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C
hapter 1 discusses the scope of econometrics and raises general issues that arise in the  

application of econometric methods. Section 1-1 provides a brief discussion about the pur-

pose and scope of econometrics and how it fits into economic analysis. Section 1-2 provides 

examples of how one can start with an economic theory and build a model that can be estimated 

using data. Section 1-3 examines the kinds of data sets that are used in business, economics, and 

other social sciences. Section 1-4 provides an intuitive discussion of the difficulties associated with 

 inferring  causality in the social sciences.

1-1 What Is Econometrics?
Imagine that you are hired by your state government to evaluate the effectiveness of a publicly 
funded job training program. Suppose this program teaches workers various ways to use computers in  
the manufacturing process. The 20-week program offers courses during nonworking hours. Any 
hourly manufacturing worker may participate, and enrollment in all or part of the program is volun-
tary. You are to determine what, if any, effect the training program has on each worker’s subsequent 
hourly wage.

Now, suppose you work for an investment bank. You are to study the returns on different invest-
ment strategies involving short-term U.S. treasury bills to decide whether they comply with implied 
economic theories.

The task of answering such questions may seem daunting at first. At this point, you may only 
have a vague idea of the kind of data you would need to collect. By the end of this introductory 
econometrics course, you should know how to use econometric methods to formally evaluate a job 
training program or to test a simple economic theory.
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Econometrics is based upon the development of statistical methods for estimating economic  
relationships, testing economic theories, and evaluating and implementing government and business 
policy. A common application of econometrics is the forecasting of such important macroeconomic 
variables as interest rates, inflation rates, and gross domestic product (GDP). Whereas forecasts of 
economic indicators are highly visible and often widely published, econometric methods can be used 
in economic areas that have nothing to do with macroeconomic forecasting. For example, we will 
study the effects of political campaign expenditures on voting outcomes. We will consider the effect 
of school spending on student performance in the field of education. In addition, we will learn how to 
use econometric methods for forecasting economic time series.

Econometrics has evolved as a separate discipline from mathematical statistics because the for-
mer focuses on the problems inherent in collecting and analyzing nonexperimental economic data. 
Nonexperimental data are not accumulated through controlled experiments on individuals, firms, 
or segments of the economy. (Nonexperimental data are sometimes called observational data, or  
retrospective data, to emphasize the fact that the researcher is a passive collector of the data.)  
Experimental data are often collected in laboratory environments in the natural sciences, but 
they are more difficult to obtain in the social sciences. Although some social experiments can be 
devised, it is often impossible, prohibitively expensive, or morally repugnant to conduct the kinds 
of controlled experiments that would be needed to address economic issues. We give some specific  
examples of the differences between experimental and nonexperimental data in Section 1-4.

Naturally, econometricians have borrowed from mathematical statisticians whenever possible. 
The method of multiple regression analysis is the mainstay in both fields, but its focus and interpreta-
tion can differ markedly. In addition, economists have devised new techniques to deal with the com-
plexities of economic data and to test the predictions of economic theories.

1-2 Steps in Empirical Economic Analysis
Econometric methods are relevant in virtually every branch of applied economics. They come into 
play either when we have an economic theory to test or when we have a relationship in mind that has 
some importance for business decisions or policy analysis. An empirical analysis uses data to test a 
theory or to estimate a relationship.

How does one go about structuring an empirical economic analysis? It may seem obvious, but 
it is worth emphasizing that the first step in any empirical analysis is the careful formulation of the 
question of interest. The question might deal with testing a certain aspect of an economic theory, or it 
might pertain to testing the effects of a government policy. In principle, econometric methods can be 
used to answer a wide range of questions.

In some cases, especially those that involve the testing of economic theories, a formal economic 
model is constructed. An economic model consists of mathematical equations that describe various 
relationships. Economists are well known for their building of models to describe a vast array of 
behaviors. For example, in intermediate microeconomics, individual consumption decisions, subject 
to a budget constraint, are described by mathematical models. The basic premise underlying these 
models is utility maximization. The assumption that individuals make choices to maximize their 
well-being, subject to resource constraints, gives us a very powerful framework for creating tractable 
economic models and making clear predictions. In the context of consumption decisions, utility maxi-
mization leads to a set of demand equations. In a demand equation, the quantity demanded of each 
commodity depends on the price of the goods, the price of substitute and complementary goods, the 
consumer’s income, and the individual’s characteristics that affect taste. These equations can form the 
basis of an econometric analysis of consumer demand.

Economists have used basic economic tools, such as the utility maximization framework, to  
explain behaviors that at first glance may appear to be noneconomic in nature. A classic example is 
Becker’s (1968) economic model of criminal behavior.
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ExamplE 1.1 Economic model of Crime

In a seminal article, Nobel Prize winner Gary Becker postulated a utility maximization framework to 
describe an individual’s participation in crime. Certain crimes have clear economic rewards, but most 
criminal behaviors have costs. The opportunity costs of crime prevent the criminal from participating 
in other activities such as legal employment. In addition, there are costs associated with the possibility 
of being caught and then, if convicted, the costs associated with incarceration. From Becker’s per-
spective, the decision to undertake illegal activity is one of resource allocation, with the benefits and 
costs of competing activities taken into account.

Under general assumptions, we can derive an equation describing the amount of time spent in 
criminal activity as a function of various factors. We might represent such a function as

y 5 f  
1x1, x2, x3, x4, x5, x6, x7 2 , [1.1]

where

 y 5 hours spent in criminal activities,
x1 5 “wage” for an hour spent in criminal activity,
x2 5 hourly wage in legal employment,
x3 5 income other than from crime or employment,
x4 5 probability of getting caught,
x5 5 probability of being convicted if caught,
x6 5 expected sentence if convicted, and
x7 5 age.

