
3

An Abstract View of

Reinforcement Learning

Contents

3.1. Bellman Operators p. 32
3.2. Approximation in Value Space and Newton’s Method . . p. 39
3.3. Region of Stability p. 46
3.4. Policy Iteration, Rollout, and Newton’s Method p. 50
3.5. How Sensitive is On-Line Play to the Off-Line

Training Process? p. 58
3.6. Why Not Just Train a Policy Network and Use it Without

On-Line Play? p. 60
3.7. Multiagent Problems and Multiagent Rollout p. 61
3.8. On-Line Simplified Policy Iteration p. 66
3.9. Exceptional Cases p. 72
3.10. Notes and Sources p. 79

31

32 An Abstract View of Reinforcement Learning Chap. 3

In this chapter we will use geometric constructions to obtain insight into
Bellman’s equation, the value and policy iteration algorithms, approxima-
tion in value space, and some of the properties of the corresponding one-
step or multistep lookahead policy µ̃. To understand these constructions,
we need an abstract notational framework that is based on the operators
that are involved in the Bellman equations.

3.1 BELLMAN OPERATORS

We denote by TJ the function of x that appears in the right-hand side of
Bellman’s equation. Its value at state x is given by

(TJ)(x) = min
u∈U(x)

E

{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x. (3.1)

Also for each policy µ, we introduce the corresponding function TµJ , which
has value at x given by

(TµJ)(x) = E

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x. (3.2)

Thus T and Tµ can be viewed as operators (broadly referred to as the
Bellman operators), which map functions J to other functions (TJ or TµJ ,
respectively).†

An important property of the operators T and Tµ is that they are
monotone, in the sense that if J and J ′ are two functions of x such that

J(x) ≥ J ′(x), for all x,

then we have

(TJ)(x) ≥ (TJ ′)(x), (TµJ)(x) ≥ (TµJ ′)(x), for all x and µ.
(3.3)

This monotonicity property is evident from Eqs. (3.1) and (3.2), where the
values of J are multiplied by nonnegative numbers.

† Within the context of this work, the functions J on which T and Tµ operate

will be real-valued functions of x, which we denote by J ∈ R(X). We will
assume throughout that the expected values in Eqs. (3.1) and (3.2) are well-

defined and finite when J is real-valued. This implies that TµJ will also be

real-valued functions of x. On the other hand (TJ)(x) may take the value −∞
because of the minimization in Eq. (3.1). We allow this possibility, although our

illustrations will primarily depict the case where TJ is real-valued. Note that the

general theory of abstract DP is developed with the use of extended real-valued
functions; see [Ber22a].

Sec. 3.1 Bellman Operators 33

Another important property is that the Bellman operator Tµ is linear ,
in the sense that it has the form TµJ = G+AµJ , where G ∈ R(X) is some
function and Aµ : R(X) #→ R(X) is an operator such that for any functions
J1, J2, and scalars γ1, γ2, we have†

Aµ(γ1J1 + γ2J2) = γ1AµJ1 + γ2AµJ2.

Moreover, from the definitions (3.1) and (3.2), we have

(TJ)(x) = min
µ∈M

(TµJ)(x), for all x,

where M is the set of stationary policies. This is true because for any pol-
icy µ, there is no coupling constraint between the controls µ(x) and µ(x′)
that correspond to two different states x and x′. It follows that (TJ)(x) is
a concave function of J for every x (the pointwise minimum of linear func-
tions is a concave function). This will be important for our interpretation
of one-step and multistep lookahead minimization as a Newton iteration
for solving the Bellman equation J = TJ .

Example 3.1.1 (A Two-State and Two-Control Example)

Assume that there are two states 1 and 2, and two controls u and v. Consider
the policy µ that applies control u at state 1 and control v at state 2. Then
the operator Tµ takes the form

(TµJ)(1) =

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

, (3.4)

(TµJ)(2) =

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

, (3.5)

where pxy(u) and pxy(v) are the probabilities that the next state will be y,
when the current state is x, and the control is u or v, respectively. Clearly,
(TµJ)(1) and (TµJ)(2) are linear functions of J . Also the operator T of the
Bellman equation J = TJ takes the form

(TJ)(1) = min

[

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

,

2
∑

y=1

p1y(v)
(

g(1, v, y) + αJ(y)
)

]

,

(3.6)

† An operator Tµ with this property is often called “affine,” but in this work

we just call it “linear.” Also we use abbreviated notation to express pointwise

equalities and inequalities, so that we write J = J ′ or J ≥ J ′ to express the fact
that J(x) = J ′(x) or J(x) ≥ J ′(x), for all x, respectively.

34 An Abstract View of Reinforcement Learning Chap. 3

(TJ)(2) = min

[

2
∑

y=1

p2y(u)
(

g(2, u, y) + αJ(y)
)

,

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

]

.

(3.7)

Thus, (TJ)(1) and (TJ)(2) are concave and piecewise linear as functions of
the two-dimensional vector J (with two pieces; more generally, as many linear
pieces as the number of controls). This concavity property holds in general
since (TJ)(x) is the minimum of a collection of linear functions of J , one for
each u ∈ U(x). Figure 3.1.1 illustrates (TµJ)(1) for the cases where µ(1) = u
and µ(1) = v, (TµJ)(2) for the cases where µ(2) = u and µ(2) = v, (TJ)(1),
and (TJ)(2), as functions of J =

(

J(1), J(2)
)

.

Critical properties from the DP point of view are whether T and Tµ

have fixed points; equivalently, whether the Bellman equations J = TJ

and J = TµJ have solutions within the class of real-valued functions, and
whether the set of solutions includes J* and Jµ, respectively. It may thus
be important to verify that T or Tµ are contraction mappings. This is true
for example in the benign case of discounted problems with bounded cost
per stage. However, for undiscounted problems, asserting the contraction
property of T or Tµ may be more complicated, and even impossible; the ab-
stract DP book [Ber22a] deals extensively with such questions, and related
issues regarding the solution sets of the Bellman equations.

Geometrical Interpretations

We will now interpret the Bellman operators geometrically, starting with
Tµ. Figure 3.1.2 illustrates its form. Note here that the functions J and
TµJ are multidimensional. They have as many scalar components J(x)
and (TµJ)(x), respectively, as there are states x, but they can only be
shown projected onto one dimension. The function TµJ for each policy µ

is linear. The cost function Jµ satisfies Jµ = TµJµ, so it is obtained from
the intersection of the graph of TµJ and the 45 degree line, when Jµ is
real-valued. Later we will interpret the case where Jµ is not real-valued as
the system being unstable under µ [we have Jµ(x) = ∞ for some initial
states x].

The form of the Bellman operator T is illustrated in Fig. 3.1.3. Again
the functions J , J∗, TJ , TµJ , etc, are multidimensional, but they are
shown projected onto one dimension (alternatively they are illustrated for a
system with a single state, plus possibly a termination state). The Bellman
equation J = TJ may have one or many real-valued solutions. It may also
have no real-valued solution in exceptional situations, as we will discuss
later (see Section 3.8). The figure assumes a unique real-valued solution
of the Bellman equations J = TJ and J = TµJ , which is true if T and
Tµ are contraction mappings, as is the case for discounted problems with

Sec. 3.1 Bellman Operators 35

State 1 State 2
State 1 State 2

One-step lookahead J∗

∗ J∗(1)

(2) (TJ∗)(1) = J∗(1) (

One-step lookahead J∗

(1) J∗(2)

(1) (TJ∗)(2) = J∗(2)

Figure 3.1.1 Geometric illustrations of the Bellman operators Tµ and T for
states 1 and 2 in Example 3.1.1; cf. Eqs. (3.4)-(3.7). The problem’s transition
probabilities are: p11(u) = 0.3, p12(u) = 0.7, p21(u) = 0.4, p22(u) = 0.6, p11(v) =
0.6, p12(v) = 0.4, p21(v) = 0.9, p22(v) = 0.1. The stage costs are g(1, u, 1) =
3, g(1, u, 2) = 10, g(2, u, 1) = 0, g(2, u, 2) = 6, g(1, v, 1) = 7, g(1, v, 2) = 5,
g(2, v, 1) = 3, g(2, v, 2) = 12. The discount factor is α = 0.9, and the optimal
costs are J∗(1) = 50.59 and J∗(2) = 47.41. The optimal policy is µ∗(1) = v and
µ∗(2) = u. The figure also shows two one-dimensional slices of T that are parallel
to the J(1) and J(2) axes and pass through J∗.

36 An Abstract View of Reinforcement Learning Chap. 3

1 J J

1 J J

45◦Line

TµJ

Cost of µ

Player/Policy Jµ = TµJµ

(1) = 0

Generic stable policy
Generic stable policy µJ Generic unstable policy

Generic unstable policy µ′

Tµ′J

Figure 3.1.2 Geometric interpretation of the linear Bellman operator Tµ and
the corresponding Bellman equation. The graph of Tµ is a plane in the space
R(X) × R(X), and when projected on a one-dimensional plane that corresponds
to a single state and passes through Jµ, it becomes a line. Then there are three
cases:

(a) The line has slope less than 45 degrees, so it intersects the 45-degree line at
a unique point, which is equal to Jµ, the solution of the Bellman equation
J = TµJ . This is true if Tµ is a contraction mapping, as is the case for
discounted problems with bounded cost per stage.

(b) The line has slope greater than 45 degrees. Then it intersects the 45-
degree line at a unique point, which is a solution of the Bellman equation
J = TµJ , but is not equal to Jµ. Then Jµ is not real-valued; we will call
such µ unstable in Section 3.2.

(c) The line has slope exactly equal to 45 degrees. This is an exceptional case
where the Bellman equation J = TµJ has an infinite number of real-valued
solutions or no real-valued solution at all; we will provide examples where
this occurs in Section 3.8.

bounded cost per stage. Otherwise, these equations may have no solution
or multiple solutions within the class of real-valued functions (see Section
3.8). The equation J = TJ typically has J∗ as a solution, but may have
more than one solution in cases where either α = 1, or α < 1 and the cost
per stage is unbounded.

Sec. 3.1 Bellman Operators 37

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

45◦Line

TµJ

Cost of µ

TJ = minµ TµJ

Final Features Optimal Policy
Final Features Optimal Policy

J̃

Position Evaluation Policy µ̃ withON-LINE PLAY Lookahead Tree States

Tµ̃J̃ = T J̃

One-step lookahead

One-step lookahead Generic policy µ

= 4 Model minµ TµJ̃

Player/Policy Jµ = TµJµ

(1) = 0

Tµ̃J

ective Cost Approximation Value Space Approximation
Cost of µ̃
Jµ̃ = Tµ̃Jµ̃

Figure 3.1.3 Geometric interpretation of the Bellman operator T , and the cor-
responding Bellman equation. For a fixed x, the function (TJ)(x) can be written
as minµ(TµJ)(x), so it is concave as a function of J . The optimal cost function
J∗ satisfies J∗ = TJ∗, so it is obtained from the intersection of the graph of TJ

and the 45 degree line shown, assuming J∗ is real-valued.
Note that the graph of T lies below the graph of every operator Tµ, and is

in fact obtained as the lower envelope of the graphs of Tµ as µ ranges over the
set of policies M. In particular, for any given function J̃ , for every x, the value
(T J̃)(x) is obtained by finding a support hyperplane/subgradient of the graph of
the concave function (TJ)(x) at J = J̃, as shown in the figure. This support
hyperplane is defined by the control µ(x) of a policy µ̃ that attains the minimum
of (TµJ̃)(x) over µ:

µ̃(x) ∈ arg min
µ∈M

(TµJ̃)(x)

(there may be multiple policies attaining this minimum, defining multiple support
hyperplanes).

Example 3.1.2 (A Two-State and Infinite Controls Problem)

Let us consider the mapping T for a problem that involves two states, 1 and
2, but an infinite number of controls. In particular, the control space at both
states is the unit interval, U(1) = U(2) = [0, 1]. Here (TJ)(1) and (TJ)(2)
are given by

(TJ)(1) = min
u∈[0,1]

{

g1 + r11u
2 + r12(1− u)2 + αuJ(1) + α(1− u)J(2)

}

,

(TJ)(2) = min
u∈[0,1]

{

g2 + r21u
2 + r22(1− u)2 + αuJ(1) + α(1− u)J(2)

}

.

38 An Abstract View of Reinforcement Learning Chap. 3

State 1 State 2

One-step lookahead J∗ One-step lookahead J∗

∗ J∗(1) (1) J∗(2)

(2) (TJ∗)(1) = J∗(1) ((1) (TJ∗)(2) = J∗(2)

Figure 3.1.4 Illustration of the Bellman operator T for states 1 and 2 in Example
3.1.2. The parameter values are g1 = 5, g2 = 3, r11 = 3, r12 = 15, r21 = 9,
r22 = 1, and the discount factor is α = 0.9. The optimal costs are J∗(1) = 49.7
and J∗(2) = 40.0, and the optimal policy is µ∗(1) = 0.59 and µ∗(2) = 0. The
figure also shows the two one-dimensional slices of the operators at J(1) = 15 and
J(2) = 30 that are parallel to the J(1) and J(2) axes.

