Chapter 3 Solution of Electrostatic

Boundary Value Problems

(B3P 3% i RE E SRR )

3.1 Introduction( 5l &)

Electrostatic problems are those to find electric potential and/or electric field intensity due
to static electric charges. In Chapter 2, several methods have been developed to find the electric
potential and the electric field intensity when the charge distribution is known. In practical
problems, however, the exact charge distribution is usually unknown, and as a result, the
formulas in Chapter 2 cannot be applied directly. Instead, practical electrostatic problems might
involve conducting bodies with given potentials, which can be modeled as a boundary-value
problem in terms of the electric potential. In these cases, the electric fields can be found by
solving a partial differential equation subject to the known boundary conditions on the surfaces
of conducting bodies. Analytical solutions of the partial differential equation may be obtained if
the electrostatic problem can be reduced to one-dimensional. For two-dimensional or three-
dimensional problems,analytical solutions generally do not exist. Nevertheless,if the boundaries
are of certain simple geometries,the method of images or the method of separation of variables

can be used to provide analytical or semi-analytical solutions. ©

3.2 Poisson’s and Laplace’s Equations
(B2 REHRERFE)

In Chapter 2,two fundamental equations governing the electrostatic fields are formulated as

V- D =p, (3.1)

VXE =0 (3.2)
From(3.2) ,we introduced the electric potential ¢ that satisfies

E =-Vo (3.3)
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In a linear and isotropic medium,D =gE. Therefore, (3.1) becomes
V- (¢E) =p, (3.4)
Substituting (3. 3) into(3.4) leads to
V- (e Vo) ==p, (3.5)
where the permittivity & can be a function of position. For a simple medium, ¢ is a constant and

can be taken out of the divergence operation. Then we have

Vo =- Pr (3.6)

e
where V*is the Laplacian operator as introduced in Section 1-12. (3.6) is known as Poisson’s
equation( AHAFE) . It states that the Laplacian of ¢ equals —p /& for a simple medium where
p, is the volume density of free charges( which may be a function of space coordinates) . If the
charge distribution p, is known everywhere in the entire free space, the solution of equation

(3.6) is known as(2.58) ,which is rewritten as

1 (")
o(r) = P —dv’ (3.7)
dmeyv | r —r'|

However, in practical problems, the function p, may not be known, or may be too
complicated , which makes it difficult to evaluate the integration in(3. 7). Then,instead of using
(3. 7),it is usually more practical to formulate the electrostatic problems as solving the
Poisson’s equation ( 3. 6) subject to prescribed boundary conditions (e. g. , given ¢ on certain
conducting bodies). ©

Poisson’s equation(3. 6) is a second-order partial differential equation, which,in Cartesian

coordinates , becomes

Vo 0 Do _ P

. . . (3.8
x> a9y’ a7 & )
In cylindrical and spherical coordinates,the Poisson’s equation becomes, respectively,
1 a9 1 o’ & Py
——(p—‘p)+—2—¢;+—f=—— (3.9)
p dp\ dp) p” o az €
and
1 0(,9 19 3 1@ y
—2—(r2 i’) ‘e —(sinﬁ i’) o Te_ P (3.10)
#or\ ar]  r*sing 96 a0/  rsin’0 od* £

At points in a simple medium where there is no free charge,p, =0 and the Poisson’s
equation( 3. 6) reduces to
Vo =0 (3.11)

which is known as Laplace’s equation (1L & H7 H7 77 %2 ). Laplace’s equation is the governing
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equation for many electrostatic problems involving a set of conductors maintained at given
potentials. Once ¢ is found by solving the Laplace’s equation, the electric field can be
determined from —V¢,and the charge distribution on the conductor surfaces can be determined
from the boundary condition p,=¢E,. ¥

Example 3-1 As shown in Figure 3-1, the potential difference across a parallel-plate
capacitor is maintaned at U,. The separation between the two plates of the capacitor is d.
Assume the fringing effect can be neglected. Determine (D the potential distribution between the

plates,and (2 the surface charge densities on the plates.

Figure 3-1 A parallel capacitor

Solution: This is essentially the same problem as Example 2-16. Now we solve it by
solving the Laplace’s equation satisfied by the electric potential since the charge density p, =0
between the plates.

(1) By ignoring the fringing effect of the electric field, we assume the field distribution is
the same as if the plates were infinitely large. In other words,the potential ¢ has no variation in
the x-and y-directions. Hence , Laplace’s equation is then simplified to

d’p _
e

where d”/dz” is used instead of 9°/dz” because z is the only variable in this problem. Integration

0 (3.12)

of (3.12) with respect to z gives

where C, is an unknown constant coefficient. Integrating again,we obtain
¢ =Cz +C, (3.13)
To determine the two unknown coefficients C, and C,,we use the following two boundary
conditions :
Atz=0, ¢=0 (3. 14a)
Atz=d, ¢=U, (3.14b)

Substitution of (3. 14a) and (3. 14b) respectively into (3. 13) yields two equations, from
which the two unknown coefficients can be solved to obtain C, =U,/d and C,=0. Hence the

potential distribution between the plates is
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U,
¢ = PE (3.15)
(2) The surface charge densities can be found by using the boundary condition of the E
field on the surfaces of the conducting plates(z=0 and z=d). We first find the E field by using

(3.3):

Then the surface charge densities at the conducting plates are obtained as
p, =ce, - E =ce, - (—e UO)
. t g
On the surface of the lower plate,
eU,
e, =€, p,=- 4
On the surface of the upper plate,
eU,
d

This agrees with the fact that electric field lines in an electrostatic field originate from

n z

e,=—e,, p, =

positive charges and terminate in negative charges.

Example 3-2 A cylindrical capacitor consists of an inner conductor of radius a and an
outer conductor whose inner radius is b. The space between the conductors is filled with a
dielectric of permittivity &, and the length of the capacitor is L. The outer conductor is
grounded, and the inner conductor is maintained at potential U,. Determine () the potential
distribution between the two conductors,and ) the capacitance of this capacitor.

Solution; This is the same problem as Example 2-17, which is solved by applying Gauss’s
law. Here we solve it by solving the one-dimensional Laplace’s equation under the cylindrical
coordinate system.