Other factors generally affect a person’s decision to participate in crime, but the list above is rep-
resentative of what might result from a formal economic analysis. As is common in economic theory, 
we have not been specific about the function f(.) in (1.1). This function depends on an underlying util-
ity function, which is rarely known. Nevertheless, we can use economic theory—or introspection—to 
predict the effect that each variable would have on criminal activity. This is the basis for an econometric  
analysis of individual criminal activity.

Formal economic modeling is sometimes the starting point for empirical analysis, but it is more com-
mon to use economic theory less formally, or even to rely entirely on intuition. You may agree that the deter-
minants of criminal behavior appearing in equation (1.1) are reasonable based on common sense; we might 
arrive at such an equation directly, without starting from utility maximization. This view has some merit, 
although there are cases in which formal derivations provide insights that intuition can overlook.

Next is an example of an equation that we can derive through somewhat informal reasoning.

ExamplE 1.2 Job Training and Worker productivity

Consider the problem posed at the beginning of Section 1-1. A labor economist would like to examine 
the effects of job training on worker productivity. In this case, there is little need for formal economic 
theory. Basic economic understanding is sufficient for realizing that factors such as education, experi-
ence, and training affect worker productivity. Also, economists are well aware that workers are paid 
commensurate with their productivity. This simple reasoning leads to a model such as

wage 5 f 1educ, exper, training 2 , [1.2]

where

wage 5 hourly wage,
educ 5 years of formal education,
exper 5 years of workforce experience, and
training 5 weeks spent in job training.

Again, other factors generally affect the wage rate, but equation (1.2) captures the essence of the problem.
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After we specify an economic model, we need to turn it into what we call an econometric model. 
Because we will deal with econometric models throughout this text, it is important to know how an 
econometric model relates to an economic model. Take equation (1.1) as an example. The form of the 
function f(.) must be specified before we can undertake an econometric analysis. A second issue con-
cerning (1.1) is how to deal with variables that cannot reasonably be observed. For example, consider 
the wage that a person can earn in criminal activity. In principle, such a quantity is well defined, but it 
would be difficult if not impossible to observe this wage for a given individual. Even variables such as 
the probability of being arrested cannot realistically be obtained for a given individual, but at least we 
can observe relevant arrest statistics and derive a variable that approximates the probability of arrest. 
Many other factors affect criminal behavior that we cannot even list, let alone observe, but we must 
somehow account for them.

The ambiguities inherent in the economic model of crime are resolved by specifying a particular 
econometric model:

 crime 5 b0 1 b1wage 1 b2othinc 1 b3 freqarr 1 b4 freqconv
1 b5avgsen 1 b6age 1 u, [1.3]

where

crime 5 some measure of the frequency of criminal activity,
wage 5 the wage that can be earned in legal employment,
othinc 5 the income from other sources (assets, inheritance, and so on),
freqarr 5 the frequency of arrests for prior infractions (to approximate the probability of arrest),
freqconv 5 the frequency of conviction, and
avgsen 5 the average sentence length after conviction.

The choice of these variables is determined by the economic theory as well as data considerations. 
The term u contains unobserved factors, such as the wage for criminal activity, moral character, fam-
ily background, and errors in measuring things like criminal activity and the probability of arrest. We 
could add family background variables to the model, such as number of siblings, parents’ education, 
and so on, but we can never eliminate u entirely. In fact, dealing with this error term or disturbance 
term is perhaps the most important component of any econometric analysis.

The constants b0, b1, . . . , b6 are the parameters of the econometric model, and they describe the 
directions and strengths of the relationship between crime and the factors used to determine crime in 
the model.

A complete econometric model for Example 1.2 might be

wage 5 b0 1 b1educ 1 b2exper 1 b3training 1 u, [1.4]

where the term u contains factors such as “innate ability,” quality of education, family background,  
and the myriad other factors that can influence a person’s wage. If we are specifically concerned 
about the effects of job training, then b3 is the parameter of interest.

For the most part, econometric analysis begins by specifying an econometric model, without con-
sideration of the details of the model’s creation. We generally follow this approach, largely because 
careful derivation of something like the economic model of crime is time consuming and can take us 
into some specialized and often difficult areas of economic theory. Economic reasoning will play a 
role in our examples, and we will merge any underlying economic theory into the econometric model 
specification. In the economic model of crime example, we would start with an econometric model 
such as (1.3) and use economic reasoning and common sense as guides for choosing the variables.  
Although this approach loses some of the richness of economic analysis, it is commonly and effec-
tively applied by careful researchers.

Once an econometric model such as (1.3) or (1.4) has been specified, various hypotheses of 
interest can be stated in terms of the unknown parameters. For example, in equation (1.3), we might 
hypothesize that wage, the wage that can be earned in legal employment, has no effect on criminal 
behavior. In the context of this particular econometric model, the hypothesis is equivalent to b1 5 0.
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An empirical analysis, by definition, requires data. After data on the relevant variables have been 
collected, econometric methods are used to estimate the parameters in the econometric model and to 
formally test hypotheses of interest. In some cases, the econometric model is used to make predic-
tions in either the testing of a theory or the study of a policy’s impact.

Because data collection is so important in empirical work, Section 1-3 will describe the kinds of 
data that we are likely to encounter.

1-3 The Structure of Economic Data
Economic data sets come in a variety of types. Whereas some econometric methods can be applied 
with little or no modification to many different kinds of data sets, the special features of some data 
sets must be accounted for or should be exploited. We next describe the most important data structures  
encountered in applied work.

1-3a Cross-Sectional Data
A cross-sectional data set consists of a sample of individuals, households, firms, cities, states, countries,  
or a variety of other units, taken at a given point in time. Sometimes, the data on all units do not cor-
respond to precisely the same time period. For example, several families may be surveyed during 
different weeks within a year. In a pure cross-sectional analysis, we would ignore any minor timing 
differences in collecting the data. If a set of families was surveyed during different weeks of the same 
year, we would still view this as a cross-sectional data set.