The control u at each state x = 1, 2 has the meaning of a probability that
we must select at that state. In particular, we control the probabilities u and
(1−u) of moving to states y = 1 and y = 2, at a control cost that is quadratic
in u and (1− u), respectively. For this problem (TJ)(1) and (TJ)(2) can be
calculated in closed form, so they are easy to plot and understand. They are
piecewise quadratic, unlike the corresponding plots of Fig. 3.1.1, which are
piecewise linear; see Fig. 3.1.4.

Visualization of Value Iteration

The operator notation simplifies algorithmic descriptions, derivations, and
proofs related to DP. For example, we can write the VI algorithm in the
compact form

Jk+1 = TJk, k = 0, 1, . . . ,

as illustrated in Fig. 3.1.5. Moreover, the VI algorithm for a given policy
µ can be written as

Jk+1 = TµJk, k = 0, 1, . . . ,

and it can be similarly interpreted, except that the graph of the function
TµJ is linear. Also we will see shortly that there is a similarly compact
description for the policy iteration algorithm.

To keep the presentation simple, we will focus our attention on the
abstract DP framework as it applies to the optimal control problems of Sec-
tion 2.1. In particular, we will assume without further mention that T and
Tµ have the monotonicity property (3.3), that TµJ is linear for all µ, and

Sec. 3.2 Approximation in Value Space and Newton’s Method 39

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

J0 J1

J1

J2

J2

Optimal cost Cost of rollout policy ˜

TJ

45◦Line

provement Bellman Equation Value Iterations

Stability Region 0

Figure 3.1.5 Geometric interpretation of the VI algorithm Jk+1 = TJk, start-
ing from some initial function J0. Successive iterates are obtained through the
staircase construction shown in the figure. The VI algorithm Jk+1 = TµJk for a
given policy µ can be similarly interpreted, except that the graph of the function
TµJ is linear.

that (as a consequence) the component (TJ)(x) is concave as a function of
J for every state x. We note, however, that the abstract notation facili-
tates the extension of the infinite horizon DP theory to models beyond the
ones that we discuss in this work. Such models include semi-Markov prob-
lems, minimax control problems, risk sensitive problems, Markov games,
and others (see the DP textbook [Ber12], and the abstract DP monograph
[Ber22a]).

3.2 APPROXIMATION IN VALUE SPACE AND NEWTON’S
METHOD

Let us now consider approximation in value space and an abstract geomet-
ric interpretation, first provided in the author’s book [Ber20a]. By using
the operators T and Tµ, for a given J̃ , a one-step lookahead policy µ̃ is
characterized by the equation Tµ̃J̃ = T J̃, or equivalently

µ̃(x) ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJ̃
(

f(x, u, w)
)

}

, (3.8)

as in Fig. 3.2.1. Furthermore, this equation implies that the graph of Tµ̃J

just touches the graph of TJ at J̃ , as shown in the figure.

40 An Abstract View of Reinforcement Learning Chap. 3

In mathematical terms, for each state x ∈ X , the hyperplaneHµ̃(x) ∈
R(X)×'

Hµ̃(x) =
{

(J, ξ) | (Tµ̃J)(x) = ξ
}

, (3.9)

supports from above the hypograph of the concave function (TJ)(x), i.e.,
the convex set

{

(J, ξ) | (TJ)(x) ≥ ξ
}

.

The point of support is
(

J̃ , (Tµ̃J̃)(x)
)

, and relates the function J̃ with the
corresponding one-step lookahead minimization policy µ̃, the one that sat-
isfies Tµ̃J̃ = T J̃. The hyperplane Hµ̃(x) of Eq. (3.9) defines a subgradient
of (TJ)(x) at J̃ . Note that the one-step lookahead policy µ̃ need not be
unique, since T need not be differentiable, so there may be multiple hy-
perplanes of support at J̃ . Still this construction shows that the linear
operator Tµ̃ is a linearization of the operator T at the point J̃ (pointwise
for each x).

Equivalently, for every x ∈ X , the linear scalar equation J(x) =
(Tµ̃J)(x) is a linearization of the nonlinear equation J(x) = (TJ)(x) at the
point J̃ . Consequently, the linear operator equation J = Tµ̃J is a lineariza-
tion of the equation J = TJ at J̃ , and its solution, Jµ̃, can be viewed as
the result of a Newton iteration at the point J̃ (here we adopt an expanded
view of the Newton iteration that applies to possibly nondifferentiable fixed
point equations; see the Appendix). In summary, the Newton iterate at J̃
is Jµ̃, the solution of the linearized equation J = Tµ̃J .†

† The classical Newton’s method for solving a fixed point problem of the form
y = G(y), where y is an n-dimensional vector, operates as follows: At the current
iterate yk, we linearize G and find the solution yk+1 of the corresponding linear
fixed point problem. Assuming G is differentiable, the linearization is obtained
by using a first order Taylor expansion:

yk+1 = G(yk) +
∂G(yk)

∂y
(yk+1 − yk),

where ∂G(yk)/∂y is the n × n Jacobian matrix of G evaluated at the vector
yk. The most commonly given convergence rate property of Newton’s method is
quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ ·‖ is the Euclidean norm, and holds assuming the Jacobian matrix exists,
is invertible, and is Lipschitz continuous (see the books by Ortega and Rheinboldt
[OrR70], and by the author [Ber16], Section 1.4).

There are well-studied extensions of Newton’s method that are based on
solving a linearized system at the current iterate, but relax the differentiabil-

ity requirement through alternative requirements of piecewise differentiability,

B-differentiability, and semi-smoothness, while maintaining the superlinear con-
vergence property of the method. In particular, the quadratic rate of convergence

Sec. 3.2 Approximation in Value Space and Newton’s Method 41

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l
One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost
One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0 J̃

Cost Approximation Value Space Approximation

Newton step from J̃

J̃ for solving J = TJ

Approximations Result of

also Newton Step

Off-Line Training On-Line Play
-Line Training On-Line Play

Figure 3.2.1 Geometric interpretation of approximation in value space and the
one-step lookahead policy µ̃ as a step of Newton’s method [cf. Eq. (3.8)]. Given
J̃ , we find a policy µ̃ that attains the minimum in the relation

T J̃ = min
µ

TµJ̃ .

This policy satisfies T J̃ = Tµ̃J̃ , so the graph of TJ and Tµ̃J touch at J̃ , as shown.
It may not be unique. Because TJ has concave components, the equation J = Tµ̃J

is the linearization of the equation J = TJ at J̃ [for each x, the hyperplane Hµ̃(x)
of Eq. (3.9) defines a subgradient of (TJ)(x) at J̃]. The linearized equation is
solved at the typical step of Newton’s method to provide the next iterate, which
is just Jµ̃.

The structure of the Bellman operators (3.1) and (3.2), with their
monotonicity and concavity properties, tends to enhance the convergence
and the rate of convergence properties of Newton’s method, even in the
absence of differentiability, as evidenced by the favorable Newton-related
convergence analysis of PI, and the extensive favorable experience with
rollout, PI, and MPC. In fact, the role of monotonicity and concavity in af-
fecting the convergence properties of Newton’s method has been addressed

result for differentiable G of Prop. 1.4.1 of the book [Ber16] admits a straight-

forward and intuitive extension to piecewise differentiable G, given in the paper
[KoS86]; see the Appendix, which contains references to the literature.

42 An Abstract View of Reinforcement Learning Chap. 3

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

J̃

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0

Multistep Lookahead Policy Cost l

Multistep Lookahead Policy Cost

Cost Approximation Value Space Approximation

Cost Approximation Value Space Approximation
Multistep Lookahead Policy Cost T 2J̃

Effective Cost Approximation Value Space ApproximationJ̃ for solving J = TJ

Newton step from T !−1J̃

Approximations Result of

Linear policy parameter Optimal ! = 3

also Newton Step

-Line Training On-Line PlayOff-Line Training On-Line Play

Figure 3.2.2 Geometric interpretation of approximation in value space with "-
step lookahead (in this figure " = 3). It is the same as approximation in value
space with one-step lookahead using T !−1J̃ as cost approximation. It can be
viewed as a Newton step at the point T !−1J̃ , the result of " − 1 value iterations
applied to J̃. Note that as " increases the cost function Jµ̃ of the "-step lookahead
policy µ̃ approaches more closely the optimal J∗, and that lim!→∞ Jµ̃ = J∗.

in the mathematical literature.†
As noted earlier, approximation in value space with $-step lookahead

using J̃ is the same as approximation in value space with one-step lookahead
using the ($−1)-fold operation of T on J̃ , T !−1J̃ . Thus it can be interpreted
as a Newton step starting from T !−1J̃ , the result of $ − 1 value iterations
applied to J̃ . This is illustrated in Fig. 3.2.2.‡

† See the papers by Ortega and Rheinboldt [OrR67], and Vandergraft [Van67],

the books by Ortega and Rheinboldt [OrR70], and Argyros [Arg08], and the ref-
erences cited there. In this connection, it is worth noting that in the case of

Markov games, where the concavity property does not hold, the PI method may
oscillate, as shown by Pollatschek and Avi-Itzhak [PoA69], and needs to be mod-

ified to restore its global convergence; see the author’s paper [Ber21c], and the

references cited there.
‡ We note that several variants of Newton’s method that involve combina-

tions of first-order iterative methods, such as the Gauss-Seidel and Jacobi al-

gorithms, and Newton’s method, are well-known in numerical analysis. They
belong to the general family of Newton-SOR methods (SOR stands for “succes-

Sec. 3.2 Approximation in Value Space and Newton’s Method 43

Let us also note that $-step lookahead minimization involves $ succes-
sive VI iterations, but only the first of these iterations has a Newton step
interpretation. As an example, consider two-step lookahead minimization
with a terminal cost approximation J̃ . The second step minimization is a
VI that starts from J̃ to produce T J̃ . The first step minimization is a VI
that starts from T J̃ to produce T 2J̃ , but it also does something else that
is more significant: It produces a two-step lookahead minimization policy µ̃

through Tµ̃(T J̃) = T (T J̃), and the step from T J̃ to Jµ̃ (the cost function of
µ̃) is the Newton step. Thus, there is only one policy produced (i.e., µ̃) and
only one Newton step (from T J̃ to Jµ̃). In the case of one-step lookahead
minimization, the Newton step starts from J̃ and ends at Jµ̃. Similarly, in
the case of $-step lookahead minimization, the first step of the lookahead
is the Newton step (from T !−1J̃ to Jµ̃), and whatever follows the first step
of the lookahead is preparation for the Newton step.

Finally, it is worth mentioning that the approximation in value space
algorithm computes Jµ̃ differently than both the PI method and the clas-
sical form of Newton’s method. It does not explicitly compute any values
of Jµ̃; instead, the control is applied to the system and the cost is accu-
mulated accordingly. Thus the values of Jµ̃ are implicitly computed only
for those x that are encountered in the system trajectory that is generated
on-line.

Certainty Equivalent Approximations and the Newton Step

We noted earlier that for stochastic DP problems, $-step lookahead can
be computationally expensive, because the lookahead graph expands fast
as $ increases, due to the stochastic character of the problem. The cer-
tainty equivalence approach is an important approximation idea for dealing
with this difficulty. In the classical form of this approach, some or all of
the stochastic disturbances wk are replaced by some deterministic quanti-
ties, such as their expected values. Then a policy is computed off-line for
the resulting deterministic problem, and it is used on-line for the actual
stochastic problem.

The certainty equivalence approach can also be used to expedite the
computations of the $-step lookahead minimization. One way to do this is
to simply replace each of the uncertain $ quantities wk, wk+1, . . . , wk+!−1 by
a deterministic value w. Conceptually, this replaces the Bellman operators
T and Tµ,

(TJ)(x) = min
u∈U(x)

E

{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

,

sive over-relaxation”); see the book by Ortega and Rheinboldt [OrR70] (Section

13.4). Their convergence rate is superlinear, similar to Newton’s method, as long
as they involve a pure Newton step, along with the first-order steps.

44 An Abstract View of Reinforcement Learning Chap. 3

(TµJ)(x) = E
n
g
�
x, µ(x), w

�
+ ↵J

�
f(x, µ(x), w)

�o
,

[cf. Eqs. (3.1) and (3.2)] with deterministic operators T and Tµ, given by

(TJ)(x) = min
u2U(x)

h
g(x, u, w) + ↵J

�
f(x, u, w)

�i
,

(TµJ)(x) = g
�
x, µ(x), w

�
+ ↵J

�
f(x, µ(x), w)

�
.

The resulting `-step lookahead minimization then becomes simpler; for
example, in the case of a finite control space problem, it is a deterministic
shortest path computation, involving an acyclic `-stage graph that expands
at each stage by a factor n, where n is the size of the control space. However,
this approach yields a policy µ such that

Tµ(T
`�1

J̃) = T (T
`�1

J̃),

and the cost function Jµ of this policy is generated by a Newton step,

which aims to find a fixed point of T (not T), starting from T
`�1

J̃ . Thus
the Newton step now aims at a fixed point of T , which is not equal to J*.
As a result the benefit of the Newton step is lost to a great extent.

Still, we may largely correct this di�culty, while retaining substantial
simplification, by using certainty equivalence for only the last `� 1 stages
of the `-step lookahead. This can be done with an `-step lookahead scheme
whereby only the uncertain quantities wk+1, . . . , wk+`�1 are replaced by a
deterministic value w, while wk is treated as a stochastic quantity, as first
proposed in the paper by Bertsekas and Castañon [BeC99]. In this way we
obtain a policy µ such that

Tµ(T
`�1

J̃) = T (T
`�1

J̃).

