
Chapter
 

3
　

Solution
 

of
   

Electrostatic
 

Boundary
 

Value
 

Problems
(静电场边界值问题求解)

3. 1　 Introduction(引言)

Electrostatic
 

problems
 

are
 

those
 

to
 

find
 

electric
 

potential
 

and / or
 

electric
 

field
 

intensity
 

due
 

to
 

static
 

electric
 

charges. In
 

Chapter
 

2,several
 

methods
 

have
 

been
 

developed
 

to
 

find
 

the
 

electric
 

potential
 

and
 

the
 

electric
 

field
 

intensity
 

when
 

the
 

charge
 

distribution
 

is
 

known. In
 

practical
 

problems,however, the
 

exact
 

charge
 

distribution
 

is
 

usually
 

unknown, and
 

as
 

a
 

result, the
 

formulas
 

in
 

Chapter
 

2
 

cannot
 

be
 

applied
 

directly. Instead,practical
 

electrostatic
 

problems
 

might
 

involve
 

conducting
 

bodies
 

with
 

given
 

potentials,which
 

can
 

be
 

modeled
 

as
 

a
 

boundary-value
 

problem
 

in
 

terms
 

of
 

the
 

electric
 

potential. In
 

these
 

cases, the
 

electric
 

fields
 

can
 

be
 

found
 

by
 

solving
 

a
 

partial
 

differential
 

equation
 

subject
 

to
 

the
 

known
 

boundary
 

conditions
 

on
 

the
 

surfaces
 

of
 

conducting
 

bodies. Analytical
 

solutions
 

of
 

the
 

partial
 

differential
 

equation
 

may
 

be
 

obtained
 

if
 

the
 

electrostatic
 

problem
 

can
 

be
 

reduced
 

to
 

one-dimensional. For
 

two-dimensional
 

or
 

three-
dimensional

 

problems,analytical
 

solutions
 

generally
 

do
 

not
 

exist. Nevertheless,if
 

the
 

boundaries
 

are
 

of
 

certain
 

simple
 

geometries,the
 

method
 

of
 

images
 

or
 

the
 

method
 

of
 

separation
 

of
 

variables
 

can
 

be
 

used
 

to
 

provide
 

analytical
 

or
 

semi-analytical
 

solutions. ①

3. 2　 Poissons
 

and
 

Laplaces
 

Equations
(泊松方程、拉普拉斯方程)

　 　 In
 

Chapter
 

2,two
 

fundamental
 

equations
 

governing
 

the
 

electrostatic
 

fields
 

are
 

formulated
 

as
·D = ρv (3. 1)
× E = 0 (3. 2)

From(3. 2),we
 

introduced
 

the
 

electric
 

potential
 

φ
 

that
 

satisfies
E =- φ (3. 3)

① 第 2 章给出了从已知的电荷分布出发求解电场的几种方法。 然而在实际静电场问题中,电荷分布常常是未知

的,而问题所在区域的边界上电位分布可能已知,这种情况下可以将静电场问题表述为关于电位的边界值问题,即给定

边界条件,通过求解电位满足的二阶偏微分方程得到电位的解,然后对电位取负梯度,得到电场的解。 本章从静电场电

位满足的泊松 / 拉普拉斯方程出发,基于唯一性定理,介绍静电场边界值问题的几种典型的求解方法。
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In
 

a
 

linear
 

and
 

isotropic
 

medium,D=εE. Therefore,(3. 1)
 

becomes
·(εE) = ρv (3. 4)

Substituting(3. 3)
 

into(3. 4)
 

leads
 

to
·(ε φ) =- ρv (3. 5)

where
 

the
 

permittivity
 

ε
 

can
 

be
 

a
 

function
 

of
 

position. For
 

a
 

simple
 

medium,ε
 

is
 

a
 

constant
 

and
 

can
 

be
 

taken
 

out
 

of
 

the
 

divergence
 

operation. Then
 

we
 

have

2φ =-
ρv

ε
(3. 6)

where
 2

 

is
 

the
 

Laplacian
 

operator
 

as
 

introduced
 

in
 

Section
 

1-12. (3. 6)
 

is
 

known
 

as
 

Poissons
 

equation(泊松方程) . It
 

states
 

that
 

the
 

Laplacian
 

of
 

φ
 

equals
 

-ρv / ε
 

for
 

a
 

simple
 

medium
 

where
 

ρv
 is

 

the
 

volume
 

density
 

of
 

free
 

charges(which
 

may
 

be
 

a
 

function
 

of
 

space
 

coordinates) . If
 

the
 

charge
 

distribution
 

ρv
 is

 

known
 

everywhere
 

in
 

the
 

entire
 

free
 

space, the
 

solution
 

of
 

equation
(3. 6)

 

is
 

known
 

as(2. 58),which
 

is
 

rewritten
 

as

φ(r) = 1
4πε0

∫
V′

ρv(r′)
|

 

r - r′ |
dv′ (3. 7)

　 　 However, in
 

practical
 

problems, the
 

function
 

ρv
 may

 

not
 

be
 

known, or
 

may
 

be
 

too
 

complicated,which
 

makes
 

it
 

difficult
 

to
 

evaluate
 

the
 

integration
 

in(3. 7) . Then,instead
 

of
 

using
(3. 7), it

 

is
 

usually
 

more
 

practical
 

to
 

formulate
 

the
 

electrostatic
 

problems
 

as
 

solving
 

the
 

Poissons
 

equation(3. 6)
 

subject
 

to
 

prescribed
 

boundary
 

conditions( e. g. ,given
 

φ
 

on
 

certain
 

conducting
 

bodies) . ①

Poissons
 

equation(3. 6)
 

is
 

a
 

second-order
 

partial
 

differential
 

equation,which,in
 

Cartesian
 

coordinates,becomes
∂2φ
∂x2

+ ∂2φ
∂y2

+ ∂2φ
∂z2

=-
ρv

ε
(3. 8)

In
 

cylindrical
 

and
 

spherical
 

coordinates,the
 

Poissons
 

equation
 

becomes,respectively,
1
ρ

∂
∂ρ

ρ ∂φ
∂ρ( ) + 1

ρ2

∂2φ
∂ϕ2

+ ∂2φ
∂z2

=-
ρv

ε
(3. 9)

and
1
r2

∂
∂r

r2 ∂φ
∂r( ) + 1

r2sinθ
∂
∂θ

sinθ ∂φ
∂θ( ) + 1

r2sin2θ
∂2φ
∂ϕ2

=-
ρv

ε
(3. 10)

　 　 At
 

points
 

in
 

a
 

simple
 

medium
 

where
 

there
 

is
 

no
 

free
 

charge, ρv = 0
 

and
 

the
 

Poissons
 

equation(3. 6)
 

reduces
 

to
2φ = 0 (3. 11)

which
 

is
 

known
 

as
 

Laplaces
 

equation(拉普拉斯方程) . Laplaces
 

equation
 

is
 

the
 

governing
 

① 泊松方程(3. 6)是根据静电场特性引入电位后,从静电场满足的基本方程直接推导得到的,也是静电场电位必

须满足的基本方程。 式(3. 7)是泊松方程的解,然而,采用式(3. 7)计算电位的前提条件是其中的电荷密度
 

ρv 在整个空

间中已知,且积分区域 V′
 

包含所有的自由电荷。 如果不知道电荷分布,无法直接采用式(3. 7)得到静电场的解,但可以

通过求解满足特定边界条件的泊松方程(3. 6)得到静电场的解。
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equation
 

for
 

many
 

electrostatic
 

problems
 

involving
 

a
 

set
 

of
 

conductors
 

maintained
 

at
 

given
 

potentials. Once
 

φ
 

is
 

found
 

by
 

solving
 

the
 

Laplaces
 

equation, the
 

electric
 

field
 

can
 

be
 

determined
 

from
 

- φ,and
 

the
 

charge
 

distribution
 

on
 

the
 

conductor
 

surfaces
 

can
 

be
 

determined
 

from
 

the
 

boundary
 

condition
 

ρs =εEn . ①

Example
 

3-1 　 As
 

shown
 

in
 

Figure
 

3-1, the
 

potential
 

difference
 

across
 

a
 

parallel-plate
 

capacitor
 

is
 

maintaned
 

at
 

U0 . The
 

separation
 

between
 

the
 

two
 

plates
 

of
 

the
 

capacitor
 

is
 

d.
Assume

 

the
 

fringing
 

effect
 

can
 

be
 

neglected. Determine
 

①
 

the
 

potential
 

distribution
 

between
 

the
 

plates,and
 

②
 

the
 

surface
 

charge
 

densities
 

on
 

the
 

plates.

Figure
 

3-1　 A
 

parallel
 

capacitor

Solution:
 

This
 

is
 

essentially
 

the
 

same
 

problem
 

as
 

Example
 

2-16. Now
 

we
 

solve
 

it
 

by
 

solving
 

the
 

Laplaces
 

equation
 

satisfied
 

by
 

the
 

electric
 

potential
 

since
 

the
 

charge
 

density
 

ρv = 0
 

between
 

the
 

plates.
(1)

 

By
 

ignoring
 

the
 

fringing
 

effect
 

of
 

the
 

electric
 

field,we
 

assume
 

the
 

field
 

distribution
 

is
 

the
 

same
 

as
 

if
 

the
 

plates
 

were
 

infinitely
 

large. In
 

other
 

words,the
 

potential
 

φ
 

has
 

no
 

variation
 

in
 

the
 

x-and
 

y-directions. Hence,Laplaces
 

equation
 

is
 

then
 

simplified
 

to
d2φ
dz2

= 0 (3. 12)

where
 

d2 / dz2
 

is
 

used
 

instead
 

of
 

∂2 / ∂z2
 

because
 

z
 

is
 

the
 

only
 

variable
 

in
 

this
 

problem. Integration
 

of(3. 12)
 

with
 

respect
 

to
 

z
 

gives
dφ
dz

=C1

where
 

C1
 is

 

an
 

unknown
 

constant
 

coefficient. Integrating
 

again,we
 

obtain
φ =C1z + C2 (3. 13)

　 　 To
 

determine
 

the
 

two
 

unknown
 

coefficients
 

C1
 and

 

C2,we
 

use
 

the
 

following
 

two
 

boundary
 

conditions:
 

At
 

z = 0,　 φ = 0 (3. 14a)
At

 

z = d,　 φ =U0 (3. 14b)
　 　 Substitution

 

of(3. 14a)
 

and(3. 14b)
 

respectively
 

into(3. 13)
 

yields
 

two
 

equations,from
 

which
 

the
 

two
 

unknown
 

coefficients
 

can
 

be
 

solved
 

to
 

obtain
 

C1 =U0
 / d

 

and
 

C2 = 0. Hence
 

the
 

potential
 

distribution
 

between
 

the
 

plates
 

is

① 在无源区域(即电荷密度为零的区域,或者说是电荷分布区域以外的空间),泊松方程变为拉普拉斯方程。 在很

多实际问题,包括以下几个例子中,感兴趣的电场都是分布在无源区域中,因此可以通过求解满足特定边界条件的拉普

拉斯方程(3. 11)得到静电场的解。
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φ =
U0

d
z (3. 15)

　 　 (2)
 

The
 

surface
 

charge
 

densities
 

can
 

be
 

found
 

by
 

using
 

the
 

boundary
 

condition
 

of
 

the
 

E
 

field
 

on
 

the
 

surfaces
 

of
 

the
 

conducting
 

plates(z=0
 

and
 

z=d) . We
 

first
 

find
 

the
  

E
 

field
 

by
 

using
(3. 3):

 

E =- ez
dφ
dz

=- ez

U0

d
　 　 Then

 

the
 

surface
 

charge
 

densities
 

at
 

the
 

conducting
 

plates
 

are
 

obtained
 

as

ρs = εen·E = εen· - ez

U0

d( )
　 　 On

 

the
 

surface
 

of
 

the
 

lower
 

plate,
 

en = ez,　 ρs =-
εU0

d
　 　 On

 

the
 

surface
 

of
 

the
 

upper
 

plate,
 

en =- ez,　 ρs =
εU0

d
　 　 This

 

agrees
 

with
 

the
 

fact
 

that
 

electric
 

field
 

lines
 

in
 

an
 

electrostatic
 

field
 

originate
 

from
 

positive
 

charges
 

and
 

terminate
 

in
 

negative
 

charges.
Example

 

3-2　 A
 

cylindrical
 

capacitor
 

consists
 

of
 

an
 

inner
 

conductor
 

of
 

radius
 

a
 

and
 

an
 

outer
 

conductor
 

whose
 

inner
 

radius
 

is
  

b. The
 

space
 

between
 

the
 

conductors
 

is
 

filled
 

with
 

a
 

dielectric
 

of
 

permittivity
 

ε, and
 

the
 

length
 

of
 

the
 

capacitor
 

is
  

L. The
 

outer
 

conductor
 

is
 

grounded,and
 

the
 

inner
 

conductor
 

is
 

maintained
 

at
 

potential
 

U0 . Determine
 

①
 

the
 

potential
 

distribution
 

between
 

the
 

two
 

conductors,and
 

②
 

the
 

capacitance
 

of
 

this
 

capacitor.
Solution:

  

This
 

is
 

the
 

same
 

problem
 

as
 

Example
 

2-17,which
 

is
 

solved
 

by
 

applying
 

Gausss
 

law. Here
 

we
 

solve
 

it
 

by
 

solving
 

the
 

one-dimensional
 

Laplaces
 

equation
 

under
 

the
 

cylindrical
 

coordinate
 

system.
(1)

 