An important feature of cross-sectional data is that we can often assume that they have been  
obtained by random sampling from the underlying population. For example, if we obtain informa-
tion on wages, education, experience, and other characteristics by randomly drawing 500 people from  
the working population, then we have a random sample from the population of all working people. 
Random sampling is the sampling scheme covered in introductory statistics courses, and it simplifies 
the analysis of cross-sectional data. A review of random sampling is contained in Math Refresher C.

Sometimes, random sampling is not appropriate as an assumption for analyzing cross-sectional 
data. For example, suppose we are interested in studying factors that influence the accumulation of 
family wealth. We could survey a random sample of families, but some families might refuse to report 
their wealth. If, for example, wealthier families are less likely to disclose their wealth, then the result-
ing sample on wealth is not a random sample from the population of all families. This is an illustra-
tion of a sample selection problem.

Another violation of random sampling occurs when we sample from units that are large relative to 
the population, particularly geographical units. The potential problem in such cases is that the popula-
tion is not large enough to reasonably assume the observations are independent draws. For example, 
if we want to explain new business activity across states as a function of wage rates, energy prices, 
corporate and property tax rates, services provided, quality of the workforce, and other state charac-
teristics, it is unlikely that business activities in states near one another are independent. It turns out 
that the econometric methods that we discuss do work in such situations, but they sometimes need to 
be refined. For the most part, we will ignore the intricacies that arise in analyzing such situations and 
treat these problems in a random sampling framework, even when it is not technically correct to do so.

Cross-sectional data are widely used in economics and other social sciences. In economics, the 
analysis of cross-sectional data is closely aligned with the applied microeconomics fields, such as  
labor economics, state and local public finance, industrial organization, urban economics, demogra-
phy, and health economics. Data on individuals, households, firms, and cities at a given point in time 
are important for testing microeconomic hypotheses and evaluating economic policies.

The cross-sectional data used for econometric analysis can be represented and stored in comput-
ers. Table 1.1 contains, in abbreviated form, a cross-sectional data set on 526 working individuals 
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CHAPTER 1 The Nature of Econometrics and Economic Data6

for the year 1976. (This is a subset of the data in the file WAGE1.) The variables include wage (in 
dollars per hour), educ (years of education), exper (years of potential labor force experience), female 
(an indicator for gender), and married (marital status). These last two variables are binary (zero-one) 
in nature and serve to indicate qualitative features of the individual (the person is female or not; the 
person is married or not). We will have much to say about binary variables in Chapter 7 and beyond.

The variable obsno in Table 1.1 is the observation number assigned to each person in the sample. 
Unlike the other variables, it is not a characteristic of the individual. All econometrics and statistics 
software packages assign an observation number to each data unit. Intuition should tell you that, for 
data such as that in Table 1.1, it does not matter which person is labeled as observation 1, which per-
son is called observation 2, and so on. The fact that the ordering of the data does not matter for econo-
metric analysis is a key feature of cross-sectional data sets obtained from random sampling.

Different variables sometimes correspond to different time periods in cross-sectional data sets. 
For example, to determine the effects of government policies on long-term economic growth, econo-
mists have studied the relationship between growth in real per capita GDP over a certain period (say, 
1960 to 1985) and variables determined in part by government policy in 1960 (government consump-
tion as a percentage of GDP and adult secondary education rates). Such a data set might be repre-
sented as in Table 1.2, which constitutes part of the data set used in the study of cross-country growth 
rates by De Long and Summers (1991).

The variable gpcrgdp represents average growth in real per capita GDP over the period 1960 
to 1985. The fact that govcons60 (government consumption as a percentage of GDP) and second60 

TAblE 1.1 A Cross-Sectional Data Set on Wages and Other Individual Characteristics
obsno wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

. . . . . .

. . . . . .

. . . . . .

525 11.56 16 5 0 1

526 3.50 14 5 1 0

TAblE 1.2 A Data Set on Economic Growth Rates and Country Characteristics
obsno country gpcrgdp govcons60 second60

1 Argentina 0.89 9 32

2 Austria 3.32 16 50

3 Belgium 2.56 13 69

4 Bolivia 1.24 18 12

. . . . .

. . . . .

. . . . .

61 Zimbabwe 2.30 17 6
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(percentage of adult population with a secondary education) correspond to the year 1960, while  
gpcrgdp is the average growth over the period from 1960 to 1985, does not lead to any special prob-
lems in treating this information as a cross-sectional data set. The observations are listed alphabeti-
cally by country, but nothing about this ordering affects any subsequent analysis.

1-3b Time Series Data
A time series data set consists of observations on a variable or several variables over time. Examples 
of time series data include stock prices, money supply, consumer price index, GDP, annual homicide 
rates, and automobile sales figures. Because past events can influence future events and lags in behav-
ior are prevalent in the social sciences, time is an important dimension in a time series data set. Unlike 
the arrangement of cross-sectional data, the chronological ordering of observations in a time series 
conveys potentially important information.

A key feature of time series data that makes them more difficult to analyze than cross-sectional 
data is that economic observations can rarely, if ever, be assumed to be independent across time. Most 
economic and other time series are related, often strongly related, to their recent histories. For example, 
knowing something about the GDP from last quarter tells us quite a bit about the likely range of the GDP 
during this quarter, because GDP tends to remain fairly stable from one quarter to the next. Although 
most econometric procedures can be used with both cross-sectional and time series data, more needs 
to be done in specifying econometric models for time series data before standard econometric methods 
can be justified. In addition, modifications and embellishments to standard econometric techniques have 
been developed to account for and exploit the dependent nature of economic time series and to address 
other issues, such as the fact that some economic variables tend to display clear trends over time.

