1.8). One possibility is to use as

Jt1 (U -+ s uj_ys ur)

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
Uy, -+ -, up_q, . This is the rollout algorithm, which is a very simple and
effective approach for approximate combinatorial optimization. It will be
discussed in the next section, and in Chapters 2 and 3. It will be related
to the method of policy iteration and self-learning ideas in Chapter 5.

Let us finally note that while we have used a general cost function
G and constraint set C' in our discrete optimization model of this section,
in many problems G and/or C may have a special structure, which is con-
sistent with a sequential decision making process. The traveling salesman
Example 1.2.2 is a case in point, where G consists of N components (the
intercity travel costs), one per stage.