Due
 

to
 

cylindrical
 

symmetry,φ
 

has
 

no
 

variation
 

along
 

the
 

ϕ-and
 

z-directions(assuming
 

no
 

fringing
 

effect) . Laplaces
 

equation(3. 9)
 

is
 

then
 

simplified
 

to
1
ρ

d
dρ

ρ dφ
dρ( ) = 0 (3. 16)

　 　 Integration
 

of(3. 16)
 

with
 

respect
 

to
 

ρ
 

gives
dφ
dρ

=
C1

ρ
where

 

C1
 is

 

an
 

unknown
 

constant
 

coefficient. Integrating
 

again,we
 

obtain
φ =C1 lnρ + C2 (3. 17)

　 　 To
 

determine
 

the
 

two
 

unknown
 

coefficients
 

C1
 and

 

C2,two
 

boundary
 

conditions
 

are
 

used:
 

At
 

ρ =b,　 φ = 0 (3. 18a)
At

 

ρ =a,　 φ =U0 (3. 18b)
　 　 Substitution

 

of(3. 18a)
 

and(3. 18b)
 

into(3. 17)
 

yields
 

two
 

equations,from
 

which
 

the
 

two
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unknowns
 

are
 

solved
 

to
 

be
 

C1 =U0 / ln(a / b)
 

and
 

C2 =-U0
 ln(b) / ln(a / b) . Hence

 

the
 

potential
 

distribution
 

between
 

the
 

conductors
 

is

φ =
U0

ln a
b( )

ln ρ
b( ) (3. 19)

　 　 (2)
 

In
 

order
 

to
 

find
 

the
 

capacitance,we
 

first
 

find
 

the
 

distribution
 

of
 

E
 

within
 

the
 

capacitor.
From(3. 3)

 

and(3. 19)
 

we
 

have

E(ρ) =- eρ
dφ
dρ

=- eρ

U0

ln a
b( )

1
ρ

(3. 20)

　 　 At
 

the
 

surface
 

of
 

the
 

inner
 

conductor(ρ=a),we
 

have

En(a) = en·E(a) = eρ·( - eρ)
U0

ln a
b( )

1
a

=
U0

ln b
a( )

1
a

which
 

is
 

a
 

constant. The
 

surface
 

charge
 

densities
 

at
 

the
 

conducting
 

plates
 

are
 

obtained
 

by
 

using
 

the
 

boundary
 

condition,i. e. ,

ρs = εEn =
εU0

ln b
a( )

1
a

　 　 The
 

total
 

charge
 

on
 

the
 

inner
 

conductor
 

is

Q = ∫
S
ρsds = 2πaLρs =

2πεLU0

ln b
a( )

(3. 21)

　 　 We
 

can
 

verify
 

easily
 

that
 

the
 

charge
 

carried
 

by
 

the
 

outer
 

conductor
 

is
 

-Q. Therefore,the
 

capacitance
 

is
 

calculated
 

as
 

C = Q
U0

= 2πεL

ln b
a( )

which
 

is
 

the
 

same
 

as
 

the
 

result
 

of
 

Example
 

2-17.
Example

 

3-3　 A
 

spherical
 

capacitor
 

consists
 

of
 

an
 

inner
 

conducting
 

sphere
 

of
 

radius
 

a
 

and
 

an
 

outer
 

conductor
 

with
 

inner
 

radius
 

b.
 

The
 

space
 

in
 

between
 

is
 

filled
 

with
 

a
 

dielectric
 

of
 

permittivity
 

ε. The
 

outer
 

conductor
 

is
 

grounded, and
 

the
 

inner
 

conductor
 

is
 

maintained
 

at
 

a
 

potential
 

U0 . Determine
 

①
 

the
 

potential
 

distribution
 

between
 

the
 

two
 

conductors,and
 

②
 

the
 

capacitance
 

of
 

this
 

capacitor.
Solution:

  

This
 

is
 

essentially
 

the
 

same
 

problem
 

as
 

Example
 

2-18. Here
 

we
 

solve
 

it
 

based
 

on
 

the
 

Laplaces
 

equation
 

in
 

spherical
 

coordinates.
(1)

 

Due
 

to
 

symmetry,φ
 

has
 

no
 

variation
 

along
 

the
 

ϕ-
 

and
 

θ-
 

directions. Hence
 

φ
 

between
 

the
 

two
 

conductors
 

satisfies
 

the
 

one-dimensional
 

Laplaces
 

equation
1
r2

d
dr

r2 dφ
dr( ) = 0 (3. 22)
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　 　 Integration
 

of(3. 22)
 

with
 

respect
 

to
 

r
 

gives
dφ
dr

=
C1

r2

where
 

C1
 is

 

an
 

unknown
 

constant
 

coefficient. Integrating
 

again,we
 

obtain

φ =-
C1

r
+ C2 (3. 23)

　 　 To
 

determine
 

the
 

two
 

unknown
 

coefficients
 

C1
 and

 

C2,two
 

boundary
 

conditions
 

are
 

used:
 

At
 

r = b,　 φ = 0 (3. 24a)
At

 

r = a,　 φ =U0 (3. 24b)
which

 

leads
 

to
 

the
 

solution
 

of
 

φ
 

as
 

φ =
U0

1
a

- 1
b

1
r

- 1
b( ) (3. 25)

　 　 (2)
 

From(3. 3)
 

and(3. 25)
 

we
 

have

E =- er
dφ
dr

= er

U0

1
a

- 1
b

1
r2( ) (3. 26)

　 　 At
 

the
 

surface
 

of
 

the
 

inner
 

conductor(r=a),we
 

have

En(a) = en·E(a) = er·er

U0

1
a

- 1
b

1
a2( ) =

U0

1
a

- 1
b

1
a2( )

　 　 The
 

surface
 

charge
 

density
 

at
 

the
 

inner
 

conductor
 

is
 

obtained
 

by
 

using
 

the
 

boundary
 

condition,i. e. ,

ρs = εEn =
εU0

1
a

- 1
b

1
a2( )

　 　 The
 

total
 

charge
 

on
 

the
 

inner
 

conductor
 

is

Q = ∫
S
ρsds = 4πa2ρs =

4πεU0

1
a

- 1
b

(3. 27)

　 　 We
 

can
 

verify
 

easily
 

that
 

the
 

charge
 

carried
 

by
 

the
 

outer
 

conductor
 

is
 

-Q. Therefore,the
 

capacitance
 

is
 

calculated
 

as
 

C = Q
U0

= 4πε
1
a

- 1
b

which
 

is
 

the
 

same
 

as
 

the
 

result
 

of
 

Example
 

2-18.
Example

 

3-4　 Determine
 

the
  

E
 

field
 

caused
 

by
 

a
 

uniform
 

charge
 

distribution
 

in
 

a
 

sphere
 

with
 

a
 

volume
 

density
 

ρv =ρ0
 for

 

0≤r≤a
 

and
 

ρv =0
 

for
 

r>a.
Solution:

  

This
 

is
 

the
 

same
 

problem
 

as
 

Example
 

2-7,which
 

is
 

solved
 

by
 

applying
 

Gausss
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law. Here
 

we
 

solve
 

it
 

by
 

direct
 

solving
 

the
 

one-dimensional
 

Poissons
 

and
 

Laplaces
 

equations.
By

 

the
 

spherical
 

symmetry,there
 

are
 

no
 

variations
 

in
 

θ-
 

and
 

ϕ-
 

direction. Therefore,the
 

fields
 

including
  

E
 

and
 

φ
 

are
 

functions
 

of
 

the
 

r
 

coordinates
 

only. Both
 

Poissons
 

and
 

Laplaces
 

equations
 

are
 

reduced
 

to
 

one-dimensional.
(1)

 

For
 

region
 

0≤r≤a,ρv =ρ0 . The
 

potential
 

must
 

satisfy
 

1-D
 

Poissons
 

equation
1
r2

d
dr

r2 dφ
dr( ) =-

ρ0

ε0

　 　 Integration
 

of
 

the
 

above
 

equation
 

gives
dφ
dr

=-
ρ0

3ε0
r +

C1

r2
(3. 28)

　 　 Therefore,the
 

electric
 

field
 

intensity
 

inside
 

the
 

region
 

is

E =- φ =- er
dφ
dr( ) = er

ρ0

3ε0
r　 (0 ≤ r ≤ a) (3. 29)

　 　 Here,we
 

have
 

used
 

the
 

fact
 

that
 

C1
 in(3. 28)

 

must
 

be
 

zero
 

because
 

otherwise,E
 

will
 

become
 

infinite
 

at
 

r=0.
(2)

 

For
 

region
 

r>a,ρv =0. The
 

potential
 

must
 

satisfy
 

1-D
 

Laplaces
 

equation
1
r2

∂
∂r

r2 dφ
dr( ) = 0 (3. 30)

　 　 Integrating
 

of
 

the
 

above
 

equation
 

gives
dφ
dr

=
C2

r2
(3. 31)

and
 

therefore,

E =- φ =- er
dφ
dr

=- er

C2

r2
　 (r > a) (3. 32)

　 　 The
 

integration
 

constant
 

C2
 can

 

be
 

found
 

by
 

equating
  

E
 

at
 

r
 

= a,which
 

is
 

the
 

boundary
 

condition
 

of
 

normal
 

continuity
 

of
  

D
 

vector( the
 

permittivity
 

is
 

the
 

same
 

ε0
 inside

 

and
 

outside
 

the
 

source
 

region) . Therefore,from(3. 29)
 

and(3. 32),we
 

have
ρ0

3ε0
a =-

C2

a2

which
 

gives

C2 =-
ρ0a3

3ε0
(3. 33)

　 　 Substitution
 

of(3. 33)
 

into(3. 32)
 

gives
 

E = er

ρ0a3

3ε0r2
　 (r > a) (3. 34)

which
 

is
 

the
 

same
 

as
 

the
 

results
 

obtained
 

in
 

Example
 

2-7. We
 

can
 

continue
 

to
 

find
 

the
 

potential
 

distribution
 

as
 

a
 

function
 

of
 

r. For
 

the
 

region
 

0≤r≤a,integrating(3. 28)
 

in
 

which
 

C1
 is

 

already
 

determined
 

to
 

be
 

zero,we
 

have
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φ =-
ρ0r2

6ε0

+ C′1 　 (0 ≤ r ≤ a) (3. 35)

where
 

C′1  is
 

a
 

new
 

integration
 

constant
 

that
 

will
 

be
 

determined
 

later. For
 

the
 

region
 

r > a,
substituting(3. 33)

 

into(3. 31)
 

and
 

integrating
 

both
 

sides
 

of
 

the
 

resulted
 

equation,we
 

obtain

φ =
ρ0a3

3ε0r
　 (r > a) (3. 36)

　 　 Here,we
 

do
 

not
 

include
 

an
 

additional
 

unknown
 

constant
 

in
 

the
 

integration
 

result
 

because
 

the
 

potential
 

φ
 

is
 

zero
 

at
 

infinity(r→∞ ) . The
 

only
 

unknown
 

left
 

is
 

C′1  in(3. 35),which
 

can
 

be
 

determined
 

by
 

the
 

continuity
 

condition
 

of
  

φ
 

across
 

the
 

boundary. Let
 

φ
 

in(3. 35)
 

and(3. 36)
 

be
 

equal
 

at
 

the
 

boundary
 

r=a,we
 

have

-
ρ0a2

6ε0

+ C′1=
ρ0a2

3ε0

　 　 then

C′1=
ρ0a2

2ε0
(3. 37)

　 　 Substitute(3. 37)
 

into(3. 35),we
 

have
 

φ =
ρ0

3ε0

3a2

2
- r2

2( ) 　 0 ≤ r ≤ a( ) (3. 38)

3. 3　 Uniqueness
 

of
 

Electrostatic
 

Solutions
(静电场解的唯一性)

　 　 In
 

the
 

examples
 

in
 

the
 

last
 

section, we
 

obtained
 

the
 

solutions
 

by
 

direct
 

integration.
However,direct

 

integration
 

can
 

be
 

used
 

only
 

if
 

Poissons(or
 

Laplaces)
 

equation
 

is
 

reduced
 

to
 

one
 

dimensional
 

due
 

to
 

the
 

symmetry. In
 

more
 

complicated
 

situations
 

involving
 

two-
 

or
 

three-
dimensional

 

partial
 

differential
 

equations, the
 

solution
 

usually
 

cannot
 

be
 

obtained
 

by
 

direct
 

integration. Nevertheless,in
 

some
 

special
 

cases,analytical
 

or
 

semi-analytical
 

solutions
 

can
 

still
 

be
 

obtained
 

by
 

using
 

special
 

methods
 

such
 

as
 

the
 

method
 

of
 

images
 

and
 

the
 

method
 

of
 

separation
 

of
 

variables
 

that
 

will
 

be
 

introduced
 

later
 

in
 

this
 

chapter. These
 

two
 

methods
 

are
 

both
 

based
 

on
 

the
 

important
 

uniqueness
 

theorem(唯一性定理) .
The

 

uniqueness
 

theorem
 

states
 

that
 

the
 

solution
 

of
 

Poissons ( or
 

Laplaces)
 

equation
 

satisfying
 

the
 

given
 

boundary
 

conditions
 

is
 

a
 

unique
 

solution. ①
 

This
 

means
 

that,no
 

matter
 

what
 

method
 

we
 

use
 

to
 

obtain
 

a
 

solution
 

of
 

the
 

Poissons ( or
 

Laplaces), it
 

must
 

be
 

the
 

correct
 

solution
 

as
 

long
 

as
 

the
 

boundary
 

conditions
 

are
 

satisfied.
To

 

prove
 

the
 

uniqueness
 

theorem,we
 

take
 

an
 

arbitrary
 

volume
 

V
 

bounded
 

by
 

a
 

closed
 

surface
 

So
 which

 

may
 

be
 

a
 

surface
 

at
 

infinity. Inside
 

the
 

closed
 

surface
 

So,the
 

volume
 

V
 

may
 

also
 

be
 

bounded
 

by
 

some
 

interior
 

surfaces
 

S1,S2,…,SN
 as

 

depicted
 

in
 

Figure
 

3-2. Now
 

assume
 

① 静电场解的唯一性定理可以表述为:
 