The cost function Jµ of this policy is then generated by a Newton step,

which aims to find a fixed point of T (not T), starting again from T
`�1

J̃ .
Thus the benefit of the fast convergence of Newton’s method is restored.
In fact based on insights derived from this Newton step interpretation, it
appears that the performance penalty for making the last `�1 stages of the

`-step lookahead deterministic is minimal when T
`�1

J̃ is “near” J*. At the

same time the `-step minimization T (T
`�1

J̃) involves only one stochastic
step, the first one, and hence potentially a much “thinner” lookahead graph,
than the one corresponding to the `-step minimization T `J̃ , which does not
involve any certainty equivalence-type approximations.

The preceding discussion also points to a more general approximation
idea for dealing with the onerous computational requirements of long mul-
tistep lookahead minimization. We may approximate the tail (` � 1)-step
portion T `�1J̃ of the `-step lookahead minimization with any simplified

Sec. 3.2 Approximation in Value Space and Newton’s Method 45

calculation that produces an approximation Ĵ ≈ T !−1J̃ , and then obtain
the lookahead policy µ̃ using the minimization

Tµ̃Ĵ = T Ĵ.

This type of simplification will still involve a Newton step (from Ĵ to Jµ̃),
and benefit from the corresponding fast convergence property.

Local and Global Performance Estimates Compared

The preceding Newton step interpretation of the move from J̃ (the terminal
cost function approximation) to Jµ̃ (the cost function of the lookahead
policy µ̃) suggests a superlinear performance estimate

max
x

∣

∣Jµ̃(x) − J*(x)
∣

∣ = o

(

max
x

∣

∣J̃(x) − J*(x)
∣

∣

)

.

However, this estimate is local in character. It is meaningful only when J̃ is
“close” to J*. When J̃ is far from J*, the difference maxx

∣

∣Jµ̃(x)− J*(x)
∣

∣

may be large and even infinite when µ̃ is unstable (see the discussion in the
next section).

There are global estimates for the difference

max
x

∣

∣Jµ̃(x) − J*(x)
∣

∣

for several types of problems, including the upper bound

max
x

∣

∣Jµ̃(x) − J*(x)
∣

∣ ≤
2α!

1− α
max
x

∣

∣J̃(x)− J*(x)
∣

∣

for $-step lookahead, and α-discounted problems where all the Bellman op-
erators Tµ are contraction mappings; see the neurodynamic programming
book [BeT96] (Section 6.1, Prop. 6.1), or the RL book [Ber20a] (Section
5.4, Prop. 5.4.1). These books also contain other related global estimates,
which hold for all J̃ , both close and far from J*. However, these global
estimates tend to be overly conservative and not representative of the per-
formance of approximation in value space schemes when J̃ is near J*. For
example, for finite spaces α-discounted MDP, µ̃ can be shown to be optimal
when maxx

∣

∣J̃(x) − J*(x)
∣

∣ is sufficiently small; this can also be seen from
the fact that the components (TJ)(x) of the Bellman operator are not only
concave but also piecewise linear, so Newton’s method converges finitely.
For a further comparative discussion of local and global error bounds, we
refer to Appendix A.

46 An Abstract View of Reinforcement Learning Chap. 3

J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ45◦Line

Instability Region Stability Region 0Instability Region

Tµ̃J

J̃ Jµ̃Without the Newton Step Base Player Threshold

Figure 3.3.1 Illustration of the regions of stability and instability for approxi-
mation in value space with one-step lookahead. The stability region is the set of
all J̃ such that the policy µ̃ obtained from the one-step lookahead minimization
Tµ̃J̃ = T J̃ satisfies Jµ̃(x) < ∞ for all x.

3.3 REGION OF STABILITY

For any control system design method, the stability of the policy obtained
is of paramount importance. It is thus essential to investigate and verify
the stability of controllers obtained through approximation in value space
schemes. Historically, there have been several proposed definitions of sta-
bility in control theory. Within the context of this work, our focus on
stability issues will be for problems with a termination state t, which is
cost-free, and with a cost per stage that is positive outside the termina-
tion state, such as the undiscounted positive cost deterministic problem
introduced earlier (cf. Section 2.1). Moreover, it is best for our purposes to
adopt an optimization-based definition. In particular, we say that a policy
µ is unstable if Jµ(x) = ∞ for some states x. Equivalently, we say that
the policy µ stable if Jµ(x) < ∞ for all states x. This definition has the
advantage that it applies to general state and control spaces. Naturally, it
can be made more specific in particular problem instances.†

† For the undiscounted positive cost deterministic problem introduced earlier

(cf. Section 2.1), it can be shown that if a policy µ is stable, then Jµ is the “small-

est” solution of the Bellman equation J = TµJ within the class of nonnegative
real-valued functions, and under mild assumptions it is the unique solution of

Sec. 3.3 Region of Stability 47

In the context of approximation in value space we are interested in
the region of stability, which is the set of cost function approximations
J̃ ∈ R(X) for which the corresponding one-step or multistep lookahead
policies µ̃ are stable. For discounted problems with bounded cost per stage,
all policies have real-valued cost functions, so questions of stability do not
arise. In general, however, the region of stability may be a strict subset
of the set of real-valued functions; this will be illustrated later for the
undiscounted deterministic case of the linear quadratic problem of Section
2.1 (cf. Example 2.1.1). Figure 3.3.1 illustrates the region of stability for
approximation in value space with one-step lookahead.

An interesting observation from Fig. 3.3.1 is that if J̃ does not be-
long to the region of stability and µ̃ is a corresponding one-step lookahead
unstable policy, the Bellman equation J = Tµ̃J may have real-valued so-
lutions. However, these solutions will not be equal to Jµ̃, as this would
violate the definition of region of stability. Generally, if Tµ is not a con-
traction mapping, Tµ may have real-valued fixed points, none of which is
equal to Jµ.

Figure 3.3.2 illustrates the region of stability for the case of multistep
lookahead minimization. The insights from this figure are similar to the
one-step lookahead case of Fig. 3.3.1. However, the figure indicates that
the region of stability of the $-step lookahead controller µ̃ depends on $, and
tends to become larger as $ increases . The reason is that $-step lookahead
with terminal cost J̃ is equivalent to one-step lookahead with terminal cost
T !−1J̃ , which tends to be closer to the optimal cost function J* than J̃

(assuming convergence of the VI method).

How Can We Obtain Function Approximations J̃ Within the
Region of Stability?

Naturally, identifying and obtaining cost function approximations J̃ that
lie within the region of stability with either one-step or multistep lookahead
is very important within our context. We will focus on this question for
the special case where the expected cost per stage is nonnegative

E
{

g(x, u, w)
}

≥ 0, for all x, u ∈ U(x),

and assume that J* is real-valued. This is the case of most interest in model
predictive control, but also arises in other problems of interest, including
stochastic shortest path problems that involve a termination state.

From Fig. 3.3.2 it can be conjectured that if the sequence {T kJ̃} gen-
erated by the VI algorithm converges to J* for all J̃ such that 0 ≤ J̃ ≤ J*

J = TµJ within the class of nonnegative real-valued functions J with J(t) = 0;

see the author’s paper [Ber17b]. Moreover, if µ is unstable, then the Bellman

equation J = TµJ has no solution within the class of nonnegative real-valued
functions.

48 An Abstract View of Reinforcement Learning Chap. 3

J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Instability Region Stability Region 0Instability Region

45◦Line

J̃ T J̃J̃

= 3 ! = 2

Without the Newton Step Base Player Threshold

Figure 3.3.2 Illustration of the regions of stability and instability for approxima-
tion in value space with "-step lookahead minimization. The stability region is the
set of all J̃ for which the policy µ̃ such that T !J̃ = Tµ̃T

!−1J̃ satisfies Jµ̃(x) < ∞

for all x (the figure shows the case " = 2). The region of instability tends to be
reduced as " increases.

(which is true under very general conditions; see [Ber12], [Ber22a]), then
T !−1J̃ belongs to the region of stability for sufficiently large $. Related
ideas have been discussed in the adaptive DP literature by Liu and his col-
laborators [HWL21], [LXZ21], [WLL16], and by Heydari [Hey17], [Hey18],
who provide extensive references; see also Winnicki et al. [WLL21]. We
will revisit this issue in the context of linear quadratic problems. This
conjecture is generally true, but requires that, in addition to J*, all func-
tions J̃ within a neighborhood of J* belong to the region of stability. Our
subsequent discussion will aim to address this difficulty.

An important fact for our nonnegative cost problem context is that
the region of stability includes all real-valued nonnegative functions J̃ such
that

T J̃ ≤ J̃ . (3.10)

Indeed if µ̃ is the corresponding one-step lookahead policy, we have

Tµ̃J̃ = T J̃ ≤ J̃ ,

and from a well-known result on nonnegative cost infinite horizon problems
[see [Ber12], Prop. 4.1.4(a)], it follows that

Jµ̃ ≤ J̃ ;

Sec. 3.3 Region of Stability 49

(the proof argument is that if Tµ̃J̃ ≤ J̃ then T
k+1

µ̃ J̃ ≤ T k
µ̃ J̃ for all k, so,

using also the fact 0 ≤ J̃ , the limit of T k
µ̃ J̃ , call it J∞, satisfies Jµ̃ ≤ J∞ ≤

J̃). Thus if J̃ is nonnegative and real-valued, Jµ̃ is also real-valued, so µ̃ is
stable. It follows that J̃ belongs to the region of stability. This is a known
result in specific contexts, such as MPC (see the book by Rawlings, Mayne,
and Diehl [RMD17], Section 2.4, which contains extensive references to
prior work on stability issues).

An important special case where the condition T J̃ ≤ J̃ is satisfied is
when J̃ is the cost function of a stable policy, i.e., J̃ = Jµ. Then we have
that Jµ is real-valued and satisfies TµJµ = Jµ, so it follows that TJµ ≤ Jµ.
This case relates to the rollout algorithm and shows that rollout with a
stable policy yields a stable lookahead policy . It also suggests that if µ is
stable, then Tm

µ J̃ belongs to the region of stability for sufficiently large m.
Besides Jµ, with stable µ, and J*, there are other interesting functions

J̃ satisfying the stability condition T J̃ ≤ J̃ . In particular, let β be a scalar
with β > 1, and for a stable policy µ, consider the β-amplified operator
Tµ,β defined by

(Tµ,βJ)(x) = E

{

βg
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x.

Then it can be seen that the function

Jµ,β = βJµ

is a fixed point of Tµ,β and satisfies TJµ,β ≤ Jµ,β . This follows by writing

Jµ,β = Tµ,βJµ,β ≥ TµJµ,β ≥ TJµ,β. (3.11)

Thus Jµ,β lies within the region of stability, and lies “further to the right” of
Jµ. Thus we may conjecture that it can be more reliably approximated by
Tm
µ,βJ̃ than Jµ is approximated by Tm

µ J̃ in the context of m-step truncated
rollout.

To illustrate this fact, consider a stable policy µ, and assume that the
expected cost per stage at states other than a termination state t (if one
exists) is bounded away from 0, i.e.,

C = min
x &=t

E

{

g
(

x, µ(x), w
)

}

> 0.

Then we claim that given a scalar β > 1, any function Ĵ ∈ R(X) with
Ĵ(t) = 0, that satisfies

max
x

∣

∣Ĵ(x) − Jµ,β(x)
∣

∣ ≤ δ, for all x, (3.12)

where

δ =
(β − 1)C

1 + α
,

50 An Abstract View of Reinforcement Learning Chap. 3

also satisfies the stability condition T Ĵ ≤ Ĵ . From this it follows that for
a given nonnegative and real-valued J̃ , and for sufficiently large m, so that
the function Ĵ = Tm

µ,βJ̃ satisfies Eq. (3.12), we have that Ĵ lies within the
region of stability.

To see this, note that for all x += t, we have

Jµ,β(x) = βE

{

g
(

x, µ(x), w
)

}

+ αE

{

Jµ,β
(

f(x, µ(x), w)
)

}

,

so that by using Eq. (3.12), we have

Ĵ(x) + δ ≥ βE

{

g
(

x, µ(x), w
)

}

+ αE

{

Ĵ
(

f(x, µ(x), w)
)

}

− αδ.

It follows that

Ĵ(x) ≥ E

{

g
(

x, µ(x), w
)

}

+ αE

{

Ĵ
(

f(x, µ(x), w)
)

}

+ (β − 1)E
{

g
(

x, µ(x), w
)

}

− (1 + α)δ

≥ E

{

g
(

x, µ(x), w
)

}

+ αE

{

Ĵ
(

f(x, µ(x), w)
)

}

+ (β − 1)C − (1 + α)δ

= (TµĴ)(x)

≥ (T Ĵ)(x),

so the stability condition T Ĵ ≤ Ĵ is satisfied.
Similarly the function

J*
β = βJ*

is a fixed point of the operator Tβ defined by

(TβJ)(x) = min
u∈U(x)

E

{

βg(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x.

It can be seen, using an argument similar to Eq. (3.11), that J*
β satisfies

TJ*
β ≤ J*

β , so it lies within the region of stability. Furthermore, similar to

the case of truncated rollout discussed earlier, we may conjecture that J*
β

can be more reliably approximated by T
!−1

β J̃ than J* is approximated by

T !−1J̃ in the context of $-step lookahead.