(1) Due to cylindrical symmetry,¢ has no variation along the ¢-and z-directions ( assuming

no fringing effect) . Laplace’s equation(3.9) is then simplified to

;d‘;(pj:f) -0 (3.16)
Integration of (3. 16) with respect to p gives
dp C,
d
where C, is an unknown constant coefficient. Integrating again, we obtain

¢ =C,lnp + C, (3.17)
To determine the two unknown coefficients C, and C,,two boundary conditions are used:
Atp =b, ¢ =0 (3.18a)
Atp =a, ¢ =U, (3.18b)

Substitution of (3. 18a) and(3. 18b) into(3.17) yields two equations, from which the two



unknowns are solved to be C,=U,/In(a/b) and C,=-U, In(b)/In(a/b). Hence the potential

distribution between the conductors is

o=t m(?] (3.19)

(2) In order to find the capacitance , we first find the distribution of E within the capacitor.
From(3.3) and(3.19) we have

d U 1
E(p)=-e L =—e " © (3.20)
P dp P (Cl) p
In{—
At the surface of the inner conductor(p=a) ,we have
U, 1 U, 1
E(a)=e, - E(a)=e, - (—¢) ———=—

nfy)  ml)

which is a constant. The surface charge densities at the conducting plates are obtained by using

the boundary condition,i. e. ,

The total charge on the inner conductor is

2welLU,
Q=jpsds=2walps=7 (3.21)
N

b
ln(—)
a
We can verify easily that the charge carried by the outer conductor is —Q. Therefore, the

capacitance is calculated as

c :Ug _ ZTrZ'L
0 ln(—)
a

which is the same as the result of Example 2-17.

Example 3-3 A spherical capacitor consists of an inner conducting sphere of radius a and
an outer conductor with inner radius b. The space in between is filled with a dielectric of
permittivity €. The outer conductor is grounded, and the inner conductor is maintained at a
potential U,. Determine @ the potential distribution between the two conductors, and @ the
capacitance of this capacitor.

Solution; This is essentially the same problem as Example 2-18. Here we solve it based on
the Laplace’s equation in spherical coordinates.

(1) Due to symmetry,¢ has no variation along the ¢- and - directions. Hence ¢ between
the two conductors satisfies the one-dimensional Laplace’s equation

1 d/, dgp)
— — —1] =0 3.22
7 dr(r dr ( )
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Integration of (3. 22) with respect to r gives
ng _ Cl
dr r2

where C, is an unknown constant coefficient. Integrating again, we obtain

Cl
o =——+C, (3.23)
-
To determine the two unknown coefficients C, and C,,two boundary conditions are used:
Atr=b, ¢=0 (3.24a)
Atr=a, ¢=U, (3.24b)
which leads to the solution of ¢ as
U, 1 1
= - — 3.25
Y ( r b ) (3.25)
a b
(2) From(3.3) and(3.25) we have
d U 1
E=-e L=¢ ' (7) (3.26)
dr 1 1\r
a b
At the surface of the inner conductor(r=a) ,we have
U, 1 U, 1
E = - FE = . — || = -
(a)=e, - Ela) =e - ey (az) 11 (az)
a b a b

The surface charge density at the inner conductor is obtained by using the boundary

eU, (1
p, =¢E, = (z)

condition, i. e.

’

a
a b
The total charge on the inner conductor is
[0) =fp ds =4ma’p, = Amels (3.27)
s | 1
a b

We can verify easily that the charge carried by the outer conductor is —Q. Therefore, the

capacitance is calculated as

C=g= dwe
vy 1 _1
a b

which is the same as the result of Example 2-18.
Example 3-4 Determine the E field caused by a uniform charge distribution in a sphere
with a volume density p, =p, for 0<<r=<a and p,=0 for r>a.

Solution; This is the same problem as Example 2-7, which is solved by applying Gauss’s



law. Here we solve it by direct solving the one-dimensional Poisson’s and Laplace’s equations.
By the spherical symmetry, there are no variations in #- and ¢- direction. Therefore, the fields
including E and ¢ are functions of the r coordinates only. Both Poisson’s and Laplace’s
equations are reduced to one-dimensional.
(1) For region 0<r<a,p, =p,. The potential must satisfy 1-D Poisson’s equation
1 d{,de Po
sl
Integration of the above equation gives

do __ P G

2

+— 3. 28
dr 3¢, P ( )
Therefore , the electric field intensity inside the region is
d p
E =- Vo =—e,.(—‘0)=eri (0<r<a) (3.29)
dr 3e,

Here, we have used the fact that C, in(3. 28) must be zero because otherwise, E will
become infinite at r=0.

(2) For region r>a,p,=0. The potential must satisfy 1-D Laplace’s equation

1 a0/, dgo)

— —|r—]=0 3.30

P ar(r dr ( )

Integrating of the above equation gives
ng Cg
— = 3.31
Fil (3.31)
and therefore,
d C
E=-Ve=—¢ " == — (r>a) (3.32)

dr rz

The integration constant C, can be found by equating E at r =a, which is the boundary
condition of normal continuity of D vector( the permittivity is the same ¢, inside and outside the

source region ) . Therefore , from(3.29) and(3. 32) ,we have

Po G,
=2
330 a’
which gives
3
pPoa
C, =—— (3.33)
3e,
Substitution of (3. 33) into(3.32) gives
3
p,a
E=e, =" (r>a) (3.34)
3e,r

which is the same as the results obtained in Example 2-7. We can continue to find the potential
distribution as a function of r. For the region 0 <r=<a,integrating(3. 28) in which C, is already

determined to be zero,we have
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2
PoT

6eg,

o= +C, (0<r<a) (3.35)

where C', is a new integration constant that will be determined later. For the region r>a,
substituting (3. 33) into(3.31) and integrating both sides of the resulted equation,we obtain

3
_Poa

3e,r

® (r >a) (3.36)

Here,we do not include an additional unknown constant in the integration result because
the potential ¢ is zero at infinity (r—o0 ). The only unknown left is C| in(3.35) ,which can be
determined by the continuity condition of ¢ across the boundary. Let ¢ in(3.35) and(3.36) be

equal at the boundary r=a,we have

P +C,1=p0a2
be, 3&,
then
2
poa
c == (3.37)
2g,
Substitute (3. 37) into(3.35) ,we have
Py (3a* rz)
== - 0<sr< 3. 38
o=y ~5) ©=r=o (3.38)

3.3 Uniqueness of Electrostatic Solutions
(REEEIARERIME — 1)

In the examples in the last section, we obtained the solutions by direct integration.
However , direct integration can be used only if Poisson’s( or Laplace’s) equation is reduced to
one dimensional due to the symmetry. In more complicated situations involving two- or three-
dimensional partial differential equations, the solution usually cannot be obtained by direct
integration. Nevertheless, in some special cases, analytical or semi-analytical solutions can still
be obtained by using special methods such as the method of images and the method of separation
of variables that will be introduced later in this chapter. These two methods are both based on
the important uniqueness theorem ( HE—1T4HEIE ) .

The uniqueness theorem states that the solution of Poisson’s ( or Laplace’s) equation
satisfying the given boundary conditions is a unique solution. ¥ This means that,no matter what
method we use to obtain a solution of the Poisson’s (or Laplace’s), it must be the correct
solution as long as the boundary conditions are satisfied.