满足给定边界条件的泊松方程或拉普拉斯方程的解是唯一存在的。
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that
 

there
 

are
 

two
 

solutions,φ1
 and

 

φ2,to
 

the
 

same
 

Poissons
 

equation
 

in
 

V,i. e. ,

2φ1 =-
ρv

ε
(3. 39a)

2φ2 =-
ρv

ε
(3. 39b)

Figure
 

3-2　 A
 

region
 

V
 

bounded
 

by
 

an
 

external
 

surface
 

So
 and

 

possible
 

internal
 

surfaces
 

S1,S2,…,SN

where
 

ρv
 is

 

the
 

charge
 

density
 

within
 

the
 

volume
 

V. Then
 

we
 

only
 

need
 

to
 

prove
 

that
 

the
 

difference
 

between
 

φ1
 and

 

φ2
 in

 

the
 

volume
 

V
 

must
 

be
 

zero
 

if
 

φ1
 and

 

φ2
 satisfy

 

the
 

same
 

boundary
 

conditions
 

on
 

S1,S2,…,SN
 and

 

So . To
 

do
 

that,we
 

define
 

a
 

difference
 

potential:
 

φd =φ1 - φ2 (3. 40)
From(3. 39a)

 

and ( 3. 39b), it
 

is
 

obvious
 

that
 

φd
 must

 

satisfy
 

Laplaces
 

equation
 

in
 

the
 

volume
 

V
2φd = 0 (3. 41)

Utilizing
 

the
 

vector
 

identity(1. 148),in
 

which
 

let
 

ψ=φd
 and

   

A= φd,we
 

have
·(φd φd) =φd

2φd + φd
2 (3. 42)

From(3. 41),the
 

first
 

term
 

on
 

the
 

right
 

side
 

of(3. 42)
 

vanishes. Integrating
 

both
 

sides
 

of(3. 42)
 

over
 

the
 

volume
 

V
 

and
 

applying
 

the
 

divergence
 

theorem
 

to
 

the
 

left
 

side,we
 

have

∮
S
(φd φd)·ends = ∫

V
φd

2dv (3. 43)

where
  

en
 denotes

 

the
 

unit
 

normal
 

outward
 

from
 

V,and
 

the
 

surface
 

S
 

consists
 

of
 

So
 as

 

well
 

as
 

S1,
S2,…,SN . Noticing

 

that
 

φd·en =∂φd / ∂n,(3. 43)
 

can
 

be
 

rewritten
 

as

∮
S
φd

∂φd

∂n
ds = ∫

V
φd

2dv (3. 44)

　 　 Now,we
 

only
 

need
 

to
 

show
 

that(3. 44)
 

implies
 

φd
 must

 

be
 

zero
 

if
 

φ1
 and

 

φ2
 satisfies

 

the
 

same
 

boundary
 

conditions. The
 

boundary
 

conditions
 

can
 

take
 

different
 

forms
 

depending
 

on
 

the
 

specific
 

electrostatic
 

problems. Typical
 

forms
 

of
 

the
 

boundary
 

conditions
 

include
 

but
 

not
 

limited
 

to
 

the
 

following.
(1)

 

The
 

potential
 

φ
 

is
 

specified
 

on
 

some
 

or
 

all
 

the
 

boundaries. Then
 

φ1 = φ2
 on

 

these
 

boundaries,and
 

therefore,φd
 on

 

these
 

boundaries
 

is
 

identically
 

zero;
 

(2)
 

∂φ / ∂n
 

is
 

specified
 

on
 

some
 

or
 

all
 

the
 

boundaries(which
 

is
 

equivalent
 

to
 

specified
 

surface
 

charge
 

densities
 

if
 

these
 

boundaries
 

are
 

conductor-dielectric
 

interfaces) . Then
 

∂φ1 / ∂n =
∂φ2 / ∂n

 

on
 

these
 

boundaries,and
 

therefore,∂φd / ∂n
 

on
 

these
 

boundaries
 

is
 

identically
 

zero;
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(3)
 

If
 

So ( or
 

partial
 

So )
 

is
 

at
 

infinity, it
 

can
 

be
 

considered
 

as
 

the
 

surface ( or
 

partial
 

surface)
 

of
 

a
 

sphere
 

centered
 

at
 

origin
 

with
 

a
 

radius
 

r
 

approaching
 

infinity. As
 

r
 

increases,both
 

φ1
 and

 

φ2
 decrease

 

as
 

l / r( if
 

the
 

charge
 

distribution
 

is
 

within
 

a
 

bounded
 

region,which
 

is
 

true
 

for
 

most
 

practical
 

problems) . Hence
 

φd
 decrease

 

as
 

l / r
 

and
 

φd
 decreases

 

as
 

1 / r2,making
 

the
 

integrand
 

φd(∂φd / ∂n)
 

decreases
 

as
 

1 / r3 . As
 

the
 

surface
 

area
 

of
 

So(or
 

partial
 

So)
 

increases
 

as
 

r2,the
 

surface
 

integral
 

of
 

φd(∂φd / ∂n)
 

on
 

So(or
 

partial
 

So)
 

decreases
 

as
 

l / r
 

and
 

approaches
 

zero
 

at
 

infinity.
All

 

the
 

above
 

cases
 

lead
 

to
 

the
 

conclusion
 

that
 

the
 

surface
 

integral
 

on
 

the
 

left
 

side
 

of(3. 44)
 

is
 

zero,and
 

as
 

a
 

result,the
 

volume
 

integral
 

on
 

the
 

right
 

side
 

of(3. 44)
 

must
 

also
 

be
 

zero,i. e. ,

∫
V

φd
2dv = 0 (3. 45)

Since
 

the
 

integrand
 

| φd | 2
 

is
 

nonnegative
 

everywhere,(3. 45)
 

can
 

be
 

satisfied
 

only
 

if
 

| φd
 | 2

 

is
 

zero
 

everywhere
 

inside
 

the
 

volume
 

V. The
 

gradient
 

of
 

φd
 is

 

everywhere
 

zero,meaning
 

that
 

φd
 

is
 

constant
 

at
 

all
 

points
 

in
 

V. Therefore, φ1
 can

 

be
 

different
 

from
 

φ2
 by

 

only
 

a
 

constant.
However, as

 

we
 

know, a
 

constant
 

difference
 

in
 

potential
 

distribution
 

does
 

not
 

make
 

any
 

difference
 

in
 

electric
 

fields. ①
 

And
 

the
 

constant
 

difference
 

can
 

be
 

eliminated
 

by
 

selecting
 

the
 

same
 

reference
 

zero
 

potential
 

point
 

in
 

the
 

solution
 

of
 

φ1
 and

 

φ2, in
 

which
 

case
 

φ1 = φ2 . This
 

proves
 

that
 

there
 

is
 

only
 

one
 

possible
 

solution. ②

3. 4　 Method
 

of
 

Images(镜像法)

There
 

is
 

a
 

class
 

of
 

electrostatic
 

problems
 

that
 

can
 

be
 

simplified
 

by
 

replacing
 

bounding
 

surfaces
 

by
 

appropriate
 

image
 

charges. This
 

method
 

is
 

called
 

the
 

method
 

of
 

images(镜像法) . ③

3. 4. 1　 Image
 

with
 

Respect
 

to
 

Planes(平面镜像)
To

 

illustrate
 

the
 

method
 

of
 

images,we
 

consider
 

the
 

problem
 

of
 

finding
 

electrostatic
 

field
 

produced
 

by
 

a
 

point
 

charge
 

in
 

front
 

of
 

an
 

infinitely
 

large
 

grounded
 

conducting
 

plane. As
 

shown
 

in
 

Figure
 

3-3(a),a
 

positive
 

point
 

charge
 

Q
 

is
 

located
 

at
 

a
 

distance
 

d
 

above
 

conducting
 

plane.
Here,the

 

objective
 

is
 

to
 

solve
 

for
 

the
 

potential
 

everywhere
 

above
 

the
 

conducting
 

plane(z>0) . It
 

can
 

be
 

formulated
 

as
 

the
 

boundary-value
 

problem
 

of
 

solving
 

Poissons
 

equation:
 

2φ = ∂2φ
∂x2

+ ∂2φ
∂y2

+ ∂2φ
∂z2

=- Qδ(r - d)
ε0

　 (z > 0) (3. 46)

①
②

③

电位分布加上任意一个常数,其空间变化率不会发生变化,由电位分布确定的电场强度也不会变化。
唯一性定理的重要意义在于:

 

①给出了静态场边值问题具有唯一解的条件;
 

②为静态场边值问题的各种求解

方法提供了理论依据;
 

③为求解结果的正确性提供了判据。 3. 4 节和 3. 5 节介绍基于唯一性定理的两种特殊且很重要

的静电场边值问题求解方法。
镜像法的基本思想是引入位于边界外虚设的较简单的镜像电荷分布来等效替代该边界上未知的较为复杂的电

荷分布,从而将原本带有复杂电荷分布的边界值问题转换成无限大单一均匀媒质空间已知电荷分布求电场的问题,简化

分析计算过程。 镜像法的理论依据是唯一性定理。
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Figure
 

3-3　 Point
 

charge
 

in
 

front
 

of
 

a
 

grounded
 

plane
 

conductor

subject
 

to
 

the
 

boundary
 

conditions
φ(x,y,0) = 0 (3. 47)

and
φ(x,y,z) → 0,　 as　 x → ±∞ ,y → ±∞ 　 or　 z →+∞ (3. 48)

In(3. 46),the
 

volume
 

charge
 

density
 

of
 

the
 

point
 

charge
 

Q
 

is
 

represented
 

by
 

Qδ( r-d),where
  

d=ezd
 

is
 

the
 

position
 

vector
 

of
 

the
 

location
 

of
 

the
 

point
 

charge.
Obviously,φ

 

in
 

this
 

problem
 

is
 

a
 

field
 

depending
 

on
 

all
 

the
 

three
 

coordinates
 

x,y
 

and
 

z.
Therefore,we

 

cannot
 

construct
 

its
 

solution
 

by
 

direct
 

integration
 

of
 

the
 

equation(3. 46) .
From

 

the
 

physical
 

point
 

of
 

view,the
 

positive
 

charge
 

Q
 

at
 

z=d
 

induces
 

negative
 

charges
 

on
 

the
 

surface
 

of
 

the
 

conducting
 

plane,resulting
 

in
 

a
 

surface
 

charge
 

density
 

ρs . Hence
 

the
 

potential
 

to
 

solve
 

can
 

be
 

written
 

as

φ(x,y,z) = Q

4πε0 x2 + y2 +(z - d) 2
+ 1
4πε0

∫
S

ρs(x′,y′)

(x - x′) 2 +(y - y′) 2 + z2
dx′dy′

where
 

S
 

is
 

the
 

surface
 

of
 

the
 

plane
 

conductor. Unfortunately, the
 

induced
 

surface
 

charge
 

distribution
 

ρs
 is

 

unknown. Moreover,it
 

is
 

quite
 

difficult
 

to
 

evaluate
 

the
 

surface
 

integral
 

in
 

the
 

above
 

expression
 

even
 

if
 

ρs
 is

 

found. However,with
 

the
 

method
 

of
 

images,this
 

problem
 

can
 

be
 

easily
 

solved,which
 

is
 

demonstrated
 

as
 

follows.
As

 

has
 

been
 

pointed
 

out,it
 

is
 

the
 

unknown
 

ρs
 on

 

the
 

surface
 

of
 

the
 

conducting
 

plane
 

that
 

causes
 

the
 

trouble
 

in
 

solving
 

this
 

problem. In
 

the
 

method
 

of
 

images,we
 

remove
 

the
 

conducting
 

plane
 

together
 

with
 

the
 

induced
 

charges
 

and
 

replace
 

them
 

with
 

an
 

image
 

point
 

charge
 

-Q
 

at
 

z=
-d

 

as
 

shown
 

in
 

Figure
 

3-3(b) . Then,the
 

potential
 

at
 

a
 

point
 

P(x,y,z)
 

in
 

the
 

z>0
 

region
 

can
 

be
 

easily
 

found
 

as

φ(x,y,z) = Q
4πε

1
R+

- 1
R-

( ) (3. 49)

where
 

R+
 and

 

R-
 are

 

respectively
 

the
 

distances
 

from
 

+Q
 

and
 

-Q
 

to
 

the
 

field
 

point(x,y,z),i. e. ,

R+= x2 + y2 +(z - d) 2 　 and　 R -= x2 + y2 +(z + d) 2

Now
 

we
 

need
 

to
 

verify
 

that
 

the
 

potential
 

expression
 

of(3. 49)
 

is
 

exactly
 

the
 

solution
 

of
 

the
 

electrostatic
 

problem
 

of
 

Figure
 

3-3(a)
 

in
 

the
 

z>0
 

region.
In

 

the
 

z>0
 

region,the
 

medium
 

and
 

source
 

distribution
 

in
 

the
 

problem
 

of
 

Figure
 

3-3(a)
 

are
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the
 

same
 

as
 

those
 

in
 

Figure
 

3-3(b) . Therefore,it
 

is
 

apparent
 

that(3. 49)
 

satisfies
 

the
 

governing
 

equation(3. 46) . It
 

is
 

also
 

obvious
 

that(3. 49)
 

satisfies
 

the
 

boundary
 

conditions(3. 47)
 

and
(3. 48) . Therefore,(3. 49)