3.4 POLICY ITERATION, ROLLOUT, AND NEWTON’SMETHOD

Another major class of infinite horizon algorithms is based on policy itera-
tion (PI for short), which involves the repeated use of policy improvement,
in analogy with the AlphaZero/TD-Gammon off-line training algorithms,

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 51

Rollout Policy µ̃

Jµ

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

Jµ instead of J*

Bellman Eq. with

Policy Evaluation Policy Improvement Rollout Policy ˜
Policy Evaluation Policy Improvement Rollout Policy ˜

x µ

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Figure 3.4.1 Schematic illustration of PI as repeated rollout. It generates a
sequence of policies, with each policy µ in the sequence being the base policy that
generates the next policy µ̃ in the sequence as the corresponding rollout policy.

described in Chapter 1. Each iteration of the PI algorithm starts with a
stable policy (which we call current or base policy), and generates another
stable policy (which we call new or rollout policy, respectively). For the in-
finite horizon problem of Section 2.1, given the base policy µ, the iteration
consists of two phases (see Fig. 3.4.1):

(a) Policy evaluation, which computes the cost function Jµ. One possi-
bility is to solve the corresponding Bellman equation

Jµ(x) = E

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(3.13)
However, the value Jµ(x) for any x can also be computed by Monte
Carlo simulation, by averaging over many randomly generated trajec-
tories the cost of the policy starting from x. Other, more sophisticated
possibilities include the use of specialized simulation-based methods,
such as temporal difference methods , for which there is extensive lit-
erature (see e.g., the books [BeT96], [SuB98], [Ber12]).

(b) Policy improvement , which computes the rollout policy µ̃ using the
one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

(3.14)
It is generally expected (and can be proved under mild conditions)
that the rollout policy is improved in the sense that

Jµ̃(x) ≤ Jµ(x), for all x.

Proofs of this fact in a variety of contexts can be found in most DP
books, including the author’s [Ber12], [Ber18a], [Ber19a], [Ber20a],
[Ber22a].

Thus PI generates a sequence of stable policies {µk}, by obtaining
µk+1 through a policy improvement operation using Jµk in place of Jµ

52 An Abstract View of Reinforcement Learning Chap. 3

in Eq. (3.14), which is obtained through policy evaluation of the preced-
ing policy µk using Eq. (3.13). It is well known that (exact) PI has solid
convergence properties; see the DP textbooks cited earlier, as well as the
author’s RL book [Ber19a]. These properties hold even when the method
is implemented (with appropriate modifications) in unconventional com-
puting environments, involving asynchronous distributed computation, as
shown in a series of papers by Bertsekas and Yu [BeY10], [BeY12], [YuB13].

In terms of our abstract notation, the PI algorithm can be written
in a compact form. For the generated policy sequence {µk}, the policy
evaluation phase obtains Jµk from the equation

Jµk = TµkJµk , (3.15)

while the policy improvement phase obtains µk+1 through the equation

Tµk+1Jµk = TJµk . (3.16)

As Fig. 3.4.2 illustrates, PI can be viewed as Newton’s method for solv-
ing the Bellman equation in the function space of cost functions J . In
particular, the policy improvement Eq. (3.16) is the Newton step starting
from Jµk , and yields µk+1 as the corresponding one-step lookahead/rollout
policy. Figure 3.4.3 illustrates the rollout algorithm, which is just the first
iteration of PI.

In contrast to approximation in value space, the interpretation of PI
in terms of Newton’s method has a long history. We refer to the original
works for linear quadratic problems by Kleinman [Klei68],† and for finite-
state infinite horizon discounted and Markov game problems by Pollatschek
and Avi-Itzhak [PoA69] (who also showed that the method may oscillate
in the game case). Subsequent works, which discuss algorithmic varia-
tions and approximations, include Hewer [Hew71], Puterman and Brumelle
[PuB78], [PuB79], Santos and Rust [SaR04], Bokanowski, Maroso, and Zi-
dani [BMZ09], Hylla [Hyl11], Magirou, Vassalos, and Barakitis [MVB20],
Bertsekas [Ber21c], and Kundu and Kunitsch [KuK21]. Some of these
papers address broader classes of problems (such as continuous-time opti-
mal control, minimax problems, and Markov games), and include superlin-
ear convergence rate results under various (often restrictive) assumptions,
as well as PI variants. Early related works for control system design in-
clude Saridis and Lee [SaL79], Beard [Bea95], and Beard, Saridis, and Wen
[BSW99].

† This was part of Kleinman’s Ph.D. thesis [Kle67] at M.I.T., supervised by
M. Athans. Kleinman gives credit for the one-dimensional version of his results to

Bellman and Kalaba [BeK65]. Note also that the first proposal of the PI method

was given by Bellman in his classic book [Bel57], under the name “approximation
in policy space.”

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 53

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Optimal cost Cost of rollout policy ˜

Policy Evaluation for
Policy Evaluation for µk

and for µk+1

Cost of µkCost of µk+1

J
µk = T

µkJµkJ
µk+1 = T

µk+1Jµk+1

Linearized Bellman Eq. at
Linearized Bellman Eq. at J

µk

also Newton Step

Figure 3.4.2 Geometric interpretation of a policy iteration. Starting from the
stable current policy µk, it evaluates the corresponding cost function J

µ
k , and

computes the next policy µk+1 according to

T
µ
k+1J

µ
k = TJ

µ
k .

The corresponding cost function J
µ
k+1 is obtained as the solution of the linearized

equation J = T
µ
k+1J , so it is the result of a Newton step for solving the Bellman

equation J = TJ , starting from J
µ
k . Note that in policy iteration, the Newton

step always starts at a function Jµ, which satisfies Jµ ≥ J∗ as well as TJµ ≤ Jµ

(cf. our discussion on stability in Section 3.3).

Rollout

Generally, rollout with a stable base policy µ can be viewed as a single
iteration of Newton’s method starting from Jµ, as applied to the solution
of the Bellman equation (see Fig. 3.4.3). Note that rollout/policy improve-
ment is applied just at the current state during real-time operation of the
system. This makes the on-line implementation possible, even for prob-
lems with very large state space, provided that the policy evaluation of the
base policy can be done on-line as needed. For this we often need on-line
deterministic or stochastic simulation from each of the states xk generated
by the system in real time.

As Fig. 3.4.3 illustrates, the cost function of the rollout policy Jµ̃ is
obtained by constructing a linearized version of Bellman’s equation at Jµ
(its linear approximation at Jµ), and then solving it. If the function TJ

is nearly linear (i.e., has small “curvature”) the rollout policy performance

54 An Abstract View of Reinforcement Learning Chap. 3

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1
1 J J

Cost-to-go approximation Expected value approximation TµJ

Cost-to-go approximation Expected value approximation
Jµ = TµJµJµ̃ = Tµ̃Jµ̃

Policy Improvement with Base Policy
Policy Improvement with Base Policy µ

Linearized Bellman Eq. at Jµ
Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Optimal cost Cost of rollout policy ˜

Optimal cost Cost of rollout policy µ̃Optimal cost Cost of rollout policy ˜ Cost of base policy µ

Policy Evaluation for
Policy Evaluation for µ and for ˜

µ and for µ̃

also Newton Step

Figure 3.4.3 Geometric interpretation of rollout. Each policy µ defines the linear
function TµJ of J , given by Eq. (3.2), and TJ is the function given by Eq. (3.1),
which can also be written as TJ = minµ TµJ . The figure shows a policy iteration
starting from a base policy µ. It computes Jµ by policy evaluation (by solving the
linear equation J = TµJ as shown). It then performs a policy improvement using
µ as the base policy to produce the rollout policy µ̃ as shown: the cost function
of the rollout policy, Jµ̃, is obtained by solving the version of Bellman’s equation
that is linearized at the point Jµ, as in Newton’s method.

Jµ̃(x) is very close to the optimal J*(x), even if the base policy µ is far
from optimal. This explains the large cost improvements that are typically
observed in practice with the rollout algorithm.

An interesting question is how to compare the rollout performance
Jµ̃(x) for a given initial state x, with the base policy performance Jµ(x).
Clearly, we would like Jµ(x) − Jµ̃(x) to be large, but this is not the right
way to look at cost improvement. The reason is that Jµ(x)− Jµ̃(x) will be
small if its upper bound, Jµ(x) − J*(x), is small, i.e., if the base policy is
close to optimal. What is important is that the error ratio

Jµ̃(x)− J*(x)

Jµ(x)− J*(x)
(3.17)

is small. Indeed, this ratio becomes smaller as Jµ(x)− J*(x) approaches 0
because of the superlinear convergence rate of Newton’s method that un-
derlies the rollout algorithm (cf. Fig. 3.4.3). Unfortunately, it is hard to
evaluate this ratio, since we do not know J*(x). On the other hand, we

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 55

∗ TJ

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Cost-to-go approximation Expected value approximation TµJ

Optimal cost Cost of rollout policy ˜

J̃

Cost of Truncated Rollout Policy ˜
Cost of Truncated Rollout Policy µ̃

Stability Region 0 Tm
µ J̃J̃ Jµ̃

Yields Truncated Rollout Policy µ̃

Yields Truncated Rollout Policy ˜ Defined by

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy ˜

1 J J
= 2 m = 4

also Newton Step

Figure 3.4.4 Geometric interpretation of truncated rollout with one-step looka-
head minimization, m value iterations with the base policy µ, and a terminal cost
function approximation J̃ (here m = 4).

should not be underwhelmed if we observe a small performance improve-
ment Jµ(x) − Jµ̃(x): the reason may be that the base policy is already
near-optimal, and in fact we are likely doing very well in terms of the ratio
(3.17).

Truncated Rollout and Optimistic Policy Iteration

Variants of rollout may involve multistep lookahead, truncation, and termi-
nal cost function approximation, as in the case of AlphaZero/TD-Gammon,
cf. Chapter 1. These variants admit geometric interpretations that are sim-
ilar to the ones given earlier; see Fig. 3.4.4. Truncated rollout uses m VIs
with the base policy µ and a terminal cost function approximation J̃ to
approximate the cost function Jµ.

In the case of one-step lookahead, the truncated rollout policy µ̃ is
defined by

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃), (3.18)

i.e., µ̃ attains the minimum when the Bellman operator T is applied to the
function Tm

µ J̃ (the cost obtained by using the base policy µ for m steps
followed by terminal cost approximation J̃); see Fig. 3.4.4. In the case of
$-step lookahead, the truncated rollout policy µ̃ is defined by

Tµ̃(T !−1Tm
µ J̃) = T (T !−1Tm

µ J̃). (3.19)

56 An Abstract View of Reinforcement Learning Chap. 3

Truncated rollout is related to a variant of PI called optimistic. This
variant approximates the policy evaluation step by using m value iterations
using the base policy µ; see [BeT96], [Ber12], [Ber19a] for a more detailed
discussion of this relation. A method that is related to optimistic PI is
the λ-PI method, which is related to the proximal algorithm of convex
analysis, and is discussed in several of the author’s books ([BeT96], [Ber12],
[Ber20a], [Ber22a]), and papers (BeI96], [Ber15], [Ber18d]), and can also
be used to define the one-step lookahead policy in place of Eq. (3.18). In
particular, Section 6 of the paper [Ber18d] is focused on λ-PI methods,
which serve as approximations to the ordinary PI/Newton methods for
finite-state discounted and SSP problems.

As noted earlier, variants of Newton’s method that involve multi-
ple fixed point iterations, before and after each Newton step, but without
truncated rollout, i.e.,

Tµ̃(T !−1J̃) = T (T !−1J̃), (3.20)

are well-known. The classical numerical analysis book by Ortega and
Rheinboldt [OrR70] (Sections 13.3 and 13.4) provides various convergence
results, under assumptions that include differentiability and convexity of
the components of T , and nonnegativity of the inverse Jacobian of T . These
assumptions, particularly differentiability, may not be satisfied within our
DP context. Moreover, for methods of the form (3.20), the initial point
must satisfy an additional assumption, which ensures that the convergence
to J* is monotonic from above (in this case, if in addition the Jacobian of
T is isotone, an auxiliary sequence can be constructed that converges to J*

monotonically from below; see [OrR70], 13.3.4, 13.4.2). This is similar to
existing convergence results for the optimistic PI method in DP; see e.g.,
[BeT96], [Ber12].

Geometrical interpretations such as the ones of Fig. 3.4.4 suggest,
among others, that:

(a) The cost improvement Jµ − Jµ̃, from base to rollout policy, tends to
become larger as the length $ of the lookahead increases.

(b) Truncated rollout with $-step lookahead minimization, followed by m

steps of a base policy µ, and then followed by terminal cost function
approximation J̃ may be viewed, under certain conditions, as an eco-
nomic alternative to ($+m)-step lookahead minimization using J̃ as
terminal cost function approximation.

Figure 3.4.5 illustrates in summary the approximation in value space
scheme with $-step lookahead minimization and m-step truncated rollout
[cf. Eq. (3.19)], and its connection to Newton’s method. This figure indi-
cates the parts that are ordinarily associated with on-line play and off-line
training, and parallels our earlier Fig. 1.2.1, which applies to AlphaZero,
TD-Gammon, and related on-line schemes.