To prove the uniqueness theorem, we take an arbitrary volume V bounded by a closed
surface S, which may be a surface at infinity. Inside the closed surface S, ,the volume V may

also be bounded by some interior surfaces S,,S,,---,S, as depicted in Figure 3-2. Now assume
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that there are two solutions,¢, and ¢, ,to the same Poisson’s equation in V,i.e. ,

Vo, =—— (3.39a)
&
Py
Vi, =— — (3.39b)
&
Figure 3-2 A region V bounded by an external surface S, and possible internal surfaces S,,S,,---,Sy,

where p, is the charge density within the volume V. Then we only need to prove that the
difference between ¢, and ¢, in the volume V must be zero if ¢, and ¢, satisfy the same
boundary conditions on §,,S,,---,S, and S,. To do that,we define a difference potential ;

Py =@ P, (3.40)
From(3. 39a) and (3. 39b), it is obvious that ¢, must satisfy Laplace’s equation in the

volume V
Vg, =0 (3.41)
Utilizing the vector identity (1. 148) ,in which let y=¢, and A=Vg,,we have
Ve (@4 V0,) =@y Vg, +| Ve, |* (3.42)

From(3.41) ,the first term on the right side of (3.42) vanishes. Integrating both sides of (3. 42)

over the volume V and applying the divergence theorem to the left side,we have

jgs(sod Vo,) -+ e,ds =fv | Vo, [*dv (3.43)

where e, denotes the unit normal outward from V,and the surface S consists of S, as well as S,

S,,+,Sy. Noticing that Vo, - e, =dp,/dn,(3.43) can be rewritten as

dp
jggod s =J | Vo, |*dv (3.44)
s on v

Now,we only need to show that(3.44) implies ¢, must be zero if ¢, and ¢, satisfies the
same boundary conditions. The boundary conditions can take different forms depending on the
specific electrostatic problems. Typical forms of the boundary conditions include but not limited
to the following.

(1) The potential ¢ is specified on some or all the boundaries. Then ¢, = ¢, on these
boundaries, and therefore, ¢, on these boundaries is identically zero;

(2) d¢/dn is specified on some or all the boundaries ( which is equivalent to specified
surface charge densities if these boundaries are conductor-dielectric interfaces). Then d¢,/dn=

d¢,/dn on these boundaries,and therefore, d¢,/dn on these boundaries is identically zero;
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(3) If S, (or partial S,) is at infinity, it can be considered as the surface (or partial
surface) of a sphere centered at origin with a radius r approaching infinity. As r increases,both
¢, and ¢, decrease as 1/r(if the charge distribution is within a bounded region, which is true for
most practical problems ). Hence ¢, decrease as 1/r and V¢, decreases as 1/r”, making the
integrand ¢,( dp,/dn) decreases as 1/r°. As the surface area of S,(or partial S,) increases as
r* ,the surface integral of ¢,(d¢p,/dn) on S (or partial S,) decreases as 1/r and approaches zero
at infinity.

All the above cases lead to the conclusion that the surface integral on the left side of (3. 44)

is zero,and as a result,the volume integral on the right side of(3.44) must also be zero,i.e. ,

f | Vo, |*dv =0 (3.45)
14

Since the integrand | Vo, |? is nonnegative everywhere, (3.45) can be satisfied only if | Vo, |

is zero everywhere inside the volume V. The gradient of ¢, is everywhere zero, meaning that ¢,
is constant at all points in V. Therefore, ¢, can be different from ¢, by only a constant.
However, as we know, a constant difference in potential distribution does not make any
difference in electric fields. © And the constant difference can be eliminated by selecting the
same reference zero potential point in the solution of ¢, and ¢,,in which case ¢, =¢,. This

proves that there is only one possible solution. ®

3.4 Method of Images( % :%)

There is a class of electrostatic problems that can be simplified by replacing bounding

surfaces by appropriate image charges. This method is called the method of images( #{%&i%). ®

3.4.1 Image with Respect to Planes( SLEEKR)

To illustrate the method of images, we consider the problem of finding electrostatic field
produced by a point charge in front of an infinitely large grounded conducting plane. As shown
in Figure 3-3(a) ,a positive point charge Q is located at a distance d above conducting plane.
Here ,the objective is to solve for the potential everywhere above the conducting plane(z>0). It

can be formulated as the boundary-value problem of solving Poisson’s equation;

_ FE 9> 9* S(r —d
e R CETD (3. 46)
0
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Figure 3-3 Point charge in front of a grounded plane conductor

subject to the boundary conditions
o(x,y,0) =0 (3.47)
and
e(x,y,z) 0, as x—*w,y—>*o or z—+x (3.48)
In(3.46) ,the volume charge density of the point charge Q is represented by Q8(r—d) , where
d=e,d is the position vector of the location of the point charge.
Obviously, ¢ in this problem is a field depending on all the three coordinates x,y and z.
Therefore , we cannot construct its solution by direct integration of the equation(3. 46).
From the physical point of view,the positive charge Q at z=d induces negative charges on
the surface of the conducting plane,resulting in a surface charge density p,. Hence the potential

to solve can be written as

1 p(x",y")
e(x,y,z) = ¢ + dx'dy’

dme, /2 +y +(z —d)? ATESS (=) +(y —y) + 2

where S is the surface of the plane conductor. Unfortunately, the induced surface charge

distribution p, is unknown. Moreover, it is quite difficult to evaluate the surface integral in the
above expression even if p, is found. However, with the method of images, this problem can be
easily solved, which is demonstrated as follows.

As has been pointed out, it is the unknown p_ on the surface of the conducting plane that
causes the trouble in solving this problem. In the method of images, we remove the conducting
plane together with the induced charges and replace them with an image point charge —Q at z=
—d as shown in Figure 3-3(b). Then,the potential at a point P(x,y,z) in the z>0 region can be
easily found as

0 (1 1
go(x,y,z)=m(Rf—Rf) (3.49)

where R, and R_ are respectively the distances from +Q and —Q to the field point(x,y,z) ,i.e. ,

R.=V/x +y +(z-d)> and R_=/x"+y +(z+d)>
Now we need to verify that the potential expression of (3. 49) is exactly the solution of the
electrostatic problem of Figure 3-3(a) in the z>0 region.

In the z>0 region,the medium and source distribution in the problem of Figure 3-3(a) are
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the same as those in Figure 3-3(b). Therefore, it is apparent that(3.49) satisfies the governing
equation(3.46). It is also obvious that( 3. 49) satisfies the boundary conditions (3. 47) and
(3.48). Therefore, (3.49) gives a potential field that satisfies the same equation and the same
boundary conditions in the z>0 region as specified in the problem of Figure 3-3(a). According
to the uniqueness theorem, (3.49) must be the solution of the problem of Figure 3-3(a) in the
7>0 region. ©

With the solution of potential ¢, electric field intensity E in the z>0 region can be found by
taking the negative gradient of ¢. A few of the field lines are shown in Figure 3-3(b). The
induced surface charge distribution p, can be found by taking the negative directional derivative
of ¢ along the normal direction on the conductor surface. Notice that,in the z<0 region, the
potential field solution of Figure 3-3(b) is not the same as that of Figure 3-3(a). Apparently,
the field is zero in the z<0 region in Figure 3-3(a). But in Figure 3-3(b) , the field is nonzero
as indicated by the dashed electric field lines.