 

gives
 

a
 

potential
 

field
 

that
 

satisfies
 

the
 

same
 

equation
 

and
 

the
 

same
 

boundary
 

conditions
 

in
 

the
 

z>0
 

region
 

as
 

specified
 

in
 

the
 

problem
 

of
 

Figure
 

3-3(a) . According
 

to
 

the
 

uniqueness
 

theorem,(3. 49)
 

must
 

be
 

the
 

solution
 

of
 

the
 

problem
 

of
 

Figure
 

3-3(a)
 

in
 

the
 

z>0
 

region. ①

With
 

the
 

solution
 

of
 

potential
 

φ,electric
 

field
 

intensity
  

E
 

in
 

the
 

z>0
 

region
 

can
 

be
 

found
 

by
 

taking
 

the
 

negative
 

gradient
 

of
 

φ. A
 

few
 

of
 

the
 

field
 

lines
 

are
 

shown
 

in
 

Figure
 

3-3( b) . The
 

induced
 

surface
 

charge
 

distribution
 

ρs
 can

 

be
 

found
 

by
 

taking
 

the
 

negative
 

directional
 

derivative
 

of
 

φ
 

along
 

the
 

normal
 

direction
 

on
 

the
 

conductor
 

surface. Notice
 

that, in
 

the
 

z<0
 

region, the
 

potential
 

field
 

solution
 

of
 

Figure
 

3-3(b)
 

is
 

not
 

the
 

same
 

as
 

that
 

of
 

Figure
 

3-3(a) . Apparently,
the

 

field
 

is
 

zero
 

in
 

the
 

z<0
 

region
 

in
 

Figure
 

3-3(a) . But
 

in
 

Figure
 

3-3(b),the
 

field
 

is
 

nonzero
 

as
 

indicated
 

by
 

the
 

dashed
 

electric
 

field
 

lines.
Now

 

we
 

see
 

that
 

the
 

method
 

of
 

images
 

significantly
 

simplifies
 

the
 

solution
 

of
 

this
 

electrostatic
 

problem
 

of
 

Figure
 

3-3(a) . This
 

is
 

achieved
 

by
 

introducing
 

a
 

simple
 

image
 

charge
(镜像电荷)

 

that
 

is
 

equivalent
 

to
 

the
 

unknown
 

charge
 

distribution
 

on
 

the
 

boundary. It
 

is
 

important
 

to
 

realize
 

that
 

introduction
 

of
 

the
 

image
 

charge
 

should
 

not
 

change
 

anything
 

within
 

the
 

region
 

in
 

which
 

the
 

field
 

is
 

to
 

be
 

determined( z>0
 

in
 

this
 

problem) . In
 

other
 

words,the
 

image
 

charges
 

must
 

be
 

located
 

outside
 

the
 

region
 

of
 

interest(z<0
 

in
 

this
 

problem) . Outside
 

the
 

region
 

of
 

interest,(3. 49)
 

is
 

still
 

the
 

solution
 

of
 

the
 

problem
 

in
 

Figure
 

3-3(b),but
 

not
 

the
 

solution
 

of
 

the
 

problem
 

in
 

Figure
 

3-3(a)
 

anymore. As
 

a
 

matter
 

of
 

fact,both
 

φ
 

and
  

E
 

are
 

zero
 

in
 

the
 

z<0
 

region
 

in
 

Figure
 

3-3(a) .
A

 

similar
 

problem
 

is
 

the
 

electric
 

field
 

due
 

to
 

a
 

line
 

charge
 

ρl
 above

 

an
 

infinite
 

conducting
 

plane,which
 

can
 

be
 

found
 

from
 

ρl
 and

 

its
 

image
 

-ρl(with
 

the
 

conducting
 

plane
 

removed) .
Example

 

3-5　 As
 

is
 

shown
 

in
 

Figure
 

3-4(a),a
 

positive
 

point
 

charge
 

Q
 

is
 

located
 

in
 

the
 

first
 

quadrant ( x > 0, y > 0)
 

that
 

is
 

bounded
 

by
 

two
 

orthogonal
 

conducting
 

planes
 

that
 

are
 

grounded. The
 

point
 

charge
 

is
 

d1
 and

 

d2
 from

 

the
 

two
 

planes. Determine
 

the
 

potential
 

distribution
 

within
 

the
 

first
 

quadrant.
Solution:

  

To
 

solve
 

this
 

problem
 

by
 

using
 

the
 

method
 

of
 

images,we
 

need
 

to
 

find
 

the
 

image
 

charges
 

that
 

can
 

replace
 

the
 

effect
 

of
 

the
 

two
 

conducting
 

half-planes. The
 

image
 

charges
 

should
 

be
 

outside
 

the
 

first
 

quadrant. After
 

the
 

conducting
 

half-planes
 

are
 

replaced
 

by
 

the
 

image
 

charges,
the

 

potential
 

at
 

the
 

locations
 

of
 

the
 

half-planes
 

should
 

remain
 

to
 

be
 

zero. To
 

make
 

the
 

potential
 

of
 

the
 

horizontal
 

half-plane
 

zero,we
 

can
 

first
 

add
 

an
 

image
 

charge
 

-Q
 

in
 

the
 

fourth
 

quadrant.
Then

 

to
 

make
 

the
 

potential
 

of
 

the
 

vertical
 

half-plane
 

zero,we
 

add
 

an
 

image
 

charge
 

-Q
 

in
 

the
 

① 图 3-3(a)所示的问题中,点电荷 Q 在无限大接地导体平面感应出的电荷分布可以等效替换为距离导体平面相

同距离的另一侧的镜像电荷-Q,即图 3-3( b) 所示的问题。 能够做上述等效替换是基于唯一性定理。 具体而言,
图 3-3(a)与图 3-3(b)所示的两个问题中的电位在 y>0 的区域内满足同样的泊松方程和同样的边界条件,因此在该区域

中电位的解必然是相同的。 通过这个例子也可以看到应用镜像原理的两个原则:
 

镜像电荷必须位于所求解的场区域以

外;
 

镜像电荷的个数、位置及电荷量的大小由满足所求解的场区域的边界条件确定。
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Figure
 

3-4　 Point
 

charge
 

in
 

front
 

of
 

two
 

perpendicular
 

conducting
 

half
 

planes

second
 

quadrant. However,the
 

image
 

charge
 

in
 

the
 

fourth
 

quadrant
 

produces
 

a
 

non-zero
 

potential
 

on
 

the
 

vertical
 

half-plane,and
 

the
 

one
 

in
 

the
 

second
 

quadrant
 

produces
 

a
 

non-zero
 

potential
 

on
 

the
 

horizontal
 

half-plane. To
 

balance
 

out
 

the
 

non-zero
 

potentials,we
 

can
 

introduce
 

a
 

third
 

image
 

charge
 

+Q
 

in
 

the
 

third
 

quadrant. With
 

the
 

three
 

image
 

charges
 

as
 

shown
 

in
 

Figure
 

3-4(b),it
 

can
 

be
 

easily
 

verified
 

that
 

the
 

zero-potential
 

boundary
 

conditions
 

on
 

both
 

half-planes
 

are
 

satisfied.
According

 

to
 

the
 

uniqueness
 

theorem, the
 

effect
 

of
 

the
 

two
 

conducting
 

half-planes
 

can
 

be
 

replaced
 

by
 

the
 

image
 

charges. The
 

potential
 

and
 

electric
 

field
 

distribution
 

in
 

the
 

first
 

quadrant
 

in
 

Figure
 

3-4(b)
 

is
 

the
 

same
 

as
 

that
 

in
 

Figure
 

3-4(a) . Therefore,we
 

have
 

φ(x,y,z) = Q

4πε0 (x - d1) 2 +(y - d2) 2 + z2
- Q

4πε0 (x + d1) 2 +(y - d2) 2 + z2

- Q

4πε0 (x - d1) 2 +(y + d2) 2 + z2
+ Q

4πε0 (x + d1) 2 +(y + d2) 2 + z2

　 　 The
 

electric
 

field
 

intensity
 

in
 

the
 

first
 

quadrant
 

and
 

the
 

surface
 

charge
 

density
 

induced
 

on
 

the
 

two
 

half-planes
 

can
 

also
 

be
 

found
 

from
 

the
 

system
 

of
 

four
 

charges.
As

 

an
 

extension
 

of
 

Example
 

3-5,if
 

the
 

angle
 

α
 

made
 

by
 

the
 

two
 

intersecting
 

half
 

planes
 

are
 

other
 

than
 

90°,the
 

method
 

of
 

image
 

may
 

still
 

be
 

used
 

to
 

find
 

the
 

solution
 

of
 

the
 

fields
 

due
 

to
 

a
 

point
 

charge. The
 

number
 

of
 

image
 

charges
 

needed
 

depends
 

on
 

the
 

angle. Specifically, if
 

the
 

angle
 

α=180° / n
 

with
 

n
 

to
 

be
 

a
 

positive
 

integer,(2n-1)
 

image
 

charges
 

is
 

needed
 

to
 

replace
 

the
 

conducting
 

half
 

planes. Otherwise,infinite
 

number
 

of
 

image
 

charges
 

are
 

required,in
 

which
 

case,
an

 

approximate
 

solution
 

can
 

be
 

found
 

by
 

ignoring
 

those
 

too
 

far
 

away
 

from
 

the
 

region
 

of
 

interests.

3. 4. 2　 Image
 

with
 

Respect
 

to
 

Spheres(球面镜像)
Here

 

we
 

consider
 

the
 

electrostatic
 

problem
 

of
 

a
 

point
 

charge
 

in
 

front
 

of
 

a
 

spherical
 

conductor. As
 

is
 

shown
 

in
 

Figure
 

3-5(a),a
 

positive
 

point
 

charge
 

Q
 

is
 

located
 

at
 

a
 

distance
 

d
 

from
 

the
 

center
 

of
 

a
 

grounded
 

conducting
 

sphere
 

of
 

radius
 

a(a<d) . The
 

problem
 

is
 

to
 

find
 

the
 

φ
 

and
  

E
 

field
 

distributions
 

outside
 

the
 

sphere. Apparently,the
 

difficulty
 

of
 

this
 

problem
 

lies
 

in
 

the
 

unknown
 

induced
 

charge
 

distribution
 

on
 

the
 

surface
 

of
 

the
 

conducting
 

sphere. This
 

difficulty
 

can
 

be
 

circumvented
 

if
 

an
 

image
 

point
 

charge
 

Qi
 can

 

be
 

found
 

to
 

replace
 

the
 

effect
 

of
 

the
 

sphere. If
 

this
 

image
 

charge
 

Qi
 exists,we

 

must
 

have
 

the
 

following:
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(1)
 

Qi
 must

 

be
 

a
 

negative
 

charge
 

inside
 

the
 

sphere
 

and
 

on
 

the
 

line
 

OQ
 

due
 

to
 

geometrical
 

symmetry.
(2)

 

After
 

the
 

conducting
 

sphere
 

is
 

replaced
 

by
 

the
 

image
 

charge
 

Qi, the
 

boundary
 

condition
 

on
 

the
 

spherical
 

surface
 

must
 

remain
 

unchanged. In
 

other
 

words,the
 

potential
 

at
 

r = a
 

should
 

be
 

zero.
Now

 

lets
 

prove
 

such
 

image
 

charge
 

Qi
 does

 

exist
 

as
 

is
 

illustrated
 

in
 

Figure
 

3-5( b) . Qi
 

cannot
 

be
 

equal
 

to
 

-Q,because
 

-Q
 

and
 

the
 

original
 

Q
 

do
 

not
 

make
 

the
 

spherical
 

surface
 

r=a
 

the
 

zero-potential
 

surface
 

as
 

required. Therefore,Qi
 is

 

an
 

unknown. Another
 

unknown
 

is
 

the
 

distance
 

between
 

Qi
 and

 

the
 

origin
 

O,denoted
 

by
 

di . To
 

find
 

the
 

solution
 

of
 

di
 and

 

Qi,we
 

first
 

write
 

down
 

the
 

potential
 

caused
 

by
 

Q
 

and
 

Qi
 at

 

a
 

point
 

M
 

as

φM = 1
4πε0

Q
R

+
Qi

R′( )

Figure
 

3-5　 Point
 

charge
 

in
 

front
 

of
 

a
 

grounded
 

sphere

where
 

R
 

and
 

R′
 

are
 

respectively
 

the
 

distance
 

from
 

Q
 

and
 

Qi
 to

 

the
 

point
 

M. The
 

boundary
 

condition
 

is
 

φM =0
 

for
 

any
 

point
 

M
 

on
 

the
 

r=a
 

surface,which
 

requires
R′
R

=-
Qi

Q
= constant (3. 50)

while
 

the
 

point
 

M
 

travels
 

on
 

the
 

spherical
 

surface. This
 

condition
 

can
 

be
 

satisfied
 

by
 

simply
 

selecting
 

di
 so

 

that
 

triangles
 

OMQi
 and

 

OQM
 

are
 

similar. Notice
 

that
 

the
 

two
 

triangles
 

have
 

one
 

common
 

angle
 

MOQi = QOM,and
 

the
 

edges
 

OM=a,OQ=d
 

are
 

constant
 

lengths. If
 

we
 

select
  

OQi =di
 so

 

that

OQi

OM
=OM

OP
then

 

the
 

two
 

triangles
 

become
 

similar,and
 

we
 

have
 

di

a
= a

d
= R′

R
(3. 51)

from
 

which
 

we
 

immediately
 

find
 

that

di =
a2

d
(3. 52)