Sec. 3.4 Policy Iteration, Rollout, and Newton’s Method 57

Base Heuristic Truncated Rollout

Base Heuristic Truncated Rollout

. . .Current Position xk

ON-LINE PLAY

ON-LINE PLAY

OFF-LINE TRAINING

OFF-LINE TRAININGON-LINE PLAY Lookahead Tree States xk+1

Current Position

States xk+2

NEWTON STEP

NEWTON STEP

NEWTON STEP for Bellman Eq.

2-Step Lookahead Minimization

Off-Line Obtained Player O
6 13 14 24 27 by Rollout by Simulation Base Policy Cost Function

Cost Function Approximation
Cost Function Approximation J̃

Enhancements to the Starting Point of Newton Step
Enhancements to the Starting Point of Newton Step

e.g., !− 1 Lookahead Minimization Steps
1 Lookahead Minimization Steps m Steps of Rollout

Multistep Lookahead Policy Cost !-Step Lookahead

Steps m Steps

Figure 3.4.5 Illustration of the approximation in value space scheme with "-
step lookahead minimization (" = 2 in the figure) and m-step truncated rollout
[cf. Eq. (3.19)], and its connection to Newton’s method. The Newton step for
solving the Bellman equation J∗ = TJ∗ corresponds to the first (out of " steps
of) lookahead minimization. The remaining "−1 steps of lookahead minimization
(VI iterations), and the m truncated rollout steps (VI iterations with the base
policy), improve the starting point of the Newton step, from its off-line-obtained
cost function approximation J̃ .

Lookahead Length Issues in Truncated Rollout

A question of practical interest is how to choose the lookahead lengths $ and
m in truncated rollout schemes. It is clear that large values $ for lookahead
minimization are beneficial (in the sense of producing improved lookahead
policy cost functions Jµ̃), since additional VI iterations bring closer to J*

the starting point T !−1J̃ of the Newton step. Note, however, that while
long lookahead minimization is computationally expensive (its complexity
increases exponentially with $), it is only the first stage of the multistep
lookahead that contributes to the Newton step, while the remaining $ − 1
steps are far less effective first order/VI iterations.

Regarding the value of m, long truncated rollout brings the starting
point for the Newton step closer to Jµ, but not necessarily closer to J*,
as indicated by Fig. 3.4.4. Indeed computational experiments suggest that
increasing values for m may be counterproductive beyond some threshold,
and that this threshold generally depends on the problem and the ter-
minal cost approximation J̃ ; see also our subsequent discussion for linear
quadratic problems in Section 4.6. This is also consistent with long stand-

58 An Abstract View of Reinforcement Learning Chap. 3

ing experience with optimistic policy iteration, which is closely connected
with truncated rollout, as noted earlier. Unfortunately, however, there is
no analysis that can illuminate this issue, and the available error bounds
for truncated rollout (see [Ber19a], [Ber20a]) are conservative and provide
limited guidance in this regard.

Another important fact to keep in mind is that the truncated roll-
out steps are much less demanding computationally than the lookahead
minimization steps. Thus, with other concerns weighing equally, it is com-
putationally preferable to use large values of m rather than large values
of $ (this was the underlying motivation for truncated rollout in Tesauro’s
TD-Gammon [TeG96]). On the other hand, while large values of m may be
computationally tolerable in some cases, it is possible that even relatively
small values of m can be computationally prohibitive. This is especially
true for stochastic problems where the width of the lookahead graph tends
to grow quickly.

An interesting property, which holds in some generality, is that trun-
cated rollout with a stable policy has a beneficial effect on the stability prop-
erties of the lookahead policy. The reason is that the cost function Jµ of
the base policy µ lies well inside the region of stability, as noted in Section
3.2. Moreover value iterations with µ (i.e., truncated rollout) tend to push
the starting point of the Newton step towards Jµ. Thus a sufficient number
of these value iterations will bring the starting point of the Newton step
within the region of stability.

The preceding discussion suggests the following qualitative question:
is lookahead by rollout an economic substitute for lookahead by minimiza-
tion? The answer to this seems to be a qualified yes: for a given compu-
tational budget, judiciously balancing the values of m and $ tends to give
better lookahead policy performance than simply increasing $ as much as
possible, while setting m = 0 (which corresponds to no rollout). This is
consistent with intuition obtained through geometric constructions such as
Fig. 3.4.4, but it is difficult to establish conclusively. We discuss this issue
further in Section 4.6 for the case of linear quadratic problems.

3.5 HOW SENSITIVE IS ON-LINE PLAY TO THE OFF-LINE
TRAINING PROCESS?

An important issue to consider in approximation in value space is errors
in the one-step or multistep minimization, or in the choice of terminal cost
approximation J̃ . Such errors are often unavoidable because the control
constraint set U(x) is infinite, or because the minimization is simplified
for reasons of computational expediency (see our subsequent discussion of
multiagent problems). Moreover, to these errors, we may add the effect
of errors due to rollout truncation, and errors due to changes in problem
parameters, which are reflected in changes in Bellman’s equation (see our
subsequent discussion of robust and adaptive control).

Sec. 3.5 How Sensitive is On-Line Play? 59

Base Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value Space

Base Policy Rollout Policy Approximation in Value SpaceBase Policy Rollout Policy Approximation in Value Space
Base Policy Rollout Policy Approximation in Value SpaceApproximation in Policy Space

Cost Data Policy Data System:

x µ

Rollout Policy µ̃

Value Network Policy Network Value Data

-Step Value Network Policy Network-Step Value Network Policy Network

Figure 3.5.1 Schematic illustration of approximate PI. Either the policy evalu-
ation and policy improvement phases (or both) are approximated with a value or
a policy network, respectively. These could be neural networks, which are trained
with (state, cost function value) data that is generated using the current base
policy µ, and with (state, rollout policy control) data that is generated using the
rollout policy µ̃.

Note that there are three different types of approximate implementation
involving: 1) a value network but no policy network (here the value network
defines a policy via one-step or multistep lookahead), or 2) a policy network but
no value network (here the policy network has a corresponding value function
that can be computed by rollout), or 3) both a policy and a value network (the
approximation architecture of AlphaZero is a case in point).

Under these circumstances the linearization of the Bellman equation
at the point J̃ in Fig. 3.4.4 is perturbed, and the corresponding point Tm

µ J̃

in Fig. 3.4.4 is also perturbed. However, the effect of these perturbations
tends to be mitigated by the Newton step that produces the policy µ̃ and
the corresponding cost function Jµ̃. The Newton step has a superlinear con-
vergence property, so for an O(ε)-order error [i.e., O(ε)/ε stays bounded as
ε → 0] in the calculation of Tm

µ J̃ , the error in Jµ̃ will be of the much smaller
order o(ε) [i.e., o(ε)/ε → 0 as ε → 0], when Jµ̃ is near J*.† This is a sig-
nificant insight, as it suggests that extreme accuracy and fine-tuning of the
choice of J̃ may not produce significant effects in the resulting performance
of the one-step and particularly a multistep lookahead policy; see also the
quantitative analysis for linear quadratic problems in Section 4.5.

Approximate Policy Iteration and Implementation Errors

Both policy evaluation and policy improvement can be approximated, pos-
sibly by using training with data and approximation architectures, such as
neural networks; see Fig. 3.5.1. Other approximations include simulation-
based methods such as truncated rollout, and temporal difference methods

† A rigorous proof of this requires differentiability of T at J̃ . Since T is
differentiable at almost all points J , the sensitivity property just stated, will

likely hold in practice even if T is not differentiable. See the appendix, which

also compares global and local error bounds for approximation in value space,
and for approximate PI (cf. Sections A.3 and A.4)

60 An Abstract View of Reinforcement Learning Chap. 3

for policy evaluation, which involve the use of basis functions. Moreover,
multistep lookahead may be used in place of one-step lookahead, and sim-
plified minimization, based for example on multiagent rollout, may also be
used. Let us also mention the possibility of a combined rollout and PI algo-
rithm, whereby we use PI for on-line policy improvement of the base policy,
by using data collected during the rollout process. This idea is relatively
new and has not been tested extensively; see the subsequent discussion in
Section 3.8 and the author’s paper [Ber21a].

Long-standing practical experience with approximate PI is consistent
with the view of the effect of implementation errors outlined above, and
suggests that substantial changes in the policy evaluation and policy im-
provement operations often have small but largely unpredictable effects on
the performance of the policies generated. For example, when TD(λ)-type
methods are used for policy evaluation, the choice of λ has a large effect
on the corresponding policy cost function approximations, but often has
little and unpredictable effect on the performance of the generated policies
through on-line play. A plausible conjecture here is that the superlinear
convergence property of the exact Newton step “smooths out” the effect of
off-line approximation errors.

3.6 WHY NOT JUST TRAIN A POLICY NETWORK AND USE
IT WITHOUT ON-LINE PLAY?

This is a sensible and common question, which stems from the mindset that
neural networks have extraordinary function approximation properties. In
other words, why go through the arduous on-line process of lookahead min-
imization, if we can do the same thing off-line and represent the lookahead
policy with a trained policy network? More generally, it is possible to use
approximation in policy space, a major alternative approach to approxima-
tion in value space, whereby we select the policy from a suitably restricted
class of policies, such as a parametric class of the form µ(x, r), where r is
a parameter vector. We may then estimate r using some type of off-line
training process. There are quite a few methods for performing this type of
training, such as policy gradient and random search methods (see the books
[SuB18] and [Ber19a] for an overview). Alternatively, some approximate
DP or classical control system design method may be used.

An important advantage of approximation in policy space is that once
the parametrized policy is obtained, the on-line computation of controls
µ(x, r) is often much faster compared with on-line lookahead minimiza-
tion. For this reason, approximation in policy space can be used to provide
an approximate implementation of a known policy (no matter how ob-
tained) for the purpose of convenient use. On the negative side, because
parametrized approximations often involve substantial calculations, they
are not well suited for on-line replanning.

Sec. 3.7 Multiagent Problems and Multiagent Rollout 61

-1 -0.8 -0.6 -0.4 -0.2 0
0

2

4

6

8

10

12

Linear policy parameter

Without the Newton Step

With the Newton Step

Linear policy parameter Optimal

Figure 3.6.1 Illustration of the performance enhancement obtained by rollout
with an off-line trained base policy for the linear quadratic problem. Here the
system equation is xk+1 = xk +2uk, and the cost function parameters are q = 1,
r = 0.5. The optimal policy is µ∗(x) = L∗x with L∗ ≈ −0.4, and the optimal
cost function is J∗(x) = K∗x2, where K∗ ≈ 1.1. We consider policies of the form
µ(x) = Lx, where L is the parameter, with cost function of the form Jµ(x) =
KLx

2. The figure shows the quadratic cost coefficient differences KL − K∗ and
K

L̃
−K∗ as a function of L, where KL and K

L̃
are the quadratic cost coefficients

of µ (without one-step lookahead/Newton step) and the corresponding one-step
lookahead policy µ̃ (with one-step lookahead/Newton step).

From our point of view in this book, there is another important reason
why approximation in value space is needed on top of approximation in
policy space: the off-line trained policy may not perform nearly as well as
the corresponding one-step or multistep lookahead/rollout policy, because it
lacks the extra power of the associated exact Newton step (cf. our discussion
of AlphaZero and TD-Gammon in Chapter 1). Figure 3.6.1 illustrates this
fact with a one-dimensional linear-quadratic example, and compares the
performance of a linear policy, defined by a scalar parameter, with its
corresponding one-step lookahead policy.

3.7 MULTIAGENT PROBLEMS AND MULTIAGENT ROLLOUT

A major difficulty in the implementation of value space approximation with
one-step lookahead is the minimization operation over U(x) at a state x.
When U(x) is infinite, or even when it is finite but has a very large number
of elements, the minimization may become prohibitively time consuming.
In the case of multistep lookahead the computational difficulty becomes
even more acute. In this section we discuss how to deal with this difficulty
when the control u consists of m components, u = (u1, . . . , um), with a
separable control constraint for each component, u! ∈ U!(x), $ = 1, . . . ,m.

62 An Abstract View of Reinforcement Learning Chap. 3

2 Agent 1 Agent

State InfoState Info State Info

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5

Agent 2 Agent 3 Agent 4 Agent 5 Environment Computing Cloud
Environment Computing Cloud

+1u1

u2

u3

u4

u5

Single policy Info

Single policy Info Single policy Info

Single policy InfoSingle policy Info

Single policy Info

Single policy InfoSingle policy Info

Figure 3.7.1 Schematic illustration of a multiagent problem. There are multiple
“agents,” and each agent " = 1, . . . ,m, controls its own decision variable u!. At
each stage, agents exchange new information and also exchange information with
the “environment,” and then select their decision variables for the stage.

Thus the control constraint set is the Cartesian product

U(x) = U1(x)× · · ·× Um(x), (3.21)

where the sets U!(x) are given. This structure is inspired by applications
involving distributed decision making by multiple agents with communica-
tion and coordination between the agents; see Fig. 3.7.1.

To illustrate our approach, let us consider the discounted infinite hori-
zon problem, and for the sake of the following discussion, assume that each
set U!(x) is finite. Then the one-step lookahead minimization of the stan-
dard rollout scheme with base policy µ is given by

ũ ∈ arg min
u∈U(x)

E

{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, (3.22)

and involves as many as nm terms, where n is the maximum number of
elements of the sets U!(x) [so that nm is an upper bound to the num-
ber of controls in U(x), in view of its Cartesian product structure (3.21)].
Thus the standard rollout algorithm requires an exponential [order O(nm)]
number of computations per stage, which can be overwhelming even for
moderate values of m.