Now we see that the method of images significantly simplifies the solution of this
electrostatic problem of Figure 3-3(a). This is achieved by introducing a simple image charge
($EME B a7 ) that is equivalent to the unknown charge distribution on the boundary. It is
important to realize that introduction of the image charge should not change anything within the
region in which the field is to be determined (z>0 in this problem). In other words, the image
charges must be located outside the region of interest( z<0 in this problem ). Outside the region
of interest, (3.49) is still the solution of the problem in Figure 3-3(b) ,but not the solution of
the problem in Figure 3-3(a) anymore. As a matter of fact,both ¢ and E are zero in the z<0
region in Figure 3-3(a).

A similar problem is the electric field due to a line charge p, above an infinite conducting
plane , which can be found from p, and its image —p,( with the conducting plane removed).

Example 3-5 As is shown in Figure 3-4(a) ,a positive point charge Q is located in the
first quadrant (x>0, y>0) that is bounded by two orthogonal conducting planes that are
grounded. The point charge is d, and d, from the two planes. Determine the potential distribution
within the first quadrant.

Solution; To solve this problem by using the method of images, we need to find the image
charges that can replace the effect of the two conducting half-planes. The image charges should
be outside the first quadrant. After the conducting half-planes are replaced by the image charges,
the potential at the locations of the half-planes should remain to be zero. To make the potential
of the horizontal half-plane zero,we can first add an image charge —Q in the fourth quadrant.

Then to make the potential of the vertical half-plane zero,we add an image charge —Q in the
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Figure 3-4 Point charge in front of two perpendicular conducting half planes

second quadrant. However ,the image charge in the fourth quadrant produces a non-zero potential
on the vertical half-plane ,and the one in the second quadrant produces a non-zero potential on the
horizontal half-plane. To balance out the non-zero potentials, we can introduce a third image
charge +Q in the third quadrant. With the three image charges as shown in Figure 3-4(b) ,it can
be easily verified that the zero-potential boundary conditions on both half-planes are satisfied.
According to the uniqueness theorem, the effect of the two conducting half-planes can be
replaced by the image charges. The potential and electric field distribution in the first quadrant in

Figure 3-4(b) is the same as that in Figure 3-4(a). Therefore , we have

N 0 0
(P<x’)’z)_ _ _ _ - _ _ _
dme,/(x —d,)” +(y —d,)” +77 Ame,/(x +d)> +(y -d,)* +7

Q Q

- +
dme /) (x —d1)2 +(y +d2)2 +7 dmre /) (x +d1)2 +(y +d2)2 +7

The electric field intensity in the first quadrant and the surface charge density induced on
the two half-planes can also be found from the system of four charges.

As an extension of Example 3-5,if the angle « made by the two intersecting half planes are
other than 90°,the method of image may still be used to find the solution of the fields due to a
point charge. The number of image charges needed depends on the angle. Specifically, if the
angle «=180°/n with n to be a positive integer, (2n—1) image charges is needed to replace the
conducting half planes. Otherwise, infinite number of image charges are required,in which case,
an approximate solution can be found by ignoring those too far away from the region of

interests.

3.4.2 Image with Respect to Spheres (JREER)

Here we consider the electrostatic problem of a point charge in front of a spherical
conductor. As is shown in Figure 3-5(a) ,a positive point charge Q is located at a distance d
from the center of a grounded conducting sphere of radius a( a<d) . The problem is to find the ¢
and E field distributions outside the sphere. Apparently,the difficulty of this problem lies in the
unknown induced charge distribution on the surface of the conducting sphere. This difficulty can
be circumvented if an image point charge Q, can be found to replace the effect of the sphere. If

this image charge Q, exists,we must have the following;
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(1) Q, must be a negative charge inside the sphere and on the line OQ due to geometrical
symmetry.

(2) After the conducting sphere is replaced by the image charge Q,, the boundary
condition on the spherical surface must remain unchanged. In other words, the potential at r=a
should be zero.

Now let’s prove such image charge Q, does exist as is illustrated in Figure 3-5(b). O,
cannot be equal to —Q ,because —Q and the original Q do not make the spherical surface r=a the
zero-potential surface as required. Therefore, O, is an unknown. Another unknown is the distance
between Q, and the origin O, denoted by d,. To find the solution of d; and Q,, we first write
down the potential caused by Q and Q, at a point M as

1 0
99
4we,\R R’

Figure 3-5 Point charge in front of a grounded sphere

where R and R’ are respectively the distance from Q and Q, to the point M. The boundary

condition is ¢,, =0 for any point M on the r=a surface, which requires

R’ o,
— =—— =constant (3.50)
R 0

while the point M travels on the spherical surface. This condition can be satisfied by simply
selecting d, so that triangles £ OMQ, and / OQM are similar. Notice that the two triangles have
one common angle ZMOQ,=2QO0M ,and the edges 07M=a,07Q=a’ are constant lengths. If we

select OQ,=d, so that

00, oM
oM oP
then the two triangles become similar,and we have
d, R’
Si_a R (3.51)
a d R
from which we immediately find that
2
a
d, =— 3.52
= (3.52)

From(3. 51) ,the constant ratio in(3.50) must be a/d,and hence

a
0 =-0 (3.53)



Now we see that, with d, and Q, given by (3. 52) and (3. 53), the potential field in
Figure 3-5(b) satisfies the same boundary condition as in Figure 3-5(a) . Therefore, O, must be
the image charge of Q with respect to the spherical surface r=a. The ¢ and E of all points
external to the grounded sphere can now be calculated as if they are produced by the point
charges Q and Q,. Specifically, as shown in Figure 3-6, the electric potential ¢ at an arbitrary
point P(r,0) is

1 (Q a Q)
0)=—oy>--= 3. 54
e(r.0) 4wa(R d R (3.50)
Figure 3-6 Image method solution of the problem in Figure 3-5

By the law of cosines,

R =-/r +d® — 2rdcosh (3.55)
and
R' =/ +(d*/d)* - 2r(a’/d)cosh (3.56)
Substitute (3. 55) and(3.56) into(3.54) ,then the r-component of the E field can be calculated as
d 0
E(r.0) == "#L00)
ar
0 r — dcosé i alr — (a*/d)cosf]
dme (¥ +d® = 2rdcos®)”?  d[r* +(a’/d)” - 2r(a*/d)cosf] ¥

(3.57)

With(3.57) ,we can find the induced surface charge on the sphere by letting r=a,and after
some mathematical manipulation , we have

o(d* -a*)
dma(a® +d® — 2adcosf) >

(3.58) tells us that the induced surface charge is negative and that its magnitude is maximum at

ps :80Er(a90) ==

(3.58)

0=0 and minimum at =1 ,as expected.
The total charge induced on the sphere is an integration of p, given by (3. 58) over the

surface of the sphere,i.e. ,

2T 5. a
Qs =95 = 0 | puasindodd ==.0 =0, (3.59)

Note that the total induced charge is exactly equal to the image charge Q,.
Example 3-6 A point charge Q is located outside an isolated conducting sphere with a

distance d from the center of the sphere. As is illustrated in Figure 3-7(a),the conducting
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sphere has a radius a. Determine the image of the charge Q with respect to the surface of the

conducting sphere.