Another feature of time series data that can require special attention is the data frequency 
at which the data are collected. In economics, the most common frequencies are daily, weekly, 
monthly, quarterly, and annually. Stock prices are recorded at daily intervals (excluding Saturday and  
Sunday). The money supply in the U.S. economy is reported weekly. Many macroeconomic series are 
tabulated monthly, including inflation and unemployment rates. Other macro series are recorded less 
frequently, such as every three months (every quarter). GDP is an important example of a quarterly 
series. Other time series, such as infant mortality rates for states in the United States, are available 
only on an annual basis.

Many weekly, monthly, and quarterly economic time series display a strong seasonal pattern, 
which can be an important factor in a time series analysis. For example, monthly data on housing 
starts differ across the months simply due to changing weather conditions. We will learn how to deal 
with seasonal time series in Chapter 10.

Table 1.3 contains a time series data set obtained from an article by Castillo-Freeman and  
Freeman (1992) on minimum wage effects in Puerto Rico. The earliest year in the data set is the first 

TAblE 1.3 Minimum Wage, Unemployment, and Related Data for Puerto Rico
obsno year avgmin avgcov prunemp prgnp

1 1950 0.20 20.1 15.4 878.7

2 1951 0.21 20.7 16.0 925.0

3 1952 0.23 22.6 14.8 1015.9

. . . . . .

. . . . . .

. . . . . .

37 1986 3.35 58.1 18.9 4281.6

38 1987 3.35 58.2 16.8 4496.7
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CHAPTER 1 The Nature of Econometrics and Economic Data8

observation, and the most recent year available is the last observation. When econometric methods are 
used to analyze time series data, the data should be stored in chronological order.

The variable avgmin refers to the average minimum wage for the year, avgcov is the average cov-
erage rate (the percentage of workers covered by the minimum wage law), prunemp is the unemploy-
ment rate, and prgnp is the gross national product, in millions of 1954 dollars. We will use these data 
later in a time series analysis of the effect of the minimum wage on employment.

1-3c Pooled Cross Sections
Some data sets have both cross-sectional and time series features. For example, suppose that two 
cross-sectional household surveys are taken in the United States, one in 1985 and one in 1990. 
In 1985, a random sample of households is surveyed for variables such as income, savings, fam-
ily size, and so on. In 1990, a new random sample of households is taken using the same survey 
questions. To increase our sample size, we can form a pooled cross section by combining the  
two years.

Pooling cross sections from different years is often an effective way of analyzing the effects 
of a new government policy. The idea is to collect data from the years before and after a key policy 
change. As an example, consider the following data set on housing prices taken in 1993 and 1995, 
before and after a reduction in property taxes in 1994. Suppose we have data on 250 houses for 1993 
and on 270 houses for 1995. One way to store such a data set is given in Table 1.4.

Observations 1 through 250 correspond to the houses sold in 1993, and observations 251 through 
520 correspond to the 270 houses sold in 1995. Although the order in which we store the data turns 
out not to be crucial, keeping track of the year for each observation is usually very important. This is 
why we enter year as a separate variable.

A pooled cross section is analyzed much like a standard cross section, except that we often need 
to account for secular differences in the variables across the time. In fact, in addition to increasing the 
sample size, the point of a pooled cross-sectional analysis is often to see how a key relationship has 
changed over time.

TAblE 1.4 Pooled Cross Sections: Two Years of Housing Prices
obsno year hprice proptax sqrft bdrms bthrms

1 1993 85,500 42 1600 3 2.0

2 1993 67,300 36 1440 3 2.5

3 1993 134,000 38 2000 4 2.5

. . . . . . .

. . . . . . .

. . . . . . .

250 1993 243,600 41 2600 4 3.0

251 1995 65,000 16 1250 2 1.0

252 1995 182,400 20 2200 4 2.0

253 1995 97,500 15 1540 3 2.0

. . . . . . .

. . . . . . .

. . . . . . .

520 1995 57,200 16 1100 2 1.5
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1-3d Panel or Longitudinal Data
A panel data (or longitudinal data) set consists of a time series for each cross-sectional member 
in the data set. As an example, suppose we have wage, education, and employment history for a set 
of individuals followed over a 10-year period. Or we might collect information, such as investment 
and financial data, about the same set of firms over a five-year time period. Panel data can also be 
collected on geographical units. For example, we can collect data for the same set of counties in the 
United States on immigration flows, tax rates, wage rates, government expenditures, and so on, for 
the years 1980, 1985, and 1990.

The key feature of panel data that distinguishes them from a pooled cross section is that the same 
cross-sectional units (individuals, firms, or counties in the preceding examples) are followed over a 
given time period. The data in Table 1.4 are not considered a panel data set because the houses sold 
are likely to be different in 1993 and 1995; if there are any duplicates, the number is likely to be so 
small as to be unimportant. In contrast, Table 1.5 contains a two-year panel data set on crime and  
related statistics for 150 cities in the United States.

There are several interesting features in Table 1.5. First, each city has been given a number from 
1 through 150. Which city we decide to call city 1, city 2, and so on, is irrelevant. As with a pure cross 
section, the ordering in the cross section of a panel data set does not matter. We could use the city 
name in place of a number, but it is often useful to have both.

A second point is that the two years of data for city 1 fill the first two rows or observations,  
observations 3 and 4 correspond to city 2, and so on. Because each of the 150 cities has two rows of 
data, any econometrics package will view this as 300 observations. This data set can be treated as a 
pooled cross section, where the same cities happen to show up in each year. But, as we will see in 
Chapter 13, we can also use the panel structure to analyze questions that cannot be answered by 
simply viewing this as a pooled cross section.

In organizing the observations in Table 1.5, we place the two years of data for each city adjacent 
to one another, with the first year coming before the second in all cases. For just about every practi-
cal purpose, this is the preferred way for ordering panel data sets. Contrast this organization with the 
way the pooled cross sections are stored in Table 1.4. In short, the reason for ordering panel data as 
in Table 1.5 is that we will need to perform data transformations for each city across the two years.