This potentially large computational overhead motivates a far more
computationally efficient rollout algorithm, whereby the one-step lookahead
minimization (3.22) is replaced by a sequence of m successive minimiza-
tions, one-agent-at-a-time, with the results incorporated into the subse-
quent minimizations. In particular, at state x we perform the sequence of

Sec. 3.7 Multiagent Problems and Multiagent Rollout 63

minimizations

µ̃1(x) ∈ arg min
u1∈U1(x)

Ew

{

g
(

x, u1, µ2(x), . . . , µm(x), w
)

+ αJµ
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

µ̃2(x) ∈ arg min
u2∈U2(x)

Ew

{

g
(

x, µ̃1(x), u2, µ3(x) . . . , µm(x), w
)

+ αJµ
(

f(x, µ̃1(x), u2, µ3(x), . . . , µm(x), w)
)

}

,

.

µ̃m(x) ∈ arg min
um∈Um(x)

Ew

{

g
(

x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w
)

+ αJµ
(

f(x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, w)
)

}

.

Thus each agent component u! is obtained by a minimization with the pre-
ceding agent components u1, . . . , u!−1 fixed at the previously computed val-
ues of the rollout policy, and the following agent components u!+1, . . . , um

fixed at the values given by the base policy. This algorithm requires order
O(nm) computations per stage, a potentially huge computational saving
over the order O(nm) computations required by standard rollout.

A key idea here is that the computational requirements of the rollout
one-step minimization (3.22) are proportional to the number of controls in
the set U(x) and are independent of the size of the state space. This moti-
vates a reformulation of the problem, first suggested in the book [BeT96],
Section 6.1.4, whereby control space complexity is traded off with state
space complexity, by “unfolding” the control uk into its m components,
which are applied one-agent-at-a-time rather than all-agents-at-once.

In particular, we can reformulate the problem by breaking down the
collective decision uk into m sequential component decisions, thereby re-
ducing the complexity of the control space while increasing the complexity
of the state space. The potential advantage is that the extra state space
complexity does not affect the computational requirements of some RL
algorithms, including rollout.

To this end, we introduce a modified but equivalent problem, involv-
ing one-at-a-time agent control selection. At the generic state x, we break
down the control u into the sequence of the m controls u1, u2, . . . , um, and
between x and the next state x̄ = f(x, u, w), we introduce artificial inter-
mediate “states” (x, u1), (x, u1, u2), . . . , (x, u1, . . . , um−1), and correspond-
ing transitions. The choice of the last control component um at “state”
(x, u1, . . . , um−1) marks the transition to the next state x̄ = f(x, u, w) ac-
cording to the system equation, while incurring cost g(x, u, w); see Fig.
3.7.2.

It is evident that this reformulated problem is equivalent to the origi-
nal, since any control choice that is possible in one problem is also possible

64 An Abstract View of Reinforcement Learning Chap. 3

3 Cost 0 Cost

3 Cost 0 Cost

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Base Heuristic Minimization Possible Path Reformulated State Space

Agent 1 Agent 2 Agent 3

Agent 1 Agent 2 Agent 3

Agent 1 Agent 2 Agent 3

u1

1 u2

2 u3

x x, u

1 x, u1, u2

3 x, u1

x x, u

1 x, u1, u2

3 x, u1

x x, u

1 x, u1, u2

3 x, u1

x x, u

1 x, u1, u2

3 x, u1

Cost 0 Cost g(x, u, y)

Figure 3.7.2 Equivalent formulation of the stochastic optimal control problem
for the case where the control u consists of m components u1, u2, . . . , um:

u = (u1, . . . , um) ∈ U1(xk)× · · ·× Um(xk).

The figure depicts the kth stage transitions. Starting from state x, we generate
the intermediate states

(x, u1), (xk, u1, u2), . . . , (x, u1, . . . , um−1),

using the respective controls u1, . . . , um−1. The final control um leads from
(x, u1, . . . , um−1) to x̄ = f(x, u,w), and the random cost g(x, u,w) is incurred.

in the other problem, while the cost structure of the two problems is the
same. In particular, every policy

(

µ1(x), . . . , µm(x)
)

of the original prob-
lem, is admissible for the reformulated problem, and has the same cost
function for the original as well as the reformulated problem. Reversely,
every policy for the reformulated problem can be converted into a policy for
the original problem that produces the same state and control trajectories
and has the same cost function.

The motivation for the reformulated problem is that the control space
is simplified at the expense of introducing m−1 additional layers of states,
and the corresponding m− 1 cost functions

J1(x, u1), J2(x, u1, u2), . . . , Jm−1(x, u1, . . . , um−1).

The increase in size of the state space does not adversely affect the opera-
tion of rollout, since the minimization (3.22) is performed for just one state
at each stage.

A major fact that follows from the preceding reformulation is that
despite the dramatic reduction in computational cost, multiagent rollout
still achieves cost improvement :

Jµ̃(x) ≤ Jµ(x), for all x,

where Jµ(x) is the cost function of the base policy µ = (µ1, . . . , µm), and
Jµ̃(x) is the cost function of the rollout policy µ̃ = (µ̃1, . . . , µ̃m), starting

Sec. 3.7 Multiagent Problems and Multiagent Rollout 65

from state x. Furthermore, this cost improvement property can be ex-
tended to multiagent PI schemes that involve one-agent-at-a-time policy
improvement operations, and have sound convergence properties (see the
book [Ber20a], Chapters 3 and 5, as well as the author’s papers [Ber19b],
[Ber19c], [Ber20b], [Ber21b], and the paper by Bhatacharya et al. [BKB20]).

Another fact that follows from the preceding reformulation is that
multiagent rollout may be viewed as a Newton step applied to the Bellman
equation that corresponds to the reformulated problem, with starting point
Jµ. This is very important for our purposes in the context of this book.
In particular, the superlinear cost improvement of the Newton step can still
be obtained through multiagent rollout , even though the amount of com-
putation for the lookahead minimization is dramatically reduced through
one-agent-at-a-time minimization. This explains experimental results given
in the paper [BKB20], which have shown comparable performance for mul-
tiagent and standard rollout in the context of a large-scale multi-robot
POMDP application.

Let us also mention that multiagent rollout can become the starting
point for various related PI schemes that are well suited for distributed op-
eration in important practical contexts involving multiple autonomous deci-
sion makers (see the book [Ber20a], Section 5.3.4, and the papers [Ber21b]).

Multiagent Approximation in Value Space

Let us now consider the reformulated problem of Fig. 3.7.2 and see how we
can apply approximation in value space with one-step lookahead minimiza-
tion, truncated rollout with a base policy µ = (µ1, . . . , µm), and terminal
cost function approximation J̃ .

In one such scheme that involves one-agent-at-a-time minimization,
at state x we perform the sequence of minimizations

ũ1 ∈ arg min
u1∈U1(x)

Ew

{

g
(

x, u1, µ2(x), . . . , µm(x), w
)

+ αJ̃
(

f(x, u1, µ2(x), . . . , µm(x), w)
)

}

,

ũ2 ∈ arg min
u2∈U2(x)

Ew

{

g
(

x, ũ1, u2, µ3(x) . . . , µm(x), w
)

+ αJ̃
(

f(x, ũ1, u2, µ3(x), . . . , µm(x), w)
)

}

,

.

ũm ∈ arg min
um∈Um(x)

Ew

{

g
(

x, ũ1, ũ2, . . . , ũm−1, um, w
)

+ αJ̃
(

f(x, ũ1, ũ2, . . . , ũm−1, um, w)
)

}

.

In the context of the reformulated problem, this is a sequence of one-step
lookahead minimizations at the states x, (x, ũ0), . . . , (x, ũ0, . . . , ũm−1) of

66 An Abstract View of Reinforcement Learning Chap. 3

the reformulated problem, using truncated rollout with base policy µ of
corresponding length m− 1,m− 2, . . . , 0. The Newton step interpretation
of Section 3.4 and Fig. 3.4.4 still applies, with its superlinear convergence
rate. At the same time, the computational requirements are dramatically
reduced, similar to the multiagent rollout method discussed earlier.

Let us finally note that there are variations of the multiagent schemes
of this section, which involve multistep lookahead minimization as well as
truncated rollout. They likely result in better performance at the expense
of greater computational cost.

3.8 ON-LINE SIMPLIFIED POLICY ITERATION

In this section, we describe some variants of the PI algorithm, introduced
in the author’s recent paper [Ber21a], which are consistent with the ap-
proximation in value space theme of this work. The salient feature of these
variants is that they involve an exact Newton step and are suitable for on-
line implementation, while still maintaining the principal character of PI,
which we have viewed so far as an off-line algorithm.

Thus the algorithms of this section involve training and self-improve-
ment through on-line experience. They are also simplified relative to stan-
dard PI in two ways:

(a) They perform policy improvement operations only for the states that
are encountered during the on-line operation of the system.

(b) The policy improvement operation is simplified in that it uses approx-
imate minimization in the Bellman equation of the current policy at
the current state.

Despite these simplifications, we show that our algorithms generate a se-
quence of improved policies, which converge to a policy with a local optimal-
ity property. Moreover, with an enhancement of the policy improvement
operation, which involves a form of exploration, they converge to a globally
optimal policy.

The motivation comes from the rollout algorithm, which starts from
some available base policy and implements on-line an improved rollout
policy. In the algorithm of the present section, the data accumulated from
the rollout implementation are used to improve on-line the base policy, and
to asymptotically obtain a policy that is either locally or globally optimal.

We focus on a finite-state discounted Markov decision problem, with
states 1, . . . , n, and we use a transition probability notation. We denote
states by the symbol x and successor states by the symbol y. The con-
trol/action is denoted by u, and is constrained to take values in a given
finite constraint set U(x), which may depend on the current state x. The
use of a control u at state x specifies the transition probability pxy(u) to
the next state y, at a cost g(x, u, y).

Sec. 3.8 On-Line Simplified Policy Iteration 67

The cost of a policy µ starting from state x0 is given by

Jµ(x0) = lim
N→∞

E

{

N−1
∑

k=0

αkg
(

xk, µ(xk), xk+1

)

∣

∣

∣
x0, µ

}

, x0 = 1, . . . , n,

where α < 1 is the discount factor. As earlier, Jµ is viewed as the vector in
the n-dimensional Euclidean space 'n, with components Jµ(1), . . . , Jµ(n).

In terms of our abstract notation, for each policy µ, the Bellman
operator Tµ maps a vector J ∈ 'n to the vector TµJ ∈ 'n that has
components

(TµJ)(x) =
n
∑

y=1

pxy
(

µ(x)
)

(

g(x, µ(x), y) + αJ(y)
)

, x = 1, . . . , n.

(3.23)
The Bellman operator T : 'n #→ 'n is given by

(TJ)(x) = min
u∈U(x)

n
∑

y=1

pxy(u)
(

g(x, u, y) + αJ(y)
)

, x = 1, . . . , n. (3.24)

For the discounted problem that we consider, the operators Tµ and T

are sup-norm contractions (generally this is true for discounted problems
with bounded cost per stage [Ber22a]; in our context, the number of states
is finite, so the cost per stage is bounded). Thus Jµ is the unique solution
of Bellman’s equation J = TµJ , or equivalently

Jµ(x) =
n
∑

y=1

pxy
(

µ(x)
)

(

g
(

x, µ(x), y
)

+ αJµ(y)
)

, x = 1, . . . , n. (3.25)

Moreover, J* is the unique solution of Bellman’s equation J = TJ , so that

J∗(x) = min
u∈U(x)

n
∑

y=1

pxy(u)
(

g(x, u, y) + αJ∗(y)
)

, x = 1, . . . , n. (3.26)

Furthermore, the following optimality conditions hold

TµJ* = TJ* if and only if µ is optimal, (3.27)

TµJµ = TJµ if and only if µ is optimal. (3.28)

The contraction property also implies that the VI algorithms

Jk+1 = TµJk, Jk+1 = TJk

generate sequences {Jk} that converge to Jµ and J∗, respectively, from any
starting vector J0 ∈ 'n.

68 An Abstract View of Reinforcement Learning Chap. 3

As discussed earlier, in the PI algorithm, the current policy µ is im-
proved by finding µ̃ that satisfies

Tµ̃Jµ = TJµ

[i.e., by minimizing for all x in the right-hand side of Eq. (3.24) with Jµ

in place of J]. The improved policy µ̃ is evaluated by solving the linear
n × n system of equations Jµ̃ = Tµ̃Jµ̃, and then (Jµ̃, µ̃) becomes the new
cost vector-policy pair, which is used to start a new iteration. Thus the PI
algorithm starts with a policy µ0 and generates a sequence {µk} according
to

Jµk = TµkJµk , Tµk+1Jµk = TJµk . (3.29)

We now introduce an on-line variant of PI, which starts at time 0 with
a state-policy pair (x0, µ0) and generates on-line a sequence of state-policy
pairs (xk, µ

k). We view xk as the current state of a system operating online
under the influence of the policies µ1, µ2, In our algorithm, µk+1 may
differ from µk only at state xk. The control µk+1(xk) and the state xk+1

are generated as follows:
We consider the right-hand sides of Bellman’s equation for µk (also

known as Q-factors of µk)

Qµk(xk, u) =
n
∑

y=1

px
k
y(u)

(

g(xk, u, y) + αJµk (y)
)

, (3.30)

and we select the control µk+1(xk) from within the constraint set U(xk)
with sufficient accuracy to satisfy the following condition

Qµk

(

xk, µ
k+1(xk)

)

≤ Jµk(xk), (3.31)

with strict inequality whenever this is possible.† For x += xk the policy
controls are not changed:

µk+1(x) = µk(x) for all x += xk.