From(3. 51),the
 

constant
 

ratio
 

in(3. 50)
 

must
 

be
 

a / d,and
 

hence

Qi =-
a
d
Q (3. 53)
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　 　 Now
 

we
 

see
 

that,with
 

di
 and

 

Qi
 given

 

by ( 3. 52)
 

and ( 3. 53), the
 

potential
 

field
 

in
 

Figure
 

3-5(b)
 

satisfies
 

the
 

same
 

boundary
 

condition
 

as
 

in
 

Figure
 

3-5(a) . Therefore,Qi
 must

 

be
 

the
 

image
 

charge
 

of
 

Q
 

with
 

respect
 

to
 

the
 

spherical
 

surface
 

r = a. The
 

φ
 

and
  

E
 

of
 

all
 

points
 

external
 

to
 

the
 

grounded
 

sphere
 

can
 

now
 

be
 

calculated
 

as
 

if
 

they
 

are
 

produced
 

by
 

the
 

point
 

charges
 

Q
 

and
 

Qi . Specifically,as
 

shown
 

in
 

Figure
 

3-6, the
 

electric
 

potential
 

φ
 

at
 

an
 

arbitrary
 

point
 

P(r,θ)
 

is

φ(r,θ) = 1
4πε

Q
R

- a
d

Q
R′( ) (3. 54)

Figure
 

3-6　 Image
 

method
 

solution
 

of
 

the
 

problem
 

in
 

Figure
 

3-5

By
 

the
 

law
 

of
 

cosines,

R = r2 + d2 - 2rdcosθ (3. 55)
and

R′ = r2 + (a2 / d) 2 - 2r(a2 / d)cosθ (3. 56)
Substitute(3. 55)

 

and(3. 56)
 

into(3. 54),then
 

the
 

r-component
 

of
 

the
  

E
 

field
 

can
 

be
 

calculated
 

as

Er(r,θ) =- ∂φ(r,θ)
∂r

= Q
4πε0

r - dcosθ
(r2 + d2 - 2rdcosθ) 3 / 2

- a r - (a2 / d)cosθ[ ]

d r2 +(a2 / d) 2 - 2r(a2 / d)cosθ[ ] 3 / 2{ }
(3. 57)

With(3. 57),we
 

can
 

find
 

the
 

induced
 

surface
 

charge
 

on
 

the
 

sphere
 

by
 

letting
 

r = a,and
 

after
 

some
 

mathematical
 

manipulation,we
 

have

ρs = ε0Er(a,θ) =- Q(d2 - a2)
4πa(a2 + d2 - 2adcosθ) 3 / 2 (3. 58)

(3. 58)
 

tells
 

us
 

that
 

the
 

induced
 

surface
 

charge
 

is
 

negative
 

and
 

that
 

its
 

magnitude
 

is
 

maximum
 

at
 

θ=0
 

and
 

minimum
 

at
 

θ=π,as
 

expected.
The

 

total
 

charge
 

induced
 

on
 

the
 

sphere
 

is
 

an
 

integration
 

of
 

ρs
 given

 

by(3. 58)
 

over
 

the
 

surface
 

of
 

the
 

sphere,i. e. ,

Qinduced = ∮ρsds = ∫2π

0
∫π

0
ρsa2sinθdθdϕ =- a

d
Q =Qi (3. 59)

Note
 

that
 

the
 

total
 

induced
 

charge
 

is
 

exactly
 

equal
 

to
 

the
 

image
 

charge
 

Qi .
Example

 

3-6　 A
 

point
 

charge
 

Q
 

is
 

located
 

outside
 

an
 

isolated
 

conducting
 

sphere
 

with
 

a
 

distance
 

d
 

from
 

the
 

center
 

of
 

the
 

sphere. As
 

is
 

illustrated
 

in
 

Figure
 

3-7( a), the
 

conducting
 



98　　　

sphere
 

has
 

a
 

radius
 

a. Determine
 

the
 

image
 

of
 

the
 

charge
 

Q
 

with
 

respect
 

to
 

the
 

surface
 

of
 

the
 

conducting
 

sphere.

Figure
 

3-7　 Point
 

charge
 

in
 

front
 

of
 

an
 

isolated
 

conducting
 

sphere

Solution:
  

Different
 

from
 

the
 

problem
 

of
 

Figure
 

3-5,the
 

sphere
 

is
 

isolated,which
 

means
 

the
 

potential
 

on
 

the
 

sphere
 

surface
 

is
 

not
 

zero. Nevertheless,the
 

sphere
 

surface
 

is
 

still
 

equipotential,
which

 

can
 

be
 

realized
 

by
 

the
 

image
 

charge
 

Qi
 and

 

its
 

location
 

given
 

by(3. 53)
 

and(3. 52) .
However,Qi

 and
 

Q
 

together
 

make
 

the
 

sphere
 

surface
 

a
 

zero-potential
 

surface,whereas
 

in
 

this
 

example,the
 

potential
 

on
 

the
 

sphere
 

surface
 

is
 

a
 

non-zero
 

constant. This
 

constant
 

potential
 

is
 

unknown,but
 

we
 

know
 

the
 

isolated
 

sphere
 

is
 

neutral,which
 

means
 

the
 

total
 

image
 

charges
 

must
 

also
 

be
 

zero(why?) . Therefore,as
 

is
 

shown
 

in
 

Figure
 

3-7(b),we
 

can
 

introduce
 

an
 

additional
 

image
 

charge

Q′i=- Qi =
a
d
Q (3. 60)

at
 

the
 

sphere
 

center
 

to
 

make
 

the
 

net
 

image
 

charge
 

zero. Q′i  must
 

be
 

located
 

at
 

the
 

sphere
 

center
 

so
 

that
 

the
 

potential
 

on
 

the
 

r = a
 

surface
 

remains
 

constant. Then, the
 

original
 

problem
 

can
 

be
 

solved
 

as
 

a
 

problem
 

with
 

three
 

point
 

charges:
  

Q′i  at
 

r = 0,Qi
 at

 

r = a2 / d,and
 

the
 

original
 

Q
 

at
 

r=d. ①

3. 4. 3　 Image
 

in
 

Cylinders(圆柱面镜像)
Consider

 

a
 

line
 

charge
 

ρl
 outside

 

of
 

a
 

parallel,conducting,circular
 

cylinder
 

with
 

radius
 

a
 

as
 

shown
 

in
 

Figure
 

3-8(a) . The
 

distance
 

between
 

the
 

line
 

charge
 

and
 

the
 

axis
 

of
 

the
 

cylinder
 

is
 

d.
The

 

problem
 

is
 

to
 

find
 

the
 

field
 

distributions
 

outside
 

the
 

cylinder. Again, the
 

difficulty
 

of
 

this
 

problem
 

lies
 

in
 

the
 

unknown
 

induced
 

charge
 

distribution
 

on
 

the
 

surface
 

of
 

the
 

conducting
 

① 例 3-6 推断孤立导体球外点电荷 Q 关于球面的镜像电荷有两个 Qi 和 Q′i 。 其依据是 Q、Qi 和 Q′i三个电荷共同产

生的电位在球面上是常数,且球面包围的总电荷必须为零。 然而,由于原问题中导体球表面的电位或者电位的法向导数

均未知,上述依据实际上不足以说明这两个镜像电荷代替导体形成的电位分布与原问题中电位分布满足同样的边界条

件。 要严格地证明例题中镜像法得到的解就是真实的解,需要回到唯一性定理的证明:
 

假设 φd 为镜像法得到的电位与

真实电位之差,则 φd 在导体球外满足式(3. 44)。 由于镜像法得到的解与真实解在导体表面都为常数,φd 在导体表面必

然也是常数,因此式(3. 44)的左边可以写 φ d∮
S
(φ d / n)ds = - φ d∮

S
Endds ,其中 End 为镜像法得到的电场与真实电场在

导体球表面的法向分量之差。 根据高斯定律,镜像法得到的电场与真实电场的法向分量在导体球表面的通量都等于零

( 球面包含的总电荷量均为零)。 因此, ∮
S
End ds = 0,故式(3. 44)左边等于零, 式(3. 44) 的右边∫

V
| φ d |

2dv = 0,从而证

明了 φ d 在导体球外的整个区域均为零。
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cylinder,which
 

can
 

be
 

solved
 

by
 

using
 

the
 

method
 

of
 

image. We
 

first
 

recognize
 

the
 

following:
 

(1)
 

The
 

image
 

must
 

be
 

a
 

parallel
 

line
 

charge(denoted
 

by
 

ρi )
 

inside
 

the
 

cylinder,and
 

it
 

must
 

lie
 

somewhere
 

along
 

OP,due
 

to
 

the
 

symmetry
 

of
 

the
 

geometry.
(2)

 

After
 

the
 

conducting
 

cylinder
 

is
 

replaced
 

by
 

the
 

image
 

charge,the
 

boundary
 

condition
 

on
 

the
 

cylindrical
 

surface
 

remains
 

unchanged. Particularly, the
 

potential
 

at
 

ρ = a
 

should
 

be
 

constant.
Let

 

the
 

distance
 

between
 

the
 

image
 

charge
 

and
 

the
 

axis
 

be
 

di
 as

 

shown
 

in
 

Figure
 

3-8(b) .
Then

 

we
 

need
 

to
 

determine
 

the
 

two
 

unknowns,
 

ρi
 and

 

di .
Recall

 

that, in
 

Example
 

2-11, the
 

equipotential
 

surfaces
 

of
 

the
 

field
 

produced
 

by
 

two
 

parallel
 

line
 

charges, ρl
 and

 

- ρl, are
 

circular
 

cylindrical
 

surfaces. If
 

one
 

of
 

the
 

equipotential
 

surfaces
 

coincides
 

with
 

the
 

surface
 

of
 

the
 

conducting
 

cylinder
 

in
 

Figure
 

3-8(a),then
 

according
 

to
 

the
 

uniqueness
 

theorem, the
 

conducting
 

cylinder
 

can
 

be
 

replaced
 

by
 

the
 

line
 

charge
 

-ρl
 in

 

Example
 

2-11. Therefore,we
 

infer
 

that
 

the
 

image
 

of
 

the
 

line
 

charge
 

ρl
 in

 

Figure
 

3-8(a)
 

to
 

be①

ρi =- ρl (3. 61)
To

 

find
 

di,we
 

first
 

write
 

down
 

the
 

expression
 

of
 

the
 

potential
 

due
 

to
 

the
 

line
 

charges
 

ρi
 and

 

ρl .
According

 

to
 

Example
 

2-11,at
 

any
 

point
 

M
 

on
 

the
 

cylindrical
 

surface
 

ρ=a,we
 

have

φM
 =

ρl

2πε0
ln ρ′

ρ
(3. 62)

where
 

ρ
 

and
 

ρ′
 

are
 

the
 

distances
 

from
 

the
 

point
 

M
 

to
 

the
 

line
 

charges
 

ρl
 and

 

ρi
 respectively

 

as
 

is
 

shown
 

in
 

Figure
 

3-8(b) . Obviously,the
 

boundary
 

condition
 

requires
 

that
 

ρ′ / ρ
 

maintain
 

constant
 

when
 

the
 

point
 

M
 

travels
 

on
 

the
 

cylindrical
 

surface. This
 

condition
 

can
 

be
 

satisfied
 

by
 

simply
 

selecting
 

a
 

di
 value

 

so
 

that
 

triangles
 

OMP i
 and

 

OPM
 

are
 

similar. Note
 

that
 

these
 

two
 

triangles
 

have
 

one
 

common
 

angle
 

MOP i = POM. Hence
 

the
 

two
 

triangles
 

can
 

be
 

made
 

similar
 

by
 

letting
 

OP i

OM
= OM

OP

Figure
 

3-8　 Line
 

charge
 

in
 

front
 

of
 

a
 

parallel
 

conducting
 

circular
 

cylinder

① 这里假设无限长导体柱单位长度所带电荷为
 

-ρl。 需要指出,由于导体柱无限长,导体外线电荷 ρl 也分布到无

穷远处,该问题并没有设定导体柱是否接地,也没有给定导体柱的带电量。 如果认为该导体柱接地,那么无穷远处就是

参考零电位点,由例题 2-11 可以推断导体柱单位长度所带电荷必须为
 

-ρl。 如果导体柱单位长度所带电荷不是
 

-ρl,就
不能选取无穷远处为参考零电位点,而该问题的镜像电荷应该再加上一个位于导体柱轴线上的线电荷,其密度为导体柱

单位长度实际所带电荷与
 

-ρl 之差。 而根据例题 2-10,该位于导体柱轴线上的镜像电荷的电位在无穷远处为无穷大。
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Since
 

OM=a,OP=d
 

and
 

OP i =di,the
 

above
 

relation
 

is
 

satisfied
 

by
 

letting

di =
a2

d
(3. 63)

And
 

as
 

a
 

result,
ρ′
ρ

=
di

a
= a

d
= constant (3. 64)

for
 

any
 

point
 

M
 

on
 

the
 

cylindrical
 

surface. By
 

substituting(3. 64)
 

into(3. 62), the
 

constant
 

potential
 

on
 

the
 

cylindrical
 

surface
 

is
 

φM
 =

ρl

2πε0
ln a

d
(3. 65)