Because panel data require replication of the same units over time, panel data sets, especially 
those on individuals, households, and firms, are more difficult to obtain than pooled cross sections. 
Not surprisingly, observing the same units over time leads to several advantages over cross-sectional 
data or even pooled cross-sectional data. The benefit that we will focus on in this text is that having 

TAblE 1.5 A Two-Year Panel Data Set on City Crime Statistics
obsno city year murders population unem police

1 1 1986 5 350,000 8.7 440

2 1 1990 8 359,200 7.2 471

3 2 1986 2 64,300 5.4 75

4 2 1990 1 65,100 5.5 75

. . . . . . .

. . . . . . .

. . . . . . .

297 149 1986 10 260,700 9.6 286

298 149 1990 6 245,000 9.8 334

299 150 1986 25 543,000 4.3 520

300 150 1990 32 546,200 5.2 493

9
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multiple observations on the same units allows us to control for certain unobserved characteristics 
of individuals, firms, and so on. As we will see, the use of more than one observation can facilitate 
causal inference in situations where inferring causality would be very difficult if only a single cross 
section were available. A second advantage of panel data is that they often allow us to study the 
importance of lags in behavior or the result of decision making. This information can be significant 
because many economic policies can be expected to have an impact only after some time has passed.

Most books at the undergraduate level do not contain a discussion of econometric methods for 
panel data. However, economists now recognize that some questions are difficult, if not impossible, 
to answer satisfactorily without panel data. As you will see, we can make considerable progress with 
simple panel data analysis, a method that is not much more difficult than dealing with a standard 
cross-sectional data set.

1-3e A Comment on Data Structures
Part 1 of this text is concerned with the analysis of cross-sectional data, because this poses the fewest con-
ceptual and technical difficulties. At the same time, it illustrates most of the key themes of econometric 
analysis. We will use the methods and insights from cross-sectional analysis in the remainder of the text.

Although the econometric analysis of time series uses many of the same tools as cross-sectional 
analysis, it is more complicated because of the trending, highly persistent nature of many economic 
time series. Examples that have been traditionally used to illustrate the manner in which econometric 
methods can be applied to time series data are now widely believed to be flawed. It makes little sense 
to use such examples initially, because this practice will only reinforce poor econometric practice. 
Therefore, we will postpone the treatment of time series econometrics until Part 2, when the impor-
tant issues concerning trends, persistence, dynamics, and seasonality will be introduced.

In Part 3, we will treat pooled cross sections and panel data explicitly. The analysis of indepen-
dently pooled cross sections and simple panel data analysis are fairly straightforward extensions of 
pure cross-sectional analysis. Nevertheless, we will wait until Chapter 13 to deal with these topics.

1-4 Causality, Ceteris Paribus, and Counterfactual Reasoning
In most tests of economic theory, and certainly for evaluating public policy, the economist’s goal is 
to infer that one variable (such as education) has a causal effect on another variable (such as worker 
productivity). Simply finding an association between two or more variables might be suggestive, but 
unless causality can be established, it is rarely compelling.

The notion of ceteris paribus—which means “other (relevant) factors being equal”—plays an 
important role in causal analysis. This idea has been implicit in some of our earlier discussion, par-
ticularly Examples 1.1 and 1.2, but thus far we have not explicitly mentioned it.

You probably remember from introductory economics that most economic questions are ceteris 
paribus by nature. For example, in analyzing consumer demand, we are interested in knowing the 
effect of changing the price of a good on its quantity demanded, while holding all other factors—such 
as income, prices of other goods, and individual tastes—fixed. If other factors are not held fixed, then 
we cannot know the causal effect of a price change on quantity demanded.

Holding other factors fixed is critical for policy analysis as well. In the job training example 
(Example 1.2), we might be interested in the effect of another week of job training on wages, with 
all other components being equal (in particular, education and experience). If we succeed in holding 
all other relevant factors fixed and then find a link between job training and wages, we can conclude 
that job training has a causal effect on worker productivity. Although this may seem pretty simple, 
even at this early stage it should be clear that, except in very special cases, it will not be possible to 
literally hold all else equal. The key question in most empirical studies is: Have enough other factors 
been held fixed to make a case for causality? Rarely is an econometric study evaluated without raising  
this issue.

10
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In most serious applications, the number of factors that can affect the variable of interest—such 
as criminal activity or wages—is immense, and the isolation of any particular variable may seem like 
a hopeless effort. However, we will eventually see that, when carefully applied, econometric methods 
can simulate a ceteris paribus experiment.

The notion of ceteris paribus also can be described through counterfactual reasoning, which 
has become an organizing theme in analyzing various interventions, such as policy changes. The idea 
is to imagine an economic unit, such as an individual or a firm, in two or more different states of the 
world. For example, consider studying the impact of a job training program on workers’ earnings. 
For each worker in the relevant population, we can imagine what his or her subsequent earnings 
would be under two states of the world: having participated in the job training program and having 
not participated. By considering these counterfactual outcomes (also called potential outcomes), 
we easily “hold other factors fixed” because the counterfactual thought experiment applies to each 
individual separately. We can then think of causality as meaning that the outcome—in this case, labor 
 earnings—in the two states of the world differs for at least some indiviuals. The fact that we will 
eventually observe each worker in only one state of the world raises important problems of estima-
tion, but that is a separate issue from the issue of what we mean by causality. We formally introduce 
an apparatus for discussing counterfactual outcomes in Chapter 2.