Figure 3-7 Point charge in front of an isolated conducting sphere

Solution ; Different from the problem of Figure 3-5,the sphere is isolated , which means the
potential on the sphere surface is not zero. Nevertheless, the sphere surface is still equipotential,
which can be realized by the image charge Q, and its location given by (3.53) and(3.52).
However, Q, and Q together make the sphere surface a zero-potential surface, whereas in this
example ,the potential on the sphere surface is a non-zero constant. This constant potential is
unknown ,but we know the isolated sphere is neutral , which means the total image charges must
also be zero( why?). Therefore,as is shown in Figure 3-7(b) ,we can introduce an additional

image charge
a
0i=-0, =2 (3.60)

at the sphere center to make the net image charge zero. Q; must be located at the sphere center
so that the potential on the »=a surface remains constant. Then, the original problem can be

solved as a problem with three point charges: Qat r=0,Q, at r=a’/d,and the original Q at
r=d. @

3.4.3 Image in Cylinders( BIFEEEER)

Consider a line charge p, outside of a parallel, conducting , circular cylinder with radius a as
shown in Figure 3-8(a). The distance between the line charge and the axis of the cylinder is d.
The problem is to find the field distributions outside the cylinder. Again, the difficulty of this

problem lies in the unknown induced charge distribution on the surface of the conducting

@ 1 3-6 WIS BRI ST Q SETF BRI A BHAR AT B Q; A1 Q. HAKIEHE Q.Q; M Q) = A-Hfrk[ml =
A I LA FEBR T R 45, FLBR A ) B LR A 5, SR, Fi T A v R0 o 5 AR S T 194 L2 383 L A7 114 925 1) 54
PIARAN, L IRARHESE IR 1A 2 LA X A B A5 A A R U 1 0% e 57 43 A 53 D6 [ Al o, 87 43 A1 T R [R) R 1) 0 9 4
P BT M T G910 P A A 30 4 A e LS A, T I B — M e BRI . ROR o, WBHRIA A BN LA S
BEAHNZ 2 W @ EFRBRIMNE (3. 44) . I FHHRIEAT BT -S5 B AR AL AR R ML ] 7 8L, @ 16 SRR 10
SRR, LA (3. 44) 22 T LTS sodjgg( dpy/n)ds = sodngndds o By WBHRE I Y B 7
FRERFIE ML A i 2 2 . AR R A, SR IS B f 3 5 S L 3 1 3 1) A3 AR S UARER R I ) AR TR
(BRI Y B A E ), I, §Em,ds =0,80(3. 44) £ 5 F%E, (3. 44) E@Eﬂ;[ylvwd I2dv = 0, AMiE
WIT 4 1EFIRERIMO A X B HE,



cylinder, which can be solved by using the method of image. We first recognize the following;

(1) The image must be a parallel line charge ( denoted by p,) inside the cylinder, and it
must lie somewhere along OP,due to the symmetry of the geometry.

(2) After the conducting cylinder is replaced by the image charge ,the boundary condition
on the cylindrical surface remains unchanged. Particularly, the potential at p = a should be
constant.

Let the distance between the image charge and the axis be d; as shown in Figure 3-8(b).
Then we need to determine the two unknowns, p, and d,.

Recall that, in Example 2-11, the equipotential surfaces of the field produced by two
parallel line charges, p, and —p,, are circular cylindrical surfaces. If one of the equipotential
surfaces coincides with the surface of the conducting cylinder in Figure 3-8( a) ,then according
to the uniqueness theorem, the conducting cylinder can be replaced by the line charge —p, in
Example 2-11. Therefore ,we infer that the image of the line charge p, in Figure 3-8(a) to be®

pi ==p (3.61)
To find d,,we first write down the expression of the potential due to the line charges p, and p,.
According to Example 2-11,at any point M on the cylindrical surface p=a,we have

p !
oy =——In?- (3.62)
2me, p

where p and p’ are the distances from the point M to the line charges p, and p, respectively as is
shown in Figure 3-8(b). Obviously,the boundary condition requires that p'/p maintain constant
when the point M travels on the cylindrical surface. This condition can be satisfied by simply
selecting a d, value so that triangles ZOMP, and £ZOPM are similar. Note that these two triangles
have one common angle ~ MOP, = / POM. Hence the two triangles can be made similar

by letting

Figure 3-8 Line charge in front of a parallel conducting circular cylinder

O XRBBERK SEE AL KB N —p. FTERE D, T REHTRK, SHINLRR p, BI040 BT
I BRI B BEE S AR M, W BA 48 A R s ISR % S IR B, I8 4 T8 55 b R
SN, IR 2-11 W7 LUEWT S O B I S8 B AT 0 A —py o PR (S 4 BTy A AN 2 —py L
ANREREIILSS LAk K52 2 MU, T2 )R A 5 1R AL AT LN _E — AL TSRk 2 b A2k iy, HC 2 P O S
BN BESEBR I AT S —p) 222, WA B 2-10 , 20 T ARl Ze b A BTG HL AT (9 H AL AR JE S5 b JE55
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Since OM=a ,@zcl and 07Pi=di ,the above relation is satisfied by letting

d =2

2
— 3.63
=2 (3.63)

And as a result,
p' _d

1

P22 - constant (3.64)
p a d
for any point M on the cylindrical surface. By substituting ( 3. 64) into (3. 62) , the constant

potential on the cylindrical surface is

P a
= In — 3.65
Pum 2me,  d ( )

Now it is verified that the line charge p, = —p, is the image of the original line charge p, with

respect to the cylindrical conducting surface p=a,and the fields at any point outside the surface
can be determined equivalently by p, and p;.

The above discussion demonstrates that a cylindrical conductor with surface charges
induced by an external line charge can be replaced by an internal line charge. This conclusion is
useful in determining the capacitance of two wire transmission lines as demonstrated in the
following example.

Example 3-7 Two-wire transmission line: as shown in Figure 3-9(a) ,two infinitely long
conducting wires of radius a are parallel to each other with a distance D between the axes.
Determine the capacitance per unit length between the two wires.