Now,it
 

is
 

verified
 

that
 

the
 

line
 

charge
 

ρi = -ρl
 is

 

the
 

image
 

of
 

the
 

original
 

line
 

charge
 

ρl
 with

 

respect
 

to
 

the
 

cylindrical
 

conducting
 

surface
 

ρ=a,and
 

the
 

fields
 

at
 

any
 

point
 

outside
 

the
 

surface
 

can
 

be
 

determined
 

equivalently
 

by
 

ρl
 and

 

ρi .
The

 

above
 

discussion
 

demonstrates
 

that
 

a
 

cylindrical
 

conductor
 

with
 

surface
 

charges
 

induced
 

by
 

an
 

external
 

line
 

charge
 

can
 

be
 

replaced
 

by
 

an
 

internal
 

line
 

charge. This
 

conclusion
 

is
 

useful
 

in
 

determining
 

the
 

capacitance
 

of
 

two
 

wire
 

transmission
 

lines
 

as
 

demonstrated
 

in
 

the
 

following
 

example.
Example

 

3-7　 Two-wire
 

transmission
 

line:
  

as
 

shown
 

in
 

Figure
 

3-9(a),two
 

infinitely
 

long
 

conducting
 

wires
 

of
 

radius
 

a
 

are
 

parallel
 

to
 

each
 

other
 

with
 

a
 

distance
 

D
 

between
 

the
 

axes.
Determine

 

the
 

capacitance
 

per
 

unit
 

length
 

between
 

the
 

two
 

wires.
Solution:

  

As
 

shown
 

in
 

Figure
 

3-9(b),the
 

two
 

conducting
 

wires
 

can
 

be
 

replaced
 

by
 

a
 

pair
 

of
 

line
 

charges
 

+ρl
 and

 

-ρl,as
 

long
 

as
 

the
 

potential
 

generated
 

by
 

the
 

two
 

line
 

charges
 

is
 

constant
 

on
 

each
 

of
 

the
 

cylindrical
 

surfaces. Referring
 

to
 

the
 

method
 

of
 

image
 

used
 

in
 

the
 

problem
 

of
 

Figure
 

3-8,the
 

separation
 

between
 

the
 

image
 

charge
 

within
 

one
 

cylinder
 

and
 

the
 

axis
 

of
 

the
 

other
 

cylinder
 

should
 

be
 

d=D-di . Using(3. 63),we
 

have

d =D - di =D - a2

d
　 　 from

 

which
 

we
 

obtain

d = 1
2

(D + D2 - 4a2 ) (3. 66)

　 　 The
 

potential
 

difference
 

between
 

the
 

two
 

wires
 

is
 

that
 

between
 

any
 

two
 

points
 

on
 

the
 

respective
 

wires. Using(3. 65), the
 

potential
 

on
 

the
 

cylinder
 

surface
 

surrounding
 

positive
 

line
 

charge
 

+ρl
 is

φ+=
 

-
ρl

2πε0
ln a

d
　 　 The

 

potential
 

on
 

the
 

cylinder
 

surface
 

surrounding
 

negative
 

line
 

charge
 

-ρl
 is

φ-=
 ρl

2πε0
ln a

d
　 　 Then,the

 

capacitance
 

per
 

unit
 

length
 

can
 

be
 

calculated
 

as
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Figure
 

3-9　 Two-wire
 

transmission
 

line
 

and
 

the
 

equivalent
 

line
 

charges

C =
 ρl

φ+- φ-
=

πε0

ln(d / a)
(3. 67)

　 　 Substituting(3. 66)
 

into(3. 67)
 

we
 

have

C =
πε0

ln[(D / 2a) + (D / 2a) 2 - 1 ]
(3. 68)

　 　 Since

ln[x + x2 - 1 ] =
 

cosh-1x
　 　 for

 

x>1,(3. 68)
 

can
 

be
 

written
 

alternatively
 

as

C =
πε0

cosh-1(D / 2a)
   

(3. 69)

　 　 The
 

potential
 

distribution
 

and
 

electric
 

field
 

intensity
 

around
 

the
 

two-wire
 

line
 

can
 

be
 

determined
 

easily
 

from
 

the
 

equivalent
 

line
 

charges.
The

 

more
 

general
 

case
 

of
 

a
 

two-wire
 

transmission
 

line
 

of
 

different
 

radii
 

can
 

also
 

be
 

solved
 

by
 

using
 

the
 

method
 

of
 

image
 

in
 

a
 

similar
 

way. The
 

key
 

is
 

to
 

find
 

the
 

location
 

of
 

the
 

equivalent
 

line
 

charges
 

that
 

make
 

the
 

wire
 

surfaces
 

equipotential.

3. 5　 Method
 

of
 

Separation
 

of
 

Variables(分离变量法)

The
 

method
 

of
 

images
 

is
 

useful
 

in
 

solving
 

certain
 

types
 

of
 

electrostatic
 

problems
 

in
 

which
 

conducting
 

boundaries
 

can
 

be
 

replaced
 

by
 

equivalent
 

charges. However,when
 

the
 

geometry
 

of
 

the
 

boundaries
 

is
 

not
 

simple, and / or
 

the
 

free
 

charges
 

are
 

not
 

known, the
 

method
 

of
 

images
 

cannot
 

be
 

used. In
 

some
 

problems,a
 

system
 

of
 

conductors
 

is
 

maintained
 

at
 

specified
 

potentials
 

or
 

specified
 

normal
 

derivatives
 

of
 

the
 

potentials. If
 

the
 

boundaries
 

of
 

the
 

conductors
 

coincide
 

with
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the
 

coordinate
 

surfaces
 

of
 

an
 

orthogonal
 

coordinate
 

system,we
 

may
 

solve
 

the
 

problem
 

by
 

using
 

the
 

method
 

of
 

separation
 

of
 

variables
 

(分离变量法) .
In

 

this
 

section,the
 

method
 

of
 

separation
 

of
 

variables
 

is
 

introduced
 

as
 

a
 

method
 

of
 

solving
 

Laplaces
 

equations
 

with
 

given
 

boundary
 

conditions
 

of
 

the
 

potential
 

φ. Generally, problems
 

formulated
 

as
 

partial
 

differential
 

equations
 

with
 

prescribed
 

boundary
 

conditions
 

are
 

called
 

boundary-value
 

problems(边界值问题) . Boundary-value
 

problems
 

for
 

electrostatic
 

potential
 

functions
 

can
 

be
 

classified
 

into
 

three
 

types:
  

①
 

Dirichlet
 

problems(狄里赫利问题,第一类边

值问题), in
 

which
 

the
 

value
 

of
 

the
 

potential
 

is
 

specified
 

everywhere
 

on
 

the
 

boundaries;
  

②
 

Neumann
 

problems(纽曼问题,第二类边值问题), in
 

which
 

the
 

normal
 

derivative
 

of
 

the
 

potential
 

is
 

specified
 

everywhere
 

on
 

the
 

boundaries;
  

③
 

Mixed
 

boundary-value
 

problems(混合

边值问题),in
 

which
 

the
 

potential
 

is
 

specified
 

over
 

some
 

boundaries
 

and
 

the
 

normal
 

derivative
 

of
 

the
 

potential
 

is
 

specified
 

over
 

the
 

remaining
 

ones. Different
 

specified
 

boundary
 

conditions
 

will
 

require
 

the
 

choice
 

of
 

different
 

potential
 

functions,as
 

will
 

be
 

demonstrated
 

in
 

this
 

section. The
 

solutions
 

of
 

Laplaces
 

equation
 

are
 

often
 

called
 

harmonic
 

functions(调和函数) . ①

Laplaces
 

equation
 

for
 

scalar
 

electric
 

potential
 

φ
 

in
 

Cartesian
 

coordinates
 

is
∂2φ
∂x2

+ ∂2φ
∂y2

+ ∂2φ
∂z2

= 0 (3. 70)

To
 

apply
 

the
 

method
 

of
 

separation
 

of
 

variables,we
 

assume
 

that
 

the
 

solution
 

φ(x,y,z)
 

can
 

be
 

expressed
 

as
 

a
 

product
 

in
 

the
 

following
 

form:
 

φ(x,y,z) =X(x)Y(y)Z(z) (3. 71)
where

 

X(x),Y(y),and
 

Z(z)
 

are
 

functions
 

of
 

only
 

x,y
 

and
 

z,respectively. Substituting(3. 71)
 

in(3. 70),we
 

have

Z(z)Y(y) d2X(x)
dx2

+ X(x)Z(z) d2Y(y)
dy2

+ X(x)Y(y) d2Z(z)
dz2

= 0

Divide
 

both
 

sides
 

of
 

the
 

above
 

equation
 

by
 

the
 

product
 

X(x)Y(y)Z(z),we
 

have
1

X(x)
d2X(x)

dx2
+ 1
Y(y)

d2Y(y)
dy2

+ 1
Z(z)

d2Z(z)
dz2

= 0 (3. 72)

　 　 Notice
 

that
 

each
 

of
 

the
 

three
 

terms
 

on
 

the
 

left
 

side
 

of(3. 72)
 

is
 

a
 

function
 

of
 

only
 

one
 

coordinate
 

variable. In
 

order
 

for(3. 72)
 

to
 

be
 

satisfied
 

for
 

all
 

values
 

of
 

x,y,z,each
 

of
 

the
 

three
 

terms
 

must
 

be
 

a
 

constant. For
 

instance,if
 

we
 

differentiate(3. 72)
 

with
 

respect
 

to
 

x,we
 

have
d
dx

1
X(x)

d2X(x)
dx2

é

ë
ê
ê

ù

û
ú
ú = 0 (3. 73)

This
 

requires
 

that
1

X(x)
d2X(x)

dx2
=- k2

x (3. 74)

① 分离变量法是求解边值问题的一种经典方法,其基本思想是将偏微分方程中含有 n 个自变量的待求函数表示成

n 个只含一个变量的函数的乘积,把偏微分方程分解成 n 个常微分方程,求出各常微分方程的通解后,将它们线性叠加得

到级数形式解,并利用给定的边界条件确定待定常数。 分离变量法的理论依据是唯一性定理。
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where
 

k2
x

 is
 

a
 

constant
 

of
 

integration
 

that
 

will
 

be
 

determined
 

later
 

from
 

the
 

boundary
 

conditions
 

of
 

the
 

problem. The
 

negative
 

sign
 

on
 

the
 

right
 

side
 

of(3. 74)
 

as
 

well
 

as
 

the
 

square
 

sign
 

on
 

kx
 are

 

employed
 

only
 

for
 

mathematical
 

convenience,which
 

will
 

be
 

seen
 

later. The
 

separation
 

constant
 

kx
 can

 

be
 

a
 

real
 

or
 

an
 

imaginary
 

number. If
 

kx
 is

 

imaginary,k2
x

 is
 

a
 

negative
 

real
 

number,making
 

-k2
x

 a
 

positive
 

real
 

number. Now
 

we
 

rewrite(3. 74)
 

as
d2X(x)

dx2
+ k2

xX(x) = 0 (3. 75)

Similarly,we
 

can
 

obtain
 

equations
 

for
 

the
 

functions
 

Y(y)
 

and
 

Z(z)
 

as
d2Y(y)
dy2

+ k2
yY(y) = 0 (3. 76)

d2Z(z)
dz2

+ k2
zZ(z) = 0 (3. 77)

where
 

the
 

separation
 

constants
 

ky
 and

 

kz
 are

 

generally
 

different
 

from
 

kx,but
 

due
 

to(3. 72),
satisfy:

 

k2
x + k2

y + k2
z = 0 (3. 78)

Now
 

the
 

problem
 

is
 

reduced
 

to
 

finding
 

the
 

appropriate
 

solutions
 

X(x),Y(y)
 

and
 

Z(z)
 

from
 

the
 

second-order
 

ordinary
 

differential
 

equations ( 3. 75), ( 3. 76)
 

and ( 3. 77)
 

respectively. The
 

possible
 

solutions
 

of(3. 75)
 

are
 

well
 

known
 

and
 

listed
 

in
 

Table
 

3-1.

Table
 

3-1　 Solutions
 

of
 

equation
 

X″(x)+k2
xX(x)= 0

 

①

kx X(x) Exponential
 

form
 

of
 

X(x)

0 A0x+B0

k A1sinkx+B1coskx C1ejkx+D1e
-jkx

jk A2sinhkx+B2coshkx C2ekx+D2e
-kx

The
 

first
 

possible
 

solution,X(x)= A0x+B0,as
 

listed
 

in
 

Table
 

3-1
 

is
 

the
 

result
 

of
 

kx = 0,in
 

which
 

case
 

the
 

potential
 

function
 

is
 

a
 

straight
 

line
 

with
 

a
 

slope
 

A0
 and

 

an
 

intercept
 

B0
 at

 

x = 0.
Example

 

3-1
 

is
 

an
 

example
 

of
 

this
 

solution.
When

 

kx = k
 

is
 

a
 

nonzero
 

real
 

number, the
 

solution
 

is
 

a
 

linear
 

combination
 

of
 

sinkx
 

and
 

coskx,both
 

of
 

which
 

have
 

a
 

period
 

of
 

2π / k. Generally,if
 

the
 

potential
 

to
 

be
 

solved
 

is
 

periodic
(usually

 

with
 

multiple
 

zeros)
 

along
 

x-direction,a
 

linear
 

combination
 

of
 

sinkx
 

and
 

coskx
 

should
 

be
 

chosen
 

as
 

the
 

solution. In
 

some
 

special
 

cases,if
 

the
 

boundary
 

condition
 

requires
 

the
 

potential
 

to
 

be
 

zero
 

at
 

x = 0,sinkx
 

alone
 

must
 

be
 

chosen;
  

if
 

the
 

potential
 

is
 

expected
 

to
 

be
 

symmetrical
 

with
 

respect
 

to
 

x = 0, then
 

coskx
 

alone
 

must
 

be
 

chosen. Sometimes
 

it
 

may
 

be
 

desirable
 

to
 

use
 

① 表 3-1 中列出的指数函数、三角函数以及双曲函数之间有如下转换关系:
 

e ±jkx = coskx ± sinkx,coskx = 1
2

(ejkx + e -jkx),sinkx = 1
2j

(ejkx - e -jkx)

e ±kx = coshkx ± sinhkx,coshkx = ekx + e -kx

2
,sinhkx = 1

2
(ekx - e -kx)

具体采用哪类函数作为方程的解取决于具体问题的边界条件。
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A1sink(x-x0)
 

as
 

the
 

solution
 

if
 

a
 

zero
 

is
 

found
 

to
 

be
 

at
 

x=x0,whereas
 

B1cosk(x-x0)
 

should
 

be
 

used
 

if
 

the
 

potential
 

is
 

symmetrical
 

with
 

respect
 

to
 

x=x0 .
If

 

kx = jk
 

is
 

a
 

purely
 

imaginary
 

number, the
 

solution
 

can
 

take
 

the
 

form
 

of
 

a
 

linear
 

combination
 

of
 

hyperbolic
 

functions
 

A2sinhkx+B2coshkx,or
 

equivalently,exponential
 

functions
 

C2ekx+D2e
-kx .