At this point, we cannot yet explain how econometric methods can be used to estimate ceteris 
paribus effects, so we will consider some problems that can arise in trying to infer causality in eco-
nomics. We do not use any equations in this discussion. Instead, in each example, we will discuss 
what other factors we would like to hold fixed, and sprinkle in some counterfactual reasoning. For 
each example, inferring causality becomes relatively easy if we could conduct an appropriate experi-
ment. Thus, it is useful to describe how such an experiment might be structured, and to observe that, 
in most cases, obtaining experimental data is impractical. It is also helpful to think about why the 
available data fail to have the important features of an experimental data set.

We rely, for now, on your intuitive understanding of such terms as random, independence, and 
correlation, all of which should be familiar from an introductory probability and statistics course. 
(These concepts are reviewed in Math Refresher B.) We begin with an example that illustrates some 
of these important issues.

ExamplE 1.3 Effects of Fertilizer on Crop Yield

Some early econometric studies [for example, Griliches (1957)] considered the effects of new  
fertilizers on crop yields. Suppose the crop under consideration is soybeans. Because fertilizer amount 
is only one factor affecting yields—some others include rainfall, quality of land, and presenc e of 
 parasites—this issue must be posed as a ceteris paribus question. One way to determine the causal effect 
of fertilizer amount on soybean yield is to conduct an experiment, which might include the  following 
steps. Choose several one-acre plots of land. Apply different amounts of fertilizer to each plot and sub-
sequently measure the yields; this gives us a cross-sectional data set. Then, use statistical methods (to 
be introduced in Chapter 2) to measure the association between yields and fertilizer amounts.

As described earlier, this may not seem like a very good experiment because we have said noth-
ing about choosing plots of land that are identical in all respects except for the amount of fertilizer. 
In fact, choosing plots of land with this feature is not feasible: some of the factors, such as land 
quality, cannot even be fully observed. How do we know the results of this experiment can be used 
to measure the ceteris paribus effect of fertilizer? The answer depends on the specifics of how fertil-
izer amounts are chosen. If the levels of fertilizer are assigned to plots independently of other plot 
 features that affect yield—that is, other characteristics of plots are completely ignored when deciding 
on  fertilizer amounts—then we are in business. We will justify this statement in Chapter 2.

The next example is more representative of the difficulties that arise when inferring causality in 
applied economics.

11
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ExamplE 1.4 measuring the Return to Education

Labor economists and policy makers have long been interested in the “return to education.” Somewhat  
informally, the question is posed as follows: If a person is chosen from the population and given 
another year of education, by how much will his or her wage increase? As with the previous exam-
ples, this is a ceteris paribus question, which implies that all other factors are held fixed while another 
year of education is given to the person. Notice the element of counterfactual reasoning here: we can 
imagine the wage of each individual varying with different levels of education, that is, in different 
states of the world. Eventually, we obtain data on each worker in only one state of the world: the 
education level they actually wound up with, through perhaps a complicated process of intellectual 
ability, motivation for learning, parental input, and societal influences.

We can imagine a social planner designing an experiment to get at this issue, much as the agricul-
tural researcher can design an experiment to estimate fertilizer effects. Assume, for the moment, that 
the social planner has the ability to assign any level of education to any person. How would this plan-
ner emulate the fertilizer experiment in Example 1.3? The planner would choose a group of people 
and randomly assign each person an amount of education; some people are given an eighth-grade 
education, some are given a high school education, some are given two years of college, and so on. 
Subsequently, the planner measures wages for this group of people (where we assume that each per-
son then works in a job). The people here are like the plots in the fertilizer example, where education 
plays the role of fertilizer and wage rate plays the role of soybean yield. As with Example 1.3, if levels 
of education are assigned independently of other characteristics that affect productivity (such as expe-
rience and innate ability), then an analysis that ignores these other factors will yield useful results. 
Again, it will take some effort in Chapter 2 to justify this claim; for now, we state it without support.

Unlike the fertilizer-yield example, the experiment described in Example 1.4 is unfeasible. The 
ethical issues, not to mention the economic costs, associated with randomly determining education 
levels for a group of individuals are obvious. As a logistical matter, we could not give someone only 
an eighth-grade education if he or she already has a college degree.

Even though experimental data cannot be obtained for measuring the return to education, we can 
certainly collect nonexperimental data on education levels and wages for a large group by sampling 
randomly from the population of working people. Such data are available from a variety of surveys 
used in labor economics, but these data sets have a feature that makes it difficult to estimate the  
ceteris paribus return to education. People choose their own levels of education; therefore, education 
levels are probably not determined independently of all other factors affecting wage. This problem is 
a feature shared by most nonexperimental data sets.

One factor that affects wage is experience in the workforce. Because pursuing more education 
generally requires postponing entering the workforce, those with more education usually have less 
experience. Thus, in a nonexperimental data set on wages and education, education is likely to be neg-
atively associated with a key variable that also affects wage. It is also believed that people with more 
innate ability often choose higher levels of education. Because higher ability leads to higher wages, 
we again have a correlation between education and a critical factor that affects wage.

The omitted factors of experience and ability in the wage example have analogs in the fertilizer 
example. Experience is generally easy to measure and therefore is similar to a variable such as rain-
fall. Ability, on the other hand, is nebulous and difficult to quantify; it is similar to land quality in the 
fertilizer example. As we will see throughout this text, accounting for other observed factors, such as 
experience, when estimating the ceteris paribus effect of another variable, such as education, is rela-
tively straightforward. We will also find that accounting for inherently unobservable factors, such as 
ability, is much more problematic. It is fair to say that many of the advances in econometric methods 
have tried to deal with unobserved factors in econometric models.

One final parallel can be drawn between Examples 1.3 and 1.4. Suppose that in the fertilizer  
example, the fertilizer amounts were not entirely determined at random. Instead, the assistant who 
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chose the fertilizer levels thought it would be better to put more fertilizer on the higher-quality plots 
of land. (Agricultural researchers should have a rough idea about which plots of land are of bet-
ter quality, even though they may not be able to fully quantify the differences.) This situation is 
completely analogous to the level of schooling being related to unobserved ability in Example 1.4.  
Because better land leads to higher yields, and more fertilizer was used on the better plots, any  
observed relationship between yield and fertilizer might be spurious.