Solution: As shown in Figure 3-9(b) ,the two conducting wires can be replaced by a pair
of line charges +p, and —p, ,as long as the potential generated by the two line charges is constant
on each of the cylindrical surfaces. Referring to the method of image used in the problem of
Figure 3-8, the separation between the image charge within one cylinder and the axis of the other
cylinder should be d=D-d,. Using(3. 63) ,we have

2

d=D-d =p -
d

from which we obtain
1 g g
d=?(D +/D* - 4a*) (3.66)

The potential difference between the two wires is that between any two points on the
respective wires. Using (3. 65) , the potential on the cylinder surface surrounding positive line

charge +p, is

P a
b=~ In —
2we, d
The potential on the cylinder surface surrounding negative line charge —p, is
P a
@_= In —
2we, d

Then,the capacitance per unit length can be calculated as



Figure 3-9 Two-wire transmission line and the equivalent line charges

Py e,
C= = (3.67)
¢,—¢_ In(d/a)
Substituting (3. 66) into(3.67) we have
e,
C= (3.68)
In[ (D/2a) ++/(D/2a)% -1 ]
Since
In[x ++/x* =1] =cosh™'x
for x>1,(3.68) can be written alternatively as
e,
(3.69)

cC=—_ "

cosh™ (D/2a)

The potential distribution and electric field intensity around the two-wire line can be
determined easily from the equivalent line charges.

The more general case of a two-wire transmission line of different radii can also be solved

by using the method of image in a similar way. The key is to find the location of the equivalent

line charges that make the wire surfaces equipotential.

3.5 Method of Separation of Variables( " L &%)

The method of images is useful in solving certain types of electrostatic problems in which
conducting boundaries can be replaced by equivalent charges. However, when the geometry of
the boundaries is not simple, and/or the free charges are not known, the method of images
cannot be used. In some problems, a system of conductors is maintained at specified potentials or

specified normal derivatives of the potentials. If the boundaries of the conductors coincide with
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the coordinate surfaces of an orthogonal coordinate system,we may solve the problem by using
the method of separation of variables (3 BETE%).

In this section,the method of separation of variables is introduced as a method of solving
Laplace’s equations with given boundary conditions of the potential ¢. Generally, problems
formulated as partial differential equations with prescribed boundary conditions are called
boundary-value problems( i1 5 {H 2] & ) . Boundary-value problems for electrostatic potential
functions can be classified into three types: (1) Dirichlet problems ( X B ## | (6] &5 , 26 — 25
A7) , in which the value of the potential is specified everywhere on the boundaries; 2
Neumann problems ( 41 = 8] 81, 2 2531 {H 7] /81) , in which the normal derivative of the
potential is specified everywhere on the boundaries; (3 Mixed boundary-value problems(;E &
if1{EB)& ) ,in which the potential is specified over some boundaries and the normal derivative
of the potential is specified over the remaining ones. Different specified boundary conditions will
require the choice of different potential functions, as will be demonstrated in this section. The
solutions of Laplace’s equation are often called harmonic functions ( & Fl1pE%%) . ©

Laplace’s equation for scalar electric potential ¢ in Cartesian coordinates is
Yo e Ve, (3.70)
ox dy 0z
To apply the method of separation of variables, we assume that the solution ¢ (x,y,z) can be
expressed as a product in the following form.
e(x,y,2) =X(x)Y(y)Z(2) (3.71)
where X(x),Y(y) ,and Z(z) are functions of only x,y and z,respectively. Substituting (3. 71)
in(3.70) ,we have
2 2 ) 2
d j;x) FX(02(2) ;(3) FX(0¥(y) 9 de(2Z> =
Divide both sides of the above equation by the product X(x) Y(y)Z(z) ,we have
1 d*X(x) L] d’Y(y) L] d’Z(z) _
X(x) A Y(y) &y Z(z2) df

Notice that each of the three terms on the left side of (3. 72) is a function of only one

Z(z)Y(y) 0

0 (3.72)

coordinate variable. In order for(3.72) to be satisfied for all values of x,y,z,each of the three
terms must be a constant. For instance,if we differentiate (3. 72) with respect to x,we have

d 1 d’X(x)

dx[X (x)  dx? J

=0 (3.73)

This requires that
1 dX(x) _ o,
X(x) dx° *

(3.74)

@ I3 B R SR A I ) R — b 22 5 vk A RB AR R D Sl 5 R vh 8 n A B R IR R BRI
n A R — A8t i R B, SIS0 T AR G0 A B n S FE B TR SR 2% 3 By T R IR S R e A1 B A
PG R, IR 4 E R P A E FE W R, 0 B R A BRI R — e B,



where &’ is a constant of integration that will be determined later from the boundary conditions
of the problem. The negative sign on the right side of (3. 74) as well as the square sign on k_ are
employed only for mathematical convenience, which will be seen later. The separation constant
k, can be a real or an imaginary number. If k_is imaginary ,k’ is a negative real number , making
—k> a positive real number. Now we rewrite (3. 74) as

d?X(x)

2
X

+IX(x) =0 (3.75)

Similarly , we can obtain equations for the functions Y(y) and Z(z) as
d’Y(y)

dy’
d*Z(z2)

2

+K2Y(y) =0 (3.76)

+kKZ(z) =0 (3.77)

where the separation constants k, and k, are generally different from k, , but due to(3.72),
satisfy .

K +k+k =0 (3.78)
Now the problem is reduced to finding the appropriate solutions X(x) ,Y(y) and Z(z) from the
second-order ordinary differential equations (3. 75), (3. 76) and (3. 77) respectively. The

possible solutions of (3. 75) are well known and listed in Table 3-1.

Table 3-1 Solutions of equation X"(x)+k:X(x)=0 @

k. X(x) Exponential form of X(x)
A x+B,

k A, sinkx+B, coskx C,e™+De™

jk A,sinhkx+B,coshkx C,e"+D,e™

The first possible solution,X(x)=A,x+B,,as listed in Table 3-1 is the result of k, =0,in
which case the potential function is a straight line with a slope A, and an intercept B, at x=0.
Example 3-1 is an example of this solution.

When k =k is a nonzero real number, the solution is a linear combination of sinkx and
coskx ,both of which have a period of 2m/k. Generally, if the potential to be solved is periodic
(usually with multiple zeros) along x-direction,a linear combination of sinkx and coskx should
be chosen as the solution. In some special cases,if the boundary condition requires the potential
to be zero at x=0, sinkx alone must be chosen; if the potential is expected to be symmetrical

with respect to x =0, then coskx alone must be chosen. Sometimes it may be desirable to use

@ 2 3-1 HEI S 48 Bk i, = A eR L R R TS R e &R

» . 1. _ i 1w i
e = coskx *sinkx,coskx = 7(3-““ +e ) sinkx = ?(eﬂ‘ - e )
]
kx —kx
N . e +e . 1 . ke
e = coshkx +sinhkx,coshkx = sinhkx = 7(3‘ )

)
¢

AR W2 R BT S 7 i B0 B R T L AR T B ) 0 S A A
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A, sink(x—x,) as the solution if a zero is found to be at x=x,,whereas B,cosk(x—x,) should be
used if the potential is symmetrical with respect to x=x,.