The next state xk+1 is generated randomly according to the transition
probabilities px

k
x
k+1

(

µk+1(xk)
)

.

† By this we mean that if minu∈U(x
k
) Qµ

k (xk, u) < J
µ
k (xk) we select a con-

trol uk that satisfies
Q

µ
k (xk, uk) < J

µ
k (xk), (3.32)

and set µk+1(xk) = uk, and otherwise we set µk+1(xk) = µk(xk) [so Eq. (3.31)
is satisfied]. Such a control selection may be obtained by a number of schemes,

including brute force calculation and random search based on Bayesian optimiza-
tion. The needed values of the Q-factor Q

µ
k and cost J

µ
k may be obtained in

several ways, depending on the problem at hand, including by on-line simulation.

Sec. 3.8 On-Line Simplified Policy Iteration 69

We first show that the current policy is monotonically improved, i.e.,
that

Jµk+1(x) ≤ Jµk(x), for all x and k,

with strict inequality for x = xk (and possibly other values of x) if

min
u∈U(x

k
)

Qµk(xk, u) < Jµk (xk).

To prove this, we note that the policy update is done under the con-
dition (3.31). By using the monotonicity of Tµk+1 , we have for all $ ≥ 1,

T
!+1

µk+1Jµk ≤ T !
µk+1Jµk ≤ Jµk , (3.33)

so by taking the limit as $ → ∞ and by using the convergence property of
VI (T !

µk+1J → Jµk+1 for any J), we obtain Jµk+1 ≤ Jµk . Moreover, the

algorithm selects µk+1(xk) so that

(Tµk+1Jµk)(xk) = Qµk(xk, uk) < Jµk (xk)

if
min

u∈U(x
k
)

Qµk(xk, u) < Jµk (xk),

[cf. Eq. (3.32)], and then by using Eq. (3.33), we have Jµk+1(xk) < Jµk (xk).

Local Optimality

We next discuss the convergence and optimality properties of the algorithm.
We introduce a definition of local optimality of a policy, whereby the policy
selects controls optimally only within a subset of states.

Given a subset of states S and a policy µ, we say that µ is locally
optimal over S if µ is optimal for the problem where the control is restricted
to take the value µ(x) at the states x /∈ S, and is allowed to take any value
u ∈ U(x) at the states x ∈ S.

Roughly speaking, µ is locally optimal over S, if µ is acting optimally
within S, but under the (incorrect) assumption that once the state of the
system gets to a state x outside S, there will be no option to select control
other than µ(x). Thus if the choices of µ outside of S are poor, its choices
within S may also be poor.

Mathematically, µ is locally optimal over S if

Jµ(x) = min
u∈U(x)

n
∑

y=1

pxy(u)
(

g(x, u, y) + αJµ(y)
)

, for all x ∈ S,

Jµ(x) =
n
∑

y=1

pxy
(

µ(x)
)

(

g
(

x, µ(x), y
)

+ αJµ(y)
)

, for all x /∈ S,

70 An Abstract View of Reinforcement Learning Chap. 3

which can be written compactly as

(TµJµ)(x) = (TJµ)(x), for all x ∈ S. (3.34)

Note that this is different than (global) optimality of µ, which holds if and
only if the above condition holds for all x = 1, . . . , n, rather than just for
x ∈ S [cf. Eq. (3.28)]. However, it can be seen that a (globally) optimal
policy is also locally optimal within any subset of states.

Our main convergence result is the following.

Proposition 3.8.1: Let S be the subset of states that are repeated
infinitely often within the sequence {xk}. Then the corresponding
sequence {µk} converges finitely to some policy µ in the sense that
µk = µ for all k after some index k. Moreover µ is locally optimal
within S, while S is invariant under µ, in the sense that

pxy
(

µ(x)
)

= 0 for all x ∈ S and y /∈ S.

Proof: The cost function sequence {Jµk} is monotonically nonincreasing,
as shown earlier. Moreover, the number of policies µ is finite in view
of the finiteness of the state and control spaces. Therefore, the number
of corresponding functions Jµ is also finite, so Jµk converges in a finite

number of steps to some J̄ , which in view of the algorithm’s construction
[selecting uk = µk(xk) if minu∈U(x

k
) Qµk(xk, u) = Jµk (xk); cf. Eq. (3.32)],

implies that µk will remain unchanged at some µ with Jµ = J̄ after some
sufficiently large k.

We will show that the local optimality condition (3.34) holds for S =
S and µ = µ. In particular, we have xk ∈ S and µk = µ for all k greater
than some index, while for every x ∈ S, we have xk = x for infinitely many
k. It follows that for all x ∈ S,

Qµ

(

x, µ(x)
)

= Jµ(x), (3.35)

while by the construction of the algorithm,

Qµ

(

x, u
)

≥ Jµ(x), for all u ∈ U(x), (3.36)

since the reverse would imply that µk+1(x) += µk(x) for infinitely many k

[cf. Eq. (3.32)]. Condition (3.35) can be written as Jµ(x) = (TµJµ)(x) for
all x ∈ S, and combined with Eq. (3.36), implies that

(TµJµ)(x) = (TJµ)(x), for all x ∈ S.

Sec. 3.8 On-Line Simplified Policy Iteration 71

This is the local optimality condition (3.34) with S = S and µ = µ.
To show that S is invariant under µ, we argue by contradiction: if

this were not so, there would exist a state x ∈ S and a state y /∈ S such
that pxy

(

µ(x)
)

> 0, implying that y would be generated following the
occurrence of x infinitely often within the sequence {xk}, and hence would
have to belong to S (by the definition of S). Q.E.D.

Note an implication of the invariance property of the set S shown in
the preceding proposition. We have that µ is (globally) optimal under the
assumption that for every policy there does not exist any strict subset of
states that is invariant.

A Counterexample to Global Optimality

The following deterministic example (given to us by Yuchao Li) shows that
the policy µ obtained by the algorithm need not be (globally) optimal.
Here there are three states 1, 2, and 3. From state 1 we can go to state 2
at cost 1, and to state 3 at cost 0, from state 2 we can go to states 1 and 3
at cost 0, and from state 3 we can go to state 2 at cost 0 or stay in 3 at a
high cost (say 10). The discount factor is α = 0.9. Then it can be verified
that the optimal policy is

µ∗(1) : Go to 3, µ∗(2) : Go to 3, µ∗(3) : Go to 2,

with optimal costs
J∗(1) = J∗(2) = J∗(3) = 0,

while the policy

µ(1) : Go to 2, µ(2) : Go to 1, µ(3) : Stay at 3,

is strictly suboptimal, but is locally optimal over the set of states S =
{1, 2}. Moreover our on-line PI algorithm, starting from state 1 and the
policy µ0 = µ, oscillates between the states 1 and 2, and leaves the policy
µ0 unchanged. Note also that S is invariant under µ, consistent with Prop.
3.8.1.

On-Line Variants of Policy Iteration with Global Optimality
Properties

To address the local versus global convergence issue illustrated by the pre-
ceding example, we consider an alternative scheme, whereby in addition to
uk, we generate an additional control at a randomly chosen state xk += xk.†
In particular, assume that at each time k, in addition to uk and xk+1 that

† It is also possible to choose multiple additional states at time k for a policy
improvement operation, and this is well-suited for the use of parallel computation.

72 An Abstract View of Reinforcement Learning Chap. 3

are generated according to Eq. (3.32), the algorithm generates randomly
another state xk (all states are selected with positive probability), performs
a policy improvement operation at that state as well, and modifies accord-
ingly µk+1(xk). Thus, in addition to a policy improvement operation at
each state within the generated sequence {xk}, there is an additional pol-
icy improvement operation at each state within the randomly generated
sequence {xk}.

Because of the random mechanism of selecting xk, it follows that at
every state there will be a policy improvement operation infinitely often,
which implies that the policy µ ultimately obtained is (globally) optimal.
Note also that we may view the random generation of the sequence {xk}
as a form of exploration. The probabilistic mechanism for generating the
random sequence {xk} may be guided by some heuristic reasoning, which
aims to explore states with high cost improvement potential.

Let us also note the possibility of approximate implementations of
the algorithms described above. In particular, one may start with some
base policy, which may be periodically updated using some approximation
in policy space scheme, while incorporating the policy improvement data
generated so far. As long as the most recent policy improvement results
are maintained for the states that have been encountered in the past, the
convergence results described above will be maintained.

Finally, let us mention that the idea of on-line PI of the present section
can be extended to a broader algorithmic context of on-line improvement
of the approximation in value space process . In particular, we may consider
starting the on-line play algorithm with a cost function approximation J̃ ,
obtained through some off-line training process. We may then try to grad-
ually enhance the quality of J̃ through on-line experience. For example,
J̃ may be constructed through some form of machine learning or Bayesian
optimization method that is capable of improving the approximation using
data obtained in the process of on-line play. There are many possibili-
ties along these lines, and they are a fruitful area of research, particularly
within the context of specific applications.

3.9 EXCEPTIONAL CASES

Let us now consider situations where exceptional behavior occurs. One
such situation is when the Bellman equation J = TJ has multiple solu-
tions. Then the VI algorithm, when started at one of these solutions will
stay at that solution. More generally, it may be unclear whether the VI
algorithm will converge to J*, even when started at seemingly favorable
initial conditions. Other types of exceptional behavior may also occur, in-
cluding cases where the Bellman equation has no solution within the set
of real-valued functions. The most unusual case of all is when J* is real-
valued but does not satisfy the Bellman equation J = TJ , which in turn has
other real-valued solutions; see [BeY16] and [Ber22a], Section 3.1. This is a

Sec. 3.9 Exceptional Cases 73

a 1 2 1 2 t b

Prob. u2

u Destination

2 Prob. 1− u
2

2

2 Control u ∈ (0, 1] Cost
1] Cost −u

Figure 3.9.1. Transition diagram for the blackmailer problem. At state 1, the
blackmailer may demand any amount u ∈ (0, 1]. The victim will comply with
probability 1 − u2 and will not comply with probability u2, in which case the
process will terminate.

highly unusual phenomenon, which will not be discussed here. It need not
be of practical concern, as it arises only in artificial examples; see [BeY16].
Still it illustrates the surprising range of exceptional situations that should
be taken into account in theoretical analyses and computational studies.

In this section we provide some examples that illustrate the mecha-
nism by which exceptional behavior in infinite horizon DP can occur, and
we highlight the need for rigorous analysis of RL methods when used in con-
texts that are beyond the well-behaved discounted case, where the Bellman
operator is a contraction mapping. For further discussion and analysis that
address exceptional behavior, including the frameworks of semicontractive
and noncontractive DP, we refer to the author’s abstract DP monograph
[Ber22a].

The Blackmailer’s Dilemma

This is a classical example involving a profit maximizing blackmailer. We
formulate it as an SSP problem involving cost minimization, with a single
state x = 1, in addition to the termination state t. We are in state 1 when
the victim is compliant, and we are in state t when the victim refuses to
yield to the blackmailer’s demand (a refusal is permanent, in the sense
that once the blackmailer’s demand is refused, all subsequent demands are
assumed to be refused, so t is a termination state). At state 1 we can
choose a control u ∈ (0, 1], which we regard as the demand made by the
blackmailer. The problem is to find the blackmailer’s policy that maximizes
his expected total gain.

To formulate this problem as a minimization problem, we will use
(−u) as the cost per stage. In particular, upon choosing u ∈ (0, 1], we
move to state t with probability u2, and stay in state 1 with probability
1 − u2; see Fig. 3.9.1. The idea is to optimally balance the blackmailer’s

74 An Abstract View of Reinforcement Learning Chap. 3

45◦Line

−

1

2

µ −1

J 0

J

−µ

Interval I Interval II Interval III Interval IV

0 Jµ = −

1

µ

Region of Instability Region of Stability TµJ = −µ+ (1− µ2)J

Interval I Interval II Interval III Interval IV Ks K∗ K

J TJ = minµ∈(0,1] TµJ

Figure 3.9.2. The Bellman operators and the Bellman equation for the black-
mailer problem.

desire for increased demands (large u) with keeping his victim compliant
(small u).

For notational simplicity, let us abbreviate J(1) and µ(1) with just
the scalars J and µ, respectively. Then in terms of abstract DP we have
X = {1}, U = (0, 1], and for every stationary policy µ, the corresponding
Bellman operator Tµ, restricted to state 1 is given by

TµJ = −µ+ (1− µ2)J ; (3.37)

[at the state t, Jµ(t) = 0]. Clearly Tµ is linear, maps the real line ' to
itself, and is a contraction with modulus 1 − µ2. Its unique fixed point
within ', Jµ, is the solution of

Jµ = TµJµ = −µ+ (1− µ2)Jµ,

which yields

Jµ = −
1

µ
;

see Fig. 3.9.2. Here all policies are stable and lead asymptotically to t with
probability 1, and the infimum of Jµ over µ ∈ (0, 1] is −∞, implying also
that J* = −∞. However, there is no optimal policy.