Difficulty in inferring causality can also arise when studying data at fairly high levels of aggregation,  
as the next example on city crime rates shows.

The first three examples we have discussed have dealt with cross-sectional data at various levels 
of aggregation (for example, at the individual or city levels). The same hurdles arise when inferring 
causality in time series problems.

ExamplE 1.5 The Effect of law Enforcement on City Crime levels

The issue of how best to prevent crime has been, and will probably continue to be, with us for some 
time. One especially important question in this regard is: Does the presence of more police officers on 
the street deter crime?

The ceteris paribus question is easy to state: If a city is randomly chosen and given, say, ten  
additional police officers, by how much would its crime rates fall? Closely related to this thought 
experiment is explicitly setting up counterfactual outcomes: For a given city, what would its crime 
rate be under varying sizes of the police force? Another way to state the question is: If two cities are 
the same in all respects, except that city A has ten more police officers than city B, by how much 
would the two cities’ crime rates differ?

It would be virtually impossible to find pairs of communities identical in all respects except for 
the size of their police force. Fortunately, econometric analysis does not require this. What we do need 
to know is whether the data we can collect on community crime levels and the size of the police force 
can be viewed as experimental. We can certainly imagine a true experiment involving a large collec-
tion of cities where we dictate how many police officers each city will use for the upcoming year.

Although policies can be used to affect the size of police forces, we clearly cannot tell each city 
how many police officers it can hire. If, as is likely, a city’s decision on how many police officers to hire 
is correlated with other city factors that affect crime, then the data must be viewed as nonexperimental. 
In fact, one way to view this problem is to see that a city’s choice of police force size and the amount of 
crime are simultaneously determined. We will explicitly address such problems in Chapter 16.

ExamplE 1.6 The Effect of the minimum Wage on Unemployment

An important, and perhaps contentious, policy issue concerns the effect of the minimum wage on 
unemployment rates for various groups of workers. Although this problem can be studied in a variety 
of data settings (cross-sectional, time series, or panel data), time series data are often used to look at 
aggregate effects. An example of a time series data set on unemployment rates and minimum wages 
was given in Table 1.3.

Standard supply and demand analysis implies that, as the minimum wage is increased above 
the market clearing wage, we slide up the demand curve for labor and total employment decreases. 
(Labor supply exceeds labor demand.) To quantify this effect, we can study the relationship between 
employment and the minimum wage over time. In addition to some special difficulties that can arise 
in dealing with time series data, there are possible problems with inferring causality. The minimum 
wage in the United States is not determined in a vacuum. Various economic and political forces  
impinge on the final minimum wage for any given year. (The minimum wage, once determined, is 
usually in place for several years, unless it is indexed for inflation.) Thus, it is probable that the 
amount of the minimum wage is related to other factors that have an effect on employment levels.

13
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We can imagine the U.S. government conducting an experiment to determine the employment 
effects of the minimum wage (as opposed to worrying about the welfare of low-wage workers). The 
minimum wage could be randomly set by the government each year, and then the employment out-
comes could be tabulated. The resulting experimental time series data could then be analyzed using 
fairly simple econometric methods. But this scenario hardly describes how minimum wages are set.

If we can control enough other factors relating to employment, then we can still hope to estimate 
the ceteris paribus effect of the minimum wage on employment. In this sense, the problem is very 
similar to the previous cross-sectional examples.

ExamplE 1.7 The Expectations Hypothesis

The expectations hypothesis from financial economics states that, given all information available 
to investors at the time of investing, the expected return on any two investments is the same. For 
 example, consider two possible investments with a three-month investment horizon, purchased at the 
same time: (1) Buy a three-month T-bill with a face value of $10,000, for a price below $10,000; in 
three months, you receive $10,000. (2) Buy a six-month T-bill (at a price below $10,000) and, in three 
months, sell it as a three-month T-bill. Each investment requires roughly the same amount of initial 
capital, but there is an important difference. For the first investment, you know exactly what the return 
is at the time of purchase because you know the initial price of the three-month T-bill, along with its 
face value. This is not true for the second investment: although you know the price of a six-month 
T-bill when you purchase it, you do not know the price you can sell it for in three months. Therefore,
there is uncertainty in this investment for someone who has a three-month investment horizon.

The actual returns on these two investments will usually be different. According to the expecta-
tions hypothesis, the expected return from the second investment, given all information at the time of 
investment, should equal the return from purchasing a three-month T-bill. This theory turns out to be 
fairly easy to test, as we will see in Chapter 11.

Summary
In this introductory chapter, we have discussed the purpose and scope of econometric analysis. Econometrics  
is used in all applied economics fields to test economic theories, to inform government and private policy 
makers, and to predict economic time series. Sometimes, an econometric model is derived from a formal 
economic model, but in other cases, econometric models are based on informal economic reasoning and 
intuition. The goals of any econometric analysis are to estimate the parameters in the model and to test 
hypotheses about these parameters; the values and signs of the parameters determine the validity of an  
economic theory and the effects of certain policies.

Cross-sectional, time series, pooled cross-sectional, and panel data are the most common types of data 
structures that are used in applied econometrics. Data sets involving a time dimension, such as time series and 
panel data, require special treatment because of the correlation across time of most economic time series. Other 
issues, such as trends and seasonality, arise in the analysis of time series data but not cross-sectional data.

In Section 1-4, we discussed the notions of causality, ceteris paribus, and counterfactuals. In most 
cases, hypotheses in the social sciences are ceteris paribus in nature: all other relevant factors must be fixed 
when studying the relationship between two variables. As we discussed, one way to think of the ceteris 
paribus requirement is to undertake a thought experiment where the same economic unit operates in dif-
ferent states of the world, such as different policy regimes. Because of the nonexperimental nature of most 
data collected in the social sciences, uncovering causal relationships is very challenging.