If k, = jk is a purely imaginary number, the solution can take the form of a linear
combination of hyperbolic functions A,sinhkx+B,coshkx, or equivalently, exponential functions
C,e"+D,e™.

Hyperbolic and exponential functions are also plotted in Figure 3-10 for easy reference.
These functions are non-periodic. The function sinhkx is an odd function of x and its value
approaches o as x goes to +o . The function coshkx is an even function of x. It equals unity at
x=0,and approaches +o as x goes to +o or —oo . The function e approaches zero as x goes to
—o and approaches +o as x goes to +oo . The function e™ approaches +o as x goes to —o
and approaches zero as x goes to +oo .

The solutions of the equations (3. 76) and (3. 77) for Y(y) and Z(z) are similar. The
choice of the proper form of the solution and the associated constants are determined by
specified boundary conditions in specific problems,as shown in the following examples.

Example 3-8 As illustrated in Figure 3-11,two semi-infinite grounded conducting plates
are parallel to the x-z plane and separated by a distance b. A third conducting plate in the y-z
plane is insulated from the two grounded plates and maintained at a constant potential U,.

Determine the potential distribution in the region(x>0,0<y<b) enclosed by the three plates.

Figure 3-10 Illustration of different solutions Figure 3-11 Tllustration of electrostatic

of equation X(x)+k> X(x)=0 problem in Example 3-8

Solution; Referring to the coordinates in Figure 3-11,¢ is independent of z,so we have
e(x,y,2) =e(x,y) =X(x)Y(y) (3.79)
The boundary conditions for the potential are;
In the x-direction:
¢(0,y) =U, (3.80a)
(o ,y)=0 (3.80b)
In the y-direction
®(x,0) =0 (3.80c)



o(x,b) =0 (3.80d)
(3.79) implies that k,=0 and from(3.78) ,we have
o+ =0 (3.81)

We first notice that, according to the boundary condition (3. 80b) ,X(x) should approach
zero as x approaches + o . Of all the possible solutions in Table 3-1, only the exponential
function e™ meets this requirement , hence we can determine that k, =jk is imaginary and

X(x)=D,e™ (3.82)
where k is a real number. This choice of k, implies that k, =k is real. So the function Y (y)
should be a combination of sine and cosine functions. Condition ( 3. 80c) indicates that the
proper choice for Y(y) is

Y(y) =A,sinky (3.83)

Substitute (3. 82) and (3. 83) into (3. 79), we obtain an appropriate solution of the

following form

e(x,y) =(D,A,)e “sinky = Ce sinky (3.84)
where the product D,A, has been combined into a single arbitrary constant C. Since ( 3. 84)
should satisfy(3.80d) ,we have,

o(x,b) =Ce™sinkb =0 (3.85)
which can be satisfied, for all values of x,only if
sinkb =0
Therefore,
k:%, n=1273, (3.86)

which means that k can only take discrete values. Substitute(3.86) into(3.84) ,we obtain
e,(x,) =C,e ™ sin "y (3.87)

where the subscript 7 indicates the nth possible value of the constant k,and hence indicates the
nth possible solution of ¢. ( Question: why n cannot be 0 or negative integral values?)
Apparently , for any n value, the function ¢,(x,y) in(3.87) satisfies the Laplace’s equation and
the boundary conditions (3. 80b-d ). But any ¢, (x, y) alone cannot satisfy the remaining
boundary condition (3. 80a) at x=0 for all values of y from 0 to b. Nevertheless, since Laplace’s
equation is a linear partial differential equation, a linear combination of ¢, (x,y) with all
possible n values is also a solution, which could satisfy the boundary condition(3. 80a). So,the
desired solution can be written as
°° c —nTX, . nw
e(x,3) = X ¢,(x,) = 2, C,e"™ sin =%y (3.88)
n=1 n=1
It is easy to verify that ¢ (x,y) in(3. 88) satisfies boundary conditions (3. 80b-d). So
now ,we only need to let ¢(x,y) in(3.88) satisfy boundary condition (3. 80a). This requires
©(0,y) = Y C,sin %y =U,, for 0 <y <bh (3.89)

n=1
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(3.89)is essentially a Fourier-series expansion of the periodic rectangular wave with a
fundamental period of 2b shown in Figure 3-12, which has a constant value U, in the interval
0<y<b. Notice that the sin (nmw/b) y term in (3. 89) is an odd function, and therefore, the

rectangular wave has a constant value —U, in the interval —b<y<0.

Figure 3-12 A periodic rectangular wave function

In order to evaluate the coefficients C, ,we multiply both sides of (3.89) by sin(mw/b)y

and integrate the products from y=0 to y=b.

- (* n miw b mar
Csi sin —vydy = | U,sin —ydy 3.90
n=lf() RSI0 = mysim = myay fo oSIN = =y dy ( )
The integral on the right side of (3.90) is easily evaluated;
2bU0 . .
b m if m is odd
J U()Sin Tydy =< mm (3 91)
0
0 if m is even

Each integral on the left side of(3.90) is

b onw . omm C, (n —m)w (n+m)w }
C sin sin —vydy =—| |cos————y —cos————y | dy
JO n b) by} 2]([ b Y b Y| ay

Cil .
—b ifm=n
=42 (3.92)
0 ifm#n
Substituting(3.91) and(3.92) into(3.90) ,we obtain
2bU,
C, —— if m is odd
"p = mm
2
0 if m is even
which gives us the solution( with the index m replaced by n)
4U

—" if nis odd
C =!nmw (3.93)

0 if n is even

Substitute (3. 93) into(3.88) ,we have the final solution of the potential distribution

d 4U
plxy)= Y —e™™’sin"Ty for x>00 <y <b (3.94)
n=1,3,5,. N b

The solution (3. 94) is a rather complicated expression involving a summation of infinite



series. However, since the terms in the series decreases as 1/n as n increases,only the first few
terms are needed to obtain a good approximation.

Example 3-9 Consider a region enclosed by four conducting plates as illustrated in
Figure 3-13. The top,right and bottom plates are grounded. The left plate is insulated from the
others and maintaned at a constant potential U,. All plates are infinite in extent in the z-

direction. Determine the potential distribution within this region.