The Bellman operator T is given by

TJ = min
0<u≤1

{

− u+ (1 − u2)J
}

,

which after some calculation can be shown to have the form

TJ =

{

−1 for − 1

2
≤ J ,

J + 1

4J
for J ≤ − 1

2
.

Sec. 3.9 Exceptional Cases 75

J∗(1) = 0

Cost of Truncated Rollout Policy µ̃ 1

Cost of Truncated Rollout Policy µ̃ 1

Optimal cost Cost of rollout policy ˜

TJ (TJ)(1)

(1) = 0 J(1) (

45◦Line

Figure 3.9.3 Illustration of the Bellman equation for a shortest path problem in
the exceptional case where there is a cycle of zero length. Restricted within the
set of J with J(t) = 0, the Bellman operator has the form

(TJ)(1) = min
{

J(1), 1
}

.

The set of solutions of Bellman’s equation, J(1) = (TJ)(1) is the interval (−∞, 1]
and contains J∗(1) = 0 in its interior.

The form of T is illustrated in Fig. 3.9.2. It can be seen from this figure that
the Bellman equation J = TJ has no real-valued solution (the optimal cost
J∗ = −∞ is a solution within the set of extended real numbers [−∞,∞]).
Moreover the VI algorithm will converge to J* starting from any J ∈ '.
It can be verified also that the PI algorithm, starting from any policy
µ0 ∈ (0, 1], produces the ever improving sequence of policies {µk} with
µk+1 = µk/2. Thus µk converges to 0, which is not a feasible policy. Also
Jµk = −1/µk, and we have Jµk ↓ −∞ = J*, so the PI algorithm gives
in the limit the infinite optimal cost. For additional related examples and
discussion relating to the blackmailer problem, see [Ber22a], Section 3.1.

A Shortest Path Problem

Another exceptional type of example is provided by shortest path problems
that contain cycles of zero length; see the monograph [Ber22a], Section 3.1.
In this case there are infinitely many solutions to Bellman’s equation, and
the VI and PI algorithms, as well as the approximation in value space
process exhibit unusual behavior. We demonstrate this with a shortest
path problem involving a single state, denoted 1, in addition to the cost-
free destination state t.

In particular, let X = {t, 1}, and assume that at state 1 there are
two options: we can stay at 1 at cost 0, or move to t at cost 1. Here

76 An Abstract View of Reinforcement Learning Chap. 3

J*(t) = J*(1) = 0, and there are just two policies, which correspond to the
two options at state 1 and are stable. The optimal policy starting at state
1 is to stay at 1. If we restrict attention to cost functions J with J(t) = 0,
the Bellman operator is

(TJ)(1) = min
{

J(1), 1
}

,

and Bellman’s equation, written as an equation in J(1), has the form

J(1) = min
{

J(1), 1
}

.

The set of solutions of this equation is the interval (−∞, 1] and it is infinite;
see Fig. 3.9.3. The optimal value J*(1) = 0 lies in the interior of this set,
and cannot be obtained by the VI algorithm, unless the algorithm is started
at the optimal value.

Let us consider approximation in value space with cost approximation
J̃(1). Then it can be seen that if J̃(1) < 1, the one-step lookahead policy
is to stay at state 1, which is optimal. If J̃(1) > 1, the one-step lookahead
policy is to move from state 1 to state t, which is suboptimal. If J̃(1) = 1,
either one of the two policies can be the one-step lookahead policy.

Consider also the PI algorithm, starting from the suboptimal policy
µ that moves from state 1 to state t. Then Jµ(t) = 0, Jµ(1) = 1, and it
can be seen that µ satisfies the policy improvement equation

µ(1) ∈ argmin
{

Jµ(1), 1 + Jµ(t)
}

(the same is true for the optimal policy that stays at state 1). Thus the PI
algorithm may stop with the suboptimal policy µ.

Problems where exceptional behavior occurs arise often in Markov de-
cision problems, once one departs from the most commonly discussed and
best behaved paradigm of discounted cost with bounded cost per stage,
where the mappings Tµ of all policies µ have favorable contraction prop-
erties. Moreover, problems arising in decision and control, such as those
that have been addressed with MPC, often give rise to exceptional behav-
ior. Further research and computational experimentation is expected to
provide improved guidelines for the solution of such problems.

What HappensWhen the Bellman Operator is Neither Concave
nor Convex? - Markov Games

We have discussed so far DP models where the Bellman operator has a
concavity property. On the other hand there are interesting DP models
where this is not so. An important case in point is discounted Markov
games , a form of zero-sum games with a dynamic Markov chain structure.

Let us consider two players that play repeated matrix games at each
of an infinite number of stages, using mixed strategies. The game played

Sec. 3.9 Exceptional Cases 77

at a given stage is defined by a state x that takes values in a finite set
X , and changes from one stage to the next according to a Markov chain
whose transition probabilities are influenced by the players’ choices. At
each stage and state x ∈ X , the minimizer selects a probability distribution
u = (u1, . . . , un) over n possible choices i = 1, . . . , n, and the maximizer
selects a probability distribution v = (v1, . . . , vm) over m possible choices
j = 1, . . . ,m. If the minimizer chooses i and the maximizer chooses j, the
payoff of the stage is aij(x) and depends on the state x. Thus the expected
payoff of the stage is

∑

i,j aij(x)uivj or u′A(x)v, where A(x) is the n×m

matrix with components aij(x) (u and v are viewed as column vectors,
and a prime denotes transposition). The two players choose u and v with
knowledge of the state x, so they are viewed as using policies µ and ν,
where µ(x) and ν(x) are the choices of the minimizer and the maximizer,
respectively, at a state x.

The state evolves according to transition probabilities qxy(i, j), where
i and j are the moves selected by the minimizer and the maximizer, respec-
tively (here y represents the next state and game to be played after moves
i and j are chosen at the game represented by x). When the state is x,
under u and v, the state transition probabilities are

pxy(u, v) =
n
∑

i=1

m
∑

j=1

uivjqxy(i, j) = u′Qxyv,

where Qxy is the n × m matrix that has components qxy(i, j). Payoffs
are discounted by α ∈ (0, 1), and the objectives of the minimizer and
maximizer, are to minimize and to maximize the total discounted expected
payoff, respectively.

It was shown by Shapley [Sha53] that the problem can be formulated
as a fixed point problem involving the mapping H given by

H(x, u, v, J) = u′A(x)v + α
∑

y∈X

pxy(u, v)J(y)

= u′



A(x) + α
∑

y∈X

QxyJ(y)



 v,

(3.38)

with the corresponding Bellman operator given by

(TJ)(x) = min
u∈U

max
v∈V

H(x, u, v, J), for all x ∈ X. (3.39)

It can be verified that T is an unweighted sup-norm contraction, and its
unique fixed point J* satisfies the Bellman equation J* = TJ*.

Note that since the matrix defining the mapping H of Eq. (3.38),

A(x) + α
∑

y∈X

QxyJ(y),

78 An Abstract View of Reinforcement Learning Chap. 3

1 J J

TJ

TJ

Single policy Minimax Current policy pair (µ, ν) Next policy pair (˜

) Info Tµ,νJ T

) Next policy pair (µ̃, ν̃) Info

J Tµ̃,ν̃J

Single policy Minimax J∗ = TJ∗
Jµ,ν = Tµ,νJµ,νJµ̃,ν̃ = Tµ̃,ν̃Jµ̃,ν̃

Cost of (µ, ν) Cost of (˜) Cost of (µ̃, ν̃)

Optimal Cost Approximation Minimax- optimal cost
Optimal Cost Approximation Minimax- optimal cost MinimaxMinimax

] 45◦ line

max
{

!11(J), !12(J)
}

}

max
{

!21(J), !22(J)
}

Figure 3.9.4 Schematic illustration of the PI algorithm/Newton’s method in the
case of a Markov game involving a single state, in addition to a termination state
t. We have J∗(t) = 0 and (TJ)(t) = 0 for all J with J(t) = 0, so that the
operator T can be graphically represented in just one dimension (denoted by J)
that corresponds to the nontermination state. This makes it easy to visualize T

and geometrically interpret why Newton’s method does not converge. Because the
operator T may be neither convex nor concave for a Markov game, the algorithm
may cycle between pairs (µ, ν) and (µ̃, ν̃), as shown in the figure. By contrast in
a (single-player) finite-state Markov decision problem, (TJ)(x) is piecewise linear
and concave, and the PI algorithm converges in a finite number of iterations.

The figure illustrates an operator T of the form

TJ = min
{

max
{

"11(J), "12(J)
}

, max
{

"21(J), "22(J)
}

}

,

where "ij(J), are linear functions of J , corresponding to the choices i = 1, 2 of the
minimizer and j = 1, 2 of the maximizer. Thus TJ is the minimum of the convex
functions

max
{

"11(J), "12(J)
}

and max
{

"21(J), "22(J)
}

,

as shown in the figure. Newton’s method linearizes TJ at the current iterate [i.e.,
replaces TJ with one of the four linear functions "ij(J), i = 1, 2, j = 1, 2 (the
one attaining the min-max at the current iterate)] and solves the corresponding
linear fixed point problem to obtain the next iterate. The figure illustrates a case
where the PI algorithm/Newton’s method oscillates between two pairs of policies
(µ, ν) and (µ̃, ν̃).

is independent of u and v, we may view J*(x) as the value of a static

Sec. 3.10 Notes and Sources 79

(nonsequential) matrix game that depends on x. In particular, from a
fundamental saddle point theorem for matrix games, we have

min
u∈U

max
v∈V

H(x, u, v, J∗) = max
v∈V

min
u∈U

H(x, u, v, J*), for all x ∈ X.

(3.40)
The paper by Shapley [Sha53] also showed that the strategies obtained by
solving the static saddle point problem (3.40) correspond to a saddle point
of the sequential game in the space of mixed strategies. Thus once we
find J* as the fixed point of the mapping T [cf. Eq. (3.39)], we can obtain
equilibrium policies for the minimizer and maximizer by solving the matrix
game (3.40). Moreover, T can be defined via the operator Tµ,ν defined for
a pair of minimizer-maximizer policies (µ, ν) by

(Tµ,νJ)(x) = H
(

x, µ(x), ν(x), J
)

, for all x ∈ X, (3.41)

In particular, T can be defined via a minimax operation applied to the
operator Tµ,ν as follows:

(TJ)(x) = min
µ∈M

max
ν∈N

(Tµ,νJ)(x), for all x ∈ X,

whereM andN are the sets of policies of the minimizer and the maximizer,
respectively.

On the other hand the Bellman operator components (TJ)(x) may
be neither convex nor concave. In particular, the maximization makes the
function

max
v∈V

H(x, u, v, J)

convex as a function of x for each fixed u ∈ U , while the subsequent min-
imization over u ∈ U tends to introduce concave “pieces” into (TJ)(x).
It is possible to apply PI ideas and the corresponding Newton’s method
to compute the fixed point of T , and in fact this has been proposed by
Pollatschek and Avi-Itzhak [PoA69]. However, this algorithm need not
converge to the optimal and may not yield J*, the fixed point of T (unless
the starting point is sufficiently close to J∗, as has been recognized in the
paper [PoA69]). The mechanism by which this phenomenon may occur is
illustrated in Fig. 3.9.4. In fact a two-state example where the PI algo-
rithm/Newton’s method does not converge to J* was given by van der Wal
[Van78]. The preceding Markov chain discussion is part of a broader in-
vestigation of abstract minimax problems and Markov games, given in the
author’s recent paper [Ber21c] (and replicated in the monograph [Ber22a],
Ch. 5). In particular, this paper develops exact and approximate PI meth-
ods, which correct the exceptional behavior illustrated in Fig. 3.9.4.

3.10 NOTES AND SOURCES

The author’s abstract DP monograph [Ber22a] (originally published in
2013, with a second edition appearing in 2018, and a third edition appearing

80 An Abstract View of Reinforcement Learning Chap. 3

in 2022) has provided the framework for the Newton step interpretations
and visualizations that we have used to gain insight into approximation in
value space, rollout, and policy iteration. The abstract framework aims at a
unified development of the core theory and algorithms of total cost sequen-
tial decision problems, and addresses simultaneously stochastic, minimax,
game, risk-sensitive, and other DP problems, through the use of the ab-
stract DP operator (or Bellman operator as it is often called in RL). The
idea here is to gain insight through abstraction. In particular, the structure
of a DP model is encoded in its abstract Bellman operator, which serves as
the “mathematical signature” of the model. Characteristics of this opera-
tor (such as monotonicity and contraction) largely determine the analytical
results and computational algorithms that can be applied to that model.

Abstraction also captures the generality of the DP methodology. In
particular, our conceptual framework based on Newton’s method is ap-
plicable to problems with general state and control spaces, ranging from
the continuous spaces control problems, traditionally the focus of MPC, to
Markov decision problems, traditionally the focus of operations research as
well as RL, and to discrete optimization problems, traditionally the focus of
integer programming and combinatorial optimization. A key mathematical
fact in this respect is that while the state and control spaces may be contin-
uous or discrete, the Bellman operators and equations are always defined
over continuous function spaces, and are thus amenable to solution through
the use of continuous spaces algorithms, including Newton’s method.