Even when economic theories are not most naturally described in terms of causality, they often 
have predictions that can be tested using econometric methods. The following example demonstrates 
this approach.
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Key Terms
Causal Effect
Ceteris Paribus
Counterfactual Outcomes
Counterfactual Reasoning
Cross-Sectional Data Set
Data Frequency

Econometric Model
Economic Model
Empirical Analysis
Experimental Data
Nonexperimental Data
Observational Data

Panel Data
Pooled Cross Section
Random Sampling
Retrospective Data
Time Series Data

Problems
1 Suppose that you are asked to conduct a study to determine whether smaller class sizes lead to  

improved student performance of fourth graders.
(i) If you could conduct any experiment you want, what would you do? Be specific.
(ii) More realistically, suppose you can collect observational data on several thousand fourth grad-

ers in a given state. You can obtain the size of their fourth-grade class and a standardized test
score taken at the end of fourth grade. Why might you expect a negative correlation between
class size and test score?

(iii) Would a negative correlation necessarily show that smaller class sizes cause better
performance? Explain.

2 A justification for job training programs is that they improve worker productivity. Suppose that you 
are asked to evaluate whether more job training makes workers more productive. However, rather than 
having data on individual workers, you have access to data on manufacturing firms in Ohio. In particu-
lar, for each firm, you have information on hours of job training per worker (training) and number of 
nondefective items produced per worker hour (output).
(i) Carefully state the ceteris paribus thought experiment underlying this policy question.
(ii) Does it seem likely that a firm’s decision to train its workers will be independent of worker

characteristics? What are some of those measurable and unmeasurable worker characteristics?
(iii) Name a factor other than worker characteristics that can affect worker productivity.
(iv) If you find a positive correlation between output and training, would you have convincingly

established that job training makes workers more productive? Explain.

3 Suppose at your university you are asked to find the relationship between weekly hours spent study-
ing (study) and weekly hours spent working (work). Does it make sense to characterize the problem as 
inferring whether study “causes” work or work “causes” study? Explain.

4 States (and provinces) that have control over taxation sometimes reduce taxes in an attempt to spur 
economic growth. Suppose that you are hired by a state to estimate the effect of corporate tax rates on, 
say, the growth in per capita gross state product (GSP).
(i) What kind of data would you need to collect to undertake a statistical analysis?
(ii) Is it feasible to do a controlled experiment? What would be required?
(iii) Is a correlation analysis between GSP growth and tax rates likely to be convincing? Explain.

Computer Exercises
C1 Use the data in WAGE1 for this exercise.

(i) Find the average education level in the sample. What are the lowest and highest years of education?
(ii) Find the average hourly wage in the sample. Does it seem high or low?
(iii) The wage data are reported in 1976 dollars. Using the Internet or a printed source, find the

Consumer Price Index (CPI) for the years 1976 and 2013.
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(iv) Use the CPI values from part (iii) to find the average hourly wage in 2013 dollars. Now does
the average hourly wage seem reasonable?

(v) How many women are in the sample? How many men?

C2 Use the data in BWGHT to answer this question.
(i) How many women are in the sample, and how many report smoking during pregnancy?

(ii) What is the average number of cigarettes smoked per day? Is the average a good measure of the
“typical” woman in this case? Explain.

 (iii) Among women who smoked during pregnancy, what is the average number of cigarettes
smoked per day? How does this compare with your answer from part (ii), and why?

(iv) Find the average of fatheduc in the sample. Why are only 1,192 observations used to compute
this average?

(v) Report the average family income and its standard deviation in dollars.

C3 The data in MEAP01 are for the state of Michigan in the year 2001. Use these data to answer the fol-
lowing questions.

(i) Find the largest and smallest values of math4. Does the range make sense? Explain.
(ii) How many schools have a perfect pass rate on the math test? What percentage is this of the

total sample?
 (iii) How many schools have math pass rates of exactly 50%?
(iv) Compare the average pass rates for the math and reading scores. Which test is harder to pass?
(v) Find the correlation between math4 and read4. What do you conclude?

(vi) The variable exppp is expenditure per pupil. Find the average of exppp along with its standard
deviation. Would you say there is wide variation in per pupil spending?

 (vii) Suppose School A spends $6,000 per student and School B spends $5,500 per student. By what
percentage does School A’s spending exceed School B’s? Compare this to 100 · [log(6,000) –
log(5,500)], which is the approximation percentage difference based on the difference in the
natural logs. (See Section A.4 in Math Refresher A.)

C4 The data in JTRAIN2 come from a job training experiment conducted for low-income men during 
1976–1977; see Lalonde (1986).

(i) Use the indicator variable train to determine the fraction of men receiving job training.
(ii) The variable re78 is earnings from 1978, measured in thousands of 1982 dollars. Find the

averages of re78 for the sample of men receiving job training and the sample not receiving job
training. Is the difference economically large?

 (iii) The variable unem78 is an indicator of whether a man is unemployed or not in 1978. What
fraction of the men who received job training are unemployed? What about for men who did
not receive job training? Comment on the difference.

(iv) From parts (ii) and (iii), does it appear that the job training program was effective? What would
make our conclusions more convincing?

C5 The data in FERTIL2 were collected on women living in the Republic of Botswana in 1988. The vari-
able children refers to the number of living children. The variable electric is a binary indicator equal to 
one if the woman’s home has electricity, and zero if not.

(i) Find the smallest and largest values of children in the sample. What is the average of children?
(ii) What percentage of women have electricity in the home?

 (iii) Compute the average of children for those without electricity and do the same for those with
electricity. Comment on what you find.

(iv) From part (iii), can you infer that having electricity “causes” women to have fewer children?
Explain.
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