Figure 3-13 Illustration of electrostatic problem in Example 3-9

Solution; Like Example 3-8,the potential ¢ is independent of z,so we have
e(x,y,2) =@(x,y) =X(x)Y(y) (3.95)
The boundary conditions are ;

In the x-direction:

®(0,y) =U, (3.96a)

o(a,y) =0 (3.96b)
In the y-direction

(x,0)=0 (3.96¢)

e(x,b) =0 (3.96d)
(3.95) implies that k, =0 and from(3. 78) ,

K+ =0 (3.97)

which is the same as (3. 81) in Example 3-8. The boundary conditions in the y-direction,
(3.96¢) and(3.96d) ,are also the same as those specified in Example 3-8. To make ¢ (x,0)=
0 and ¢(x,b)=0 for all values of x between 0 and a,Y(0) and Y(b) must be zero. Of the
functions listed in Table 3-1,only sine and cosine functions are periodic with multiple zeros, so
Y(y) must be a linear combination of sine and cosine functions. With Y(0)=Y(b)= 0,we have

Y(y) =A,sinky (3.98)

which is the same as in(3.83) ,and k can take discrete values as
k=—, n=1,2,3,- (3.99)

This means k, =k is real,and according to(3.97) ,k, =jk. As a result, in the x-direction,
X(x) is a linear combination of sinh and cosh functions,i. €. ,
X(x) =A,sinhkx + B,coshkx (3.100)
To determine A, and B,,we apply the boundary condition (3. 96b) , which demands that
X(a)=0; that is,
0 =A,sinhka + B,coshka
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or
B, = A, sinhka
coshka
Therefore , we have
inhk A,
X(x) =A2(sinhkx _ s acoshkx) = 2 (coshkasinhkx — sinhkacoshkx)
coshka coshka
=A,sinhk(x —a) (3.101)

where A,=A,/coshka. Note that(3.101) is a shift in the argument of the sinh function. Now,
we obtain the appropriate product solution

nir
) 3. 102
PRy ( )

¢,(x,y) =B,A,A,sinhk(x — a)sinky = C’sinh ?(x —a)sin

where C/ =B A,A,. We have now used all of the boundary conditions except (3. 96a) , which
may be satisfied by a Fourier-series expansion of ¢ (0,y)= U, over the interval from y=0 to y=
b. We have

Y ¢,(0,y) =— 3 C’sinh %ﬂasin %‘Ty =U,, (0<y<b) (3.103)
n=1

n=1
We note that(3. 103) is of the same form as(3.89) ,except that C/ is replaced by — C|
sinh(nwa/b). The values for the coefficient C! can then be written down from(3.93) ;

AU,
-——————— if nis odd
C = nwsinh(nwa/b) (3.104)

0 if n is even
The potential solution is then the summation of ¢, (x,y) in(3.102) with the coefficient C
given by(3.104) ,i.e. ,

44U, & 1 nw nm

= - sinh — — m -—v

o(x.y) =— 1; psinh (nmayp) Mg, (@ 7 X)sin Ry
(0<x<a and 0 <y <b) (3.105)

The electric field distribution within the enclosure is obtained by the relation

dx Jdy
Summary
Concepts
Laplacian operator ( #2387 £ F) Poisson’s equation ( 74 7 #2)

Laplace’s equation ( 33835 27 7 42 )

Laws & Theorems
Uniqueness theorem (" — 14 5€ #2)



Methods
Method of images ( 454% 7% ) Method of separation of variables( %~ & & % %)
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Problems

3.1 A large parallel-plate capacitor with height d is filled with two layers of dielectric
slabs. The dielectric constant of the layer between z=0 and z=0. 8d is ¢, and the dielectric
constant of the layer between z=0. 8d and z=d is . The bottom plate at z=0 is grounded and
the top plate at z=d has a constant potential U,. Assuming negligible fringing effect, determine

(1) the potential ¢ and electric field E inside the capacitor,

(2) the surface charge densities on the top and bottom plates.

3.2 Prove that the potential ¢ due to a charge distribution given in (2. 58) satisfies
Poisson’s equation.

3.3 Prove that,if a potential function ¢ satisfies Laplace’s equation in a given region and
¢ is constant on the boundary of the region,then ¢ is constant throughout the region.

3.4 Prove that a potential function satisfying Laplace’s equation in a given region
possesses no maximum or minimum within the region.

3.5 A point charge Q exists at a distance d above a large grounded conducting
plate. Determine

(1) the surface charge density p, on the conducting plate,

(2) the total charge induced on the conducting plate.

3.6 A straight-line charge of p, is parallel to and at a height & from the surface of an
infinitely large grounded conducting plate. Referring to Figure 3-14, prove that the surface

charge induced on the plane is
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3.7 Two semi-infinitely large conducting plates are located in the y-z plane and x-z plane

Py

respectively, as illustrated in Figure 3-15. A point charge of 200 mC is placed at point
A(1,3,0). Determine the electric potential and the electric field intensity at point B(3,2,0).

Figure 3-14 Illustration of Problem 3. 6 Figure 3-15 [Illustration of Problem 3.7

3.8 Two semi-infinitely large grounded metal plates are located at ¢ =0 and ¢ =m/3

respectively. A point charge ¢ is situated at (1 ,%,O) in the cylindrical coordinate system. Find

the potential at point (3,%,0).

3.9 A straight conducting wire of radius a is parallel to and at height /2 from the surface
of the earth. Assuming that the earth is perfectly conducting,determine the capacitance between
the wire and the earth.

3.10 A point charge Q resides inside a hollow spherical cavity with a grounded
conducting shell. The radius of the cavity is a,and the point charge is at a distance d from the
cavity center( where a>d). Use the method of images to determine (Dthe potential distribution
inside the cavity ,@lthe charge density p, induced on the inner surface of the shell.

3.11 A point charge Q is located at(x,,y,) outside a conducting hemisphere of radius a
on top of an infinitely large conducting plate, as shown in Figure 3-16. Find the locations and

values of the image charges that are needed for solving the fields outside the conductor.

Figure 3-16 Illustration of Problem 3. 11

3.12 Repeat solving the problem in Example 3-9 with the boundary conditions on the
top , bottom , and right plates in Figure 3-13 changed to d¢/dn=0.
3.13 For Example 3-9,if the top, bottom, and left plates in Figure 3-13 are grounded



(¢=0) and the right plate is maintained at a constant potential U,, prove that the potential

distribution within the enclosed region is

= 2U,[1 -(-1)"] nmX . nwy

N = sinh .

e(x,y) Z,} ' (nwa) n Ta sin —b
narsinh —b

3.14 Consider the region enclosed by four conducting plates as shown in Figure 3-17( the
four plates are assumed to be infinitely long along the z-direction). The left and right plates are
grounded, and the top and bottom plates have constant potentials U, and U, respectively. Find

the potential distribution inside the enclosure.

Figure 3-17 Illustration of Problem 3. 14

3.15 Consider a metallic rectangular box with sides a and b and height c. The side walls
and the bottom surface are grounded. The top surface is isolated and kept at a constant potential

U,. Determine the potential distribution inside the box.
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