Hyperbolic
 

and
 

exponential
 

functions
 

are
 

also
 

plotted
 

in
 

Figure
 

3-10
 

for
 

easy
 

reference.
These

 

functions
 

are
 

non-periodic. The
 

function
 

sinhkx
 

is
 

an
 

odd
 

function
 

of
 

x
 

and
 

its
 

value
 

approaches
 

±∞
 

as
 

x
 

goes
 

to
 

±∞ . The
 

function
 

coshkx
 

is
 

an
 

even
 

function
 

of
 

x. It
 

equals
 

unity
 

at
 

x =0,and
 

approaches
 

+∞
 

as
 

x
 

goes
 

to
 

+∞
 

or
 

-∞ . The
 

function
 

ekxapproaches
 

zero
 

as
 

x
 

goes
 

to
 

-∞
 

and
 

approaches
 

+∞
 

as
 

x
 

goes
 

to
 

+∞ . The
 

function
 

e-kx
 

approaches
 

+∞
 

as
 

x
 

goes
 

to
 

-∞
 

and
 

approaches
 

zero
 

as
 

x
 

goes
 

to
 

+∞ .
The

 

solutions
 

of
 

the
 

equations(3. 76)
 

and(3. 77)
 

for
 

Y( y)
 

and
 

Z( z)
 

are
 

similar. The
 

choice
 

of
 

the
 

proper
 

form
 

of
 

the
 

solution
 

and
 

the
 

associated
 

constants
 

are
 

determined
 

by
 

specified
 

boundary
 

conditions
 

in
 

specific
 

problems,as
 

shown
 

in
 

the
 

following
 

examples.
Example

 

3-8　 As
 

illustrated
 

in
 

Figure
 

3-11,two
 

semi-infinite
 

grounded
 

conducting
 

plates
 

are
 

parallel
 

to
 

the
 

x-z
 

plane
 

and
 

separated
 

by
 

a
 

distance
 

b. A
 

third
 

conducting
 

plate
 

in
 

the
 

y-z
 

plane
 

is
 

insulated
 

from
 

the
 

two
 

grounded
 

plates
 

and
 

maintained
 

at
 

a
 

constant
 

potential
 

U0 .
Determine

 

the
 

potential
 

distribution
 

in
 

the
 

region(x>0,0<y<b)
 

enclosed
 

by
 

the
 

three
 

plates.

Figure
 

3-10　 Illustration
 

of
 

different
 

solutions
 

of
 

equation
 

X(x)+k2
x

 X(x)= 0
　 　

Figure
 

3-11　 Illustration
 

of
 

electrostatic
 

problem
 

in
 

Example
 

3-8

Solution:
  

Referring
 

to
 

the
 

coordinates
 

in
 

Figure
 

3-11,φ
 

is
 

independent
 

of
 

z,so
 

we
 

have
 

φ(x,y,z) =φ(x,y) =X(x)Y(y) (3. 79)
　 　 The

 

boundary
 

conditions
 

for
 

the
 

potential
 

are:
 

In
 

the
 

x-direction:
 

φ(0,y) =U0 (3. 80a)
φ(∞ ,y) = 0 (3. 80b)

　 　 In
 

the
 

y-direction:
 

φ(x,0) = 0 (3. 80c)
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φ(x,b) = 0 (3. 80d)
　 　 (3. 79)

 

implies
 

that
 

kz =0
 

and
 

from(3. 78),we
 

have
k2
x + k2

y = 0 (3. 81)
　 　 We

 

first
 

notice
 

that,according
 

to
 

the
 

boundary
 

condition(3. 80b),X(x)
 

should
 

approach
 

zero
 

as
 

x
 

approaches
 

+∞ . Of
 

all
 

the
 

possible
 

solutions
 

in
 

Table
 

3-1, only
 

the
 

exponential
 

function
 

e-kx
 

meets
 

this
 

requirement,hence
 

we
 

can
 

determine
 

that
 

kx =jk
 

is
 

imaginary
 

and
X(x) =D2e

-kx (3. 82)
where

 

k
 

is
 

a
 

real
 

number. This
 

choice
 

of
 

kx
 implies

 

that
 

ky = k
 

is
 

real. So
 

the
 

function
 

Y( y)
 

should
 

be
 

a
 

combination
 

of
 

sine
 

and
 

cosine
 

functions. Condition ( 3. 80c)
 

indicates
 

that
 

the
 

proper
 

choice
 

for
 

Y(y)
 

is
Y(y) =A1sinky (3. 83)

　 　 Substitute ( 3. 82)
 

and ( 3. 83)
 

into ( 3. 79), we
 

obtain
 

an
 

appropriate
 

solution
 

of
 

the
 

following
 

form:
 

φ(x,y) = (D2A1)e-kxsinky =Ce-kxsinky (3. 84)
where

 

the
 

product
 

D2A1
 has

 

been
 

combined
 

into
 

a
 

single
 

arbitrary
 

constant
 

C. Since (3. 84)
 

should
 

satisfy(3. 80d),we
 

have,
φ(x,b) =Ce-kxsinkb = 0 (3. 85)

which
 

can
 

be
 

satisfied,for
 

all
 

values
 

of
 

x,only
 

if
sinkb = 0

　 　 Therefore,

k = nπ
b

,　 n = 1,2,3,… (3. 86)

which
 

means
 

that
 

k
 

can
 

only
 

take
 

discrete
 

values. Substitute(3. 86)
 

into(3. 84),we
 

obtain

φn(x,y) =Cne
-nπx / bsin nπ

b
y (3. 87)

where
 

the
 

subscript
 

n
 

indicates
 

the
 

nth
 

possible
 

value
 

of
 

the
 

constant
  

k,and
 

hence
 

indicates
 

the
 

nth
 

possible
 

solution
 

of
 

φ. ( Question:
  

why
 

n
 

cannot
 

be
 

0
 

or
 

negative
 

integral
 

values?)
 

Apparently,for
 

any
 

n
 

value,the
 

function
 

φn(x,y)
 

in(3. 87)
 

satisfies
 

the
 

Laplaces
 

equation
 

and
 

the
 

boundary
 

conditions ( 3. 80b-d) . But
 

any
 

φn ( x, y)
 

alone
 

cannot
 

satisfy
 

the
 

remaining
 

boundary
 

condition(3. 80a)
 

at
 

x=0
 

for
 

all
 

values
 

of
 

y
 

from
 

0
 

to
 

b. Nevertheless,since
 

Laplaces
 

equation
 

is
 

a
 

linear
 

partial
 

differential
 

equation, a
 

linear
 

combination
 

of
 

φn ( x, y)
 

with
 

all
 

possible
 

n
 

values
 

is
 

also
 

a
 

solution,which
 

could
 

satisfy
 

the
 

boundary
 

condition(3. 80a) . So,the
 

desired
 

solution
 

can
 

be
 

written
 

as
 

φ(x,y) =∑
∞

n =1
φn(x,y) =∑

∞

n =1
Cne

-nπx / bsin nπ
b
y (3. 88)

　 　 It
 

is
 

easy
 

to
 

verify
 

that
 

φ( x,y)
 

in(3. 88)
 

satisfies
 

boundary
 

conditions(3. 80b-d) . So
 

now,we
 

only
 

need
 

to
 

let
 

φ(x,y)
 

in(3. 88)
 

satisfy
 

boundary
 

condition(3. 80a) . This
 

requires

φ(0,y) =∑
∞

n =1
Cnsin

nπ
b
y =U0,　 for　 0 < y < b (3. 89)
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　 　 (3. 89) is
 

essentially
 

a
 

Fourier-series
 

expansion
 

of
 

the
 

periodic
 

rectangular
 

wave
 

with
 

a
 

fundamental
 

period
 

of
 

2b
 

shown
 

in
 

Figure
 

3-12,which
 

has
 

a
 

constant
 

value
 

U0
 in

 

the
 

interval
 

0<y<b. Notice
 

that
 

the
 

sin ( nπ / b) y
 

term
 

in ( 3. 89)
 

is
 

an
 

odd
 

function, and
 

therefore, the
 

rectangular
 

wave
 

has
 

a
 

constant
 

value
 

-U0
 in

 

the
 

interval
 

-b<y<0.
 

Figure
 

3-12　 A
 

periodic
 

rectangular
 

wave
 

function

In
 

order
 

to
 

evaluate
 

the
 

coefficients
 

Cn,we
 

multiply
 

both
 

sides
 

of(3. 89)
 

by
 

sin(mπ / b)y
 

and
 

integrate
 

the
 

products
 

from
 

y=0
 

to
 

y=b:
 

∑
∞

n =1
∫b

0
Cnsin

nπ
b
ysin mπ

b
ydy = ∫b

0
U0sin

mπ
b
ydy (3. 90)

　 　 The
 

integral
 

on
 

the
 

right
 

side
 

of(3. 90)
 

is
 

easily
 

evaluated:
 

∫b

0
U0sin

mπ
b
ydy =

2bU0

mπ
if

 

m
 

is
 

odd
　
0 if

 

m
 

is
 

even

ì

î

í

ï
ï

ï
ï

(3. 91)

　 　 Each
 

integral
 

on
 

the
 

left
 

side
 

of(3. 90)
 

is

∫b

0
Cnsin

nπ
b
ysin mπ

b
ydy =

Cn

2 ∫b

0
cos (n - m)π

b
y - cos (n + m)π

b
yé

ë
êê

ù

û
úú

 

dy

=
Cn

2
 

b if
 

m =n
　
0 if

 

m ≠ n

ì

î

í

ï
ï

ï
ï

(3. 92)

　 　 Substituting(3. 91)
 

and(3. 92)
 

into(3. 90),we
 

obtain

Cm

2
b =

2bU0

mπ
if

 

m
  

is
 

odd
　
0 if

 

m
  

is
 

even

ì

î

í

ï
ï

ï
ï

　 　 which
 

gives
 

us
 

the
 

solution(with
 

the
 

index
 

m
 

replaced
 

by
 

n)

Cn =
4U0

nπ
if

 

n
  

is
 

odd
　
0 if

 

n
  

is
 

even

ì

î

í

ï
ï

ï
ï

(3. 93)

　 　 Substitute(3. 93)
 

into(3. 88),we
 

have
 

the
 

final
 

solution
 

of
 

the
 

potential
 

distribution

φ(x,y) = ∑
∞

n =1,3,5,…

4U0

nπ
e-nπx / bsin nπ

b
y　 for　 x > 0,0 < y < b (3. 94)

　 　 The
 

solution(3. 94)
 

is
 

a
 

rather
 

complicated
 

expression
 

involving
 

a
 

summation
 

of
 

infinite
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series. However,since
 

the
 

terms
 

in
 

the
 

series
 

decreases
 

as
 

1 / n
 

as
 

n
 

increases,only
 

the
 

first
 

few
 

terms
 

are
 

needed
 

to
 

obtain
 

a
 

good
 

approximation.
Example

 

3-9 　 Consider
 

a
 

region
 

enclosed
 

by
 

four
 

conducting
 

plates
 

as
 

illustrated
 

in
 

Figure
 

3-13. The
 

top,right
 

and
 

bottom
 

plates
 

are
 

grounded. The
 

left
 

plate
 

is
 

insulated
 

from
 

the
 

others
 

and
 

maintaned
 

at
 

a
 

constant
 

potential
 

U0 . All
 

plates
 

are
 

infinite
 

in
 

extent
 

in
 

the
 

z-
direction. Determine

 

the
 

potential
 

distribution
 

within
 

this
 

region.

Figure
 

3-13　 Illustration
 

of
 

electrostatic
 

problem
 

in
 

Example
 

3-9

Solution:
  

Like
 

Example
 

3-8,the
 

potential
 

φ
 

is
 

independent
 

of
 

z,so
 

we
 

have
 

φ(x,y,z) =φ(x,y) =X(x)Y(y) (3. 95)
　 　 The

 

boundary
 

conditions
 

are:
 

In
 

the
 

x-direction:
 

φ(0,y) =U0 (3. 96a)
φ(a,y) = 0 (3. 96b)

　 　 In
 

the
 

y-direction:
 

φ(x,0) = 0 (3. 96c)
φ(x,b) = 0 (3. 96d)

　 　 (3. 95)
 

implies
 

that
 

kz =0
 

and
 

from(3. 78),
k2
x + k2

y = 0 (3. 97)
which

 

is
 

the
 

same
 

as ( 3. 81)
 

in
 

Example
 

3-8. The
 

boundary
 

conditions
 

in
 

the
 

y-direction,
(3. 96c)

 

and(3. 96d),are
 

also
 

the
 

same
 

as
 

those
 

specified
 

in
 

Example
 

3-8. To
 

make
 

φ(x,0)=
0

 

and
 

φ(x,b)= 0
 

for
 

all
 

values
 

of
 

x
 

between
 

0
 

and
 

a,Y(0)
 

and
 

Y(b)
 

must
 

be
 

zero. Of
 

the
 

functions
 

listed
 

in
 

Table
 

3-1,only
 

sine
 

and
 

cosine
 

functions
 

are
 

periodic
 

with
 

multiple
 

zeros,so
 

Y(y)
 

must
 

be
 

a
 

linear
 

combination
 

of
 

sine
 

and
 

cosine
 

functions. With
 

Y(0)= Y(b)= 0,we
 

have
Y(y) =A1sinky (3. 98)

which
 

is
 

the
 

same
 

as
 

in(3. 83),and
  

k
 

can
 

take
 

discrete
 

values
 

as

k = nπ
b

,　 n = 1,2,3,… (3. 99)

　 　 This
 

means
 

ky = k
 

is
 

real,and
 

according
 

to(3. 97),kx = jk. As
 

a
 

result,in
 

the
 

x-direction,
X(x)

 

is
 

a
 

linear
 

combination
 

of
 

sinh
 

and
 

cosh
 

functions,i. e. ,
X(x) =A2sinhkx + B2coshkx (3. 100)

　 　 To
 

determine
 

A2
 and

 

B2,we
 

apply
 

the
 

boundary
 

condition(3. 96b),which
 

demands
 

that
 

X(a)= 0;
  

that
 

is,
0 =A2sinhka + B2coshka
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　 　 or

B2 =- A2
sinhka
coshka

　 　 Therefore,we
 

have

X(x) =A2 sinhkx - sinhka
coshka

coshkx( )
 

=
A2

coshka
coshkasinhkx - sinhkacoshkx( )

=A3sinhk(x - a) (3. 101)
where

 

A3 =A2 / coshka. Note
 

that(3. 101)
 

is
 

a
 

shift
 

in
 

the
 

argument
 

of
 

the
 

sinh
 

function. Now,
we

 

obtain
 

the
 

appropriate
 

product
 

solution

φn(x,y) =B0A1A3sinhk(x - a)sinky =C′nsinh
nπ
b

(x - a)sin nπ
b
y (3. 102)

where
 

C′n = B0A1A3 . We
 

have
 

now
 

used
 

all
 

of
 

the
 

boundary
 

conditions
 

except(3. 96a),which
 

may
 

be
 

satisfied
 

by
 

a
 

Fourier-series
 

expansion
 

of
 

φ(0,y)= U0
 over

 

the
 

interval
 

from
 

y=0
 

to
 

y=
b. We

 

have

∑
∞

n =1
φn(0,y) =- ∑

∞

n =1
C′nsinh

nπ
b
asin nπ

b
y =U0,　 (0 < y < b) (3. 103)

　 　 We
 

note
 

that(3. 103)
 

is
 

of
 

the
 

same
 

form
 

as(3. 89),except
 

that
 

C′n  is
 

replaced
 

by
 

-
 

C′n  

sinh(nπa / b) . The
 

values
 

for
 

the
 

coefficient
 

C′n  can
 

then
 

be
 

written
 

down
 

from(3. 93):
 

C′n=
-

4U0

nπsinh(nπa / b)
if

 

n
 

is
 

odd
　
0 if

 

n
 

is
 

even

ì

î

í

ï
ï

ï
ï

(3. 104)

　 　 The
 

potential
 

solution
 

is
 

then
 

the
 

summation
 

of
 

φn(x,y)
 

in(3. 102)
 

with
 

the
 

coefficient
 

C′n  

given
 

by(3. 104),i. e. ,

φ(x,y) =
4U0

π ∑
∞

n =1,3,5,…

1
nsinh(nπa / b)

sinh nπ
b

(a - x)sin nπ
b
y

(0 < x < a　 and　 0 < y < b) (3. 105)
　 　 The

 

electric
 

field
 

distribution
 

within
 

the
 

enclosure
 

is
 

obtained
 

by
 

the
 

relation

E(x,y) =- φ(x,y) =- ex
∂
∂x

+ ey
∂
∂y( ) φ(x,y)

Summary

Concepts
Laplacian

 

operator(拉普拉斯算子) 　 　 　 　 　 　 　 　 Poissons
 

equation(泊松方程)
Laplaces

 

equation(拉普拉斯方程)

Laws
 

&
 

Theorems
Uniqueness

 

theorem(唯一性定理)
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Methods
Method

 

of
 

images(镜像法) 　 　 　 Method
 

of
 

separation
 

of
 

variables(分离变量法)

Review
 

Questions

3. 1　 写出简单媒质中静电场电位满足的泊松方程。 对于一般的媒质,该泊松方程是什

么形式?
3. 2　 什么是静电场的唯一性定理?
3. 3　 若已知给定区域内

 2φ=0,是否可以推断该区域内的电位为常数? 若否,还需要

什么条件才能得出该结论?
3. 4　 无限长均匀线电荷对平行于该线电荷的导体圆柱面的镜像是什么?
3. 5　 点电荷对接地导体球面的镜像是什么?
3. 6　 简述应用分离变量法求解静电场问题的原理和基本步骤。 分离变量法适合于求

解哪些类型的静电场问题?
3. 7　 静电场问题的分离变量法中 3 个分离系数 kx、ky 和 kz

 能全为实数么? 能全为虚

数么?
 

为什么?

Problems

3. 1　 A
 

large
 

parallel-plate
 

capacitor
 

with
 

height
 

d
 

is
 

filled
 

with
 

two
 

layers
 

of
 

dielectric
 

slabs. The
 

dielectric
 

constant
 

of
 

the
 

layer
 

between
 

z = 0
 

and
 

z = 0. 8d
 

is
 

εr1
 and

 

the
 

dielectric
 

constant
 

of
 

the
 

layer
 

between
 

z=0. 8d
 

and
 

z=d
 

is
 

εr2 . The
 

bottom
 

plate
 

at
 

z=0
 

is
 

grounded
 

and
 

the
 

top
 

plate
 

at
 

z=d
 

has
 

a
 

constant
 

potential
 

U0 . Assuming
 

negligible
 

fringing
 

effect,determine
 

(1)
 

the
 

potential
 

φ
 

and
 

electric
 

field
  

E
 

inside
 

the
 

capacitor,
(2)

 

the
 

surface
 

charge
 

densities
 

on
 

the
 

top
 

and
 

bottom
 

plates.
3. 2 　 Prove

 

that
 

the
 

potential
 

φ
 

due
 

to
 

a
 

charge
 

distribution
 

given
 

in (2. 58)
 

satisfies
 

Poissons
 

equation.
3. 3　 Prove

 

that,if
 

a
 

potential
 

function
 

φ
 

satisfies
 

Laplaces
 

equation
 

in
 

a
 

given
 

region
 

and
 

φ
 

is
 

constant
 

on
 

the
 

boundary
 

of
 

the
 

region,then
 

φ
 

is
 

constant
 

throughout
 

the
 

region.
3. 4 　 Prove

 

that
 

a
 

potential
 

function
 

satisfying
 

Laplaces
 

equation
 

in
 

a
 

given
 

region
 

possesses
 

no
 

maximum
 

or
 

minimum
 

within
 

the
 

region.
3. 5 　 A

 

point
 

charge
 

Q
 

exists
 

at
 

a
 

distance
 

d
 

above
 

a
 

large
 

grounded
 

conducting
 

plate. Determine
 

(1)
 

the
 

surface
 

charge
 

density
 

ρs
 on

 

the
 

conducting
 

plate,
(2)

 

the
 

total
 

charge
 

induced
 

on
 

the
 

conducting
 

plate.
3. 6　 A

 

straight-line
 

charge
 

of
 

ρl
 is

 

parallel
 

to
 

and
 

at
 

a
 

height
 

h
 

from
 

the
 

surface
 

of
 

an
 

infinitely
 

large
 

grounded
 

conducting
 

plate. Referring
 

to
 

Figure
 

3-14, prove
 

that
 

the
 

surface
 

charge
 

induced
 

on
 

the
 

plane
 

is
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ρs =
- ρlh

π(x2 + h2)
　 　 3. 7　 Two

 

semi-infinitely
 

large
 

conducting
 

plates
 

are
 

located
 

in
 

the
 

y-z
 

plane
 

and
 

x-z
 

plane
 

respectively,as
 

illustrated
 

in
 

Figure
 

3-15. A
 

point
 

charge
 

of
 

200
 

mC
 

is
 

placed
 

at
 

point
 

A(1,3,0) . Determine
 

the
 

electric
 

potential
 

and
 

the
 

electric
 

field
 

intensity
 

at
 

point
 

B(3,2,0) .

Figure
 

3-14　 Illustration
 

of
 

Problem
 

3. 6
　 　 　 　

Figure
 

3-15　 Illustration
 

of
 

Problem
 

3. 7

3. 8　 Two
 

semi-infinitely
 

large
 

grounded
 

metal
 

plates
 

are
 

located
 

at
 

ϕ = 0
 

and
 

ϕ = π / 3
 

respectively. A
 

point
 

charge
 

q
 

is
 

situated
 

at
 

1, π
6

,0( )
 

in
 

the
 

cylindrical
 

coordinate
 

system. Find
 

the
 

potential
 

at
 

point
 

3, π
6

,0( ) .
3. 9　 A

 

straight
 

conducting
 

wire
 

of
 

radius
 

a
 

is
 

parallel
 

to
 

and
 

at
 

height
 

h
 

from
 

the
 

surface
 

of
 

the
 

earth. Assuming
 

that
 

the
 

earth
 

is
 

perfectly
 

conducting,determine
 

the
 

capacitance
 

between
 

the
 

wire
 

and
 

the
 

earth.
3. 10 　 A

 

point
 

charge
 

Q
 

resides
 

inside
 

a
 

hollow
 

spherical
 

cavity
 

with
 

a
 

grounded
 

conducting
 

shell. The
 

radius
 

of
 

the
 

cavity
 

is
 

a,and
 

the
 

point
 

charge
 

is
 

at
 

a
 

distance
 

d
 

from
 

the
 

cavity
 

center(where
 

a>d) . Use
 

the
 

method
 

of
 

images
 

to
 

determine
 

①the
 

potential
 

distribution
 

inside
 

the
 

cavity,②the
 

charge
 

density
 

ρs
 induced

 

on
 

the
 

inner
 

surface
 

of
 

the
 

shell.
3. 11　 A

 

point
 

charge
 

Q
 

is
 

located
 

at(x0,y0)
 

outside
 

a
 

conducting
 

hemisphere
 

of
 

radius
 

a
 

on
 

top
 

of
 

an
 

infinitely
 

large
 

conducting
 

plate,as
 

shown
 

in
 

Figure
 

3-16. Find
 

the
 

locations
 

and
 

values
 

of
 

the
 

image
 

charges
 

that
 

are
 

needed
 

for
 

solving
 

the
 

fields
 

outside
 

the
 

conductor.

Figure
 

3-16　 Illustration
 

of
 

Problem
 

3. 11

3. 12　 Repeat
 

solving
 

the
 

problem
 

in
 

Example
 

3-9
 

with
 

the
 

boundary
 

conditions
 

on
 

the
 

top,bottom,and
 

right
 

plates
 

in
 

Figure
 

3-13
 

changed
 

to
 

∂φ / ∂n=0.
3. 13　 For

 

Example
 

3-9, if
 

the
 

top,bottom,and
 

left
 

plates
 

in
 

Figure
 

3-13
 

are
 

grounded
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(φ=0)
 

and
 

the
 

right
 

plate
 

is
 

maintained
 

at
 

a
 

constant
 

potential
 

U0,prove
 

that
 

the
 

potential
 

distribution
 

within
 

the
 

enclosed
 

region
 

is

φ(x,y) =∑
∞

n =1

2U0[1 - ( - 1) n]

nπsinh nπa
b( )

sinh nπx
b

sin nπy
b

　 　 3. 14　 Consider
 

the
 

region
 

enclosed
 

by
 

four
 

conducting
 

plates
 

as
 

shown
 

in
 

Figure
 

3-17( the
 

four
 

plates
 

are
 

assumed
 

to
 

be
 

infinitely
 

long
 

along
 

the
 

z-direction) . The
 

left
 

and
 

right
 

plates
 

are
 

grounded,and
 

the
 

top
 

and
 

bottom
 

plates
 

have
 

constant
 

potentials
 

U1
 and

 

U2
 respectively. Find

 

the
 

potential
 

distribution
 

inside
 

the
 

enclosure.

Figure
 

3-17　 Illustration
 

of
 

Problem
 

3. 14

3. 15　 Consider
 

a
 

metallic
 

rectangular
 

box
 

with
 

sides
 

a
 

and
 

b
 

and
 

height
 

c. The
 

side
 

walls
 

and
 

the
 

bottom
 

surface
 

are
 

grounded. The
 

top
 

surface
 

is
 

isolated
 

and
 

kept
 

at
 

a
 

constant
 

potential
 

U0 . Determine
 

the
 

potential
 

distribution
 

inside
 

the
 

box.


