第3章	电子电路设计与仿真
CHAPTER 3	

本章将使用 AD 软件实现对模拟电路的仿真,其内容主要包括直流工作点分析、直流扫描分析、交流小信号分析、瞬态分析、参数扫描分析、傅里叶分析、噪声分析、温度分析和蒙特卡洛分析。

3.1 直流工作点分析

L

本节将构建用于直流分析的电路,并进行直流工作点分析,主要内容包括构建直流分析电路、设置 分析参数和分析仿真结果。

3.1.1 建立新的直流工作点分析工程

首先给出建立直流分析电路工程的步骤,主要包括:

(1) 在 Windows 10 操作系统主界面的左下角选择【开始】→Altium Designer 命令,打开 AD 软件。

(2)在AD软件主界面菜单下选择 File→New→Project 命令,在创建工程的窗口中 LOCATIONS
(位置)选择 Local Projects, Project Type(工程类型)选择 PCB, Project Name 工程名称为 PCB_
Project1. PrjPCB 的新工程,添加名为 Sheet1. SchDoc 的原理图文件。

3.1.2 添加新的仿真库

添加仿真所需要用到的一些仿真库。其步骤主要包括:

(1) 在当前 AD 软件主界面选择 View→Panels→Components 命令,打开如图 3-1 所示的元器件库浏览界面。

(2) 在图 3-1 所示的界面内,右击 按钮选择 File-based Libraries Preferences … 命令,打开如图 3-2 所示的 Available File-based Libraries(可利用的文件库)界面,选择 Installed(已 安装)标签。

(3) 单击图 3-2 界面下方的 Install ··· 按钮。

(4) 如图 3-3 所示,打开所要添加库的对话框。

① 将路径指向 C:\users\Public\Documents\Altium\AD23\Library\Simulation。

②选择 Simulation Sources,并单击"打开"按钮。

(5) 如图 3-4 所示,看到新添加的 Simulation Sources. IntLib 仿真库。

(6) 单击图 3-4 界面内的 Close 按钮,退出该界面。

图 3-1 元器件库浏览界面

reject Installed Con-	Available File-based Libraries	
Installed Libraries	Activat Path	Туре
Miscellaneous Devices.IntLib	Miscellaneous Devices.IntLib	Integrated
 Miscellaneous Connectors.IntLii Simulation Genet Components 	Miscellaneous Connectors.IntLib	Integrated
Library Path Relative To:	C:\Users\Public\Documents\Altium\AD23\Library\	e'
Move <u>U</u> p Move <u>I</u>	own <u>I</u> nstall	<u>E</u> dit <u>R</u> emove

图 3-2 添加文件库浏览界面

■ 打开					×
	i > Altium > AD	23 > Library > Simulation	∽ ē	搜索"Simulation"	م
组织 ▼ 新建文件夹					• 💷 🔞
🏭 本地磁盘 (C:)	^	名称 ^	修改日期	类型	
🕳 本地磁盘 (D:)		Pimulation Math Function.IntLib	2022/4/2	18:33 Altiu	m Compiled Li
🕳 本地磁盘 (E:)		Simulation Pspice Functions.IntLib	2022/4/2	18:33 Altiu	m Compiled Li
🕳 本地磁盘 (F:)		Simulation Sources.IntLib	2022/4/2	18:33 Altiu	m Compiled Li
🕳 本地磁盘 (G:)		Dimulation Special Function.IntLib	2022/4/2	18:33 Altiu	m Compiled Li
🕳 本地磁盘 (H:)		💭 Simulation Transmission Line.IntLib	2022/4/2	18:33 Altiu	m Compiled Li
🕳 本地磁盘 (l:)					
	~	<			
文件名(N):	Simulation Source	s.IntLib	~	Integrated Libra	ries (*.INTLII \sim
				打开(0)	取消

图 3-3 打开所要添加的仿真库对话框

Available File-based Libraries		
Project Installed Search	Path	
Installed Libraries	Activat Path	Туре
Miscellaneous Devices.IntLib	 Miscellaneous Devices.IntLib 	Integrated
Miscellaneous Connectors.IntLib	Miscellaneous Connectors.IntLib	Integrated
Simulation Generic Components	System Library Provided with MixedSim	
Simulation Sources.IntLib	Simulation\Simulation Sources.IntLib	Integrated
Library Path Relative To: 0	C:\Users\Public\Documents\Altium\AD23\Library\	B'
Move <u>U</u> p Move <u>D</u> ow	Install	<u>E</u> dit <u>R</u> emove
		<u>C</u> lose

图 3-4 已经添加了需要添加的仿真库

3.1.3 构建直流分析电路

构建直流分析电路,其步骤主要包括:

(1) 从 Miscellaneous Devices. IntLib 库中分别找到名为 Res1 的电阻元器件和名为 Cap Semi 的电容元器件,并将其按照图 3-5 所示的位置进行放置。

(2) 从 Simulation Sources. IntLib 库中找到名为 VSRC 的元器件,并按照图 3-5 所示的位置进行放置。

(3) 单击 AD 软件主界面工具栏内的 据按钮,将 GND 按照图 3-5 所示的位置进行放置。

(4) 单击 AD 软件主界面工具栏内的连线按钮,将这些元器件和直流源按照图 3-6 所示的方式进行 连接。

(5)按照前面所介绍的为元器件分配标识符的方法,为电路中的元器件和直流源分配唯一的标号, 图 3-6 给出分配完标识符后的原理图界面。

图 3-5 放置找到的仿真元器件到原理图设计界面

(6) 修改 V1、R1 和 C1 的参数设置。下面以修改 V1 的参数为例:

① 双击图 3-6 内的 V1 信号源图标。

② 打开如图 3-7 所示的界面,在 Parameters 下,找到 Value 列,输入 5V。

③ 单击界面中的 OK 按钮,关闭该界面。如图 3-8 所示,修改剩下的电路元器件参数,以满足仿真条件。

Properties v + x
Voltage Components (and 11 more) 🔽 🔻
Q Search
⊿ General
Designator V1
Stimulus Name NONI 🔻 🛱 💼 📀
Stimulus Type DC Source 👻
Show preview
▲ Parameters
Name Value
🛛 🔒 DC Magnitude 5V
AC Magnitude
🔍 🚦 AC Phase

图 3-7 修改 V1 参数

(7)为了便于分析仿真结果,按照前面的方法,为电路某 些节点指定网络标号,如图 3-9 所示。

(8)保存设计文件,将其保存在 dc_analysis 目录下(读者也可以自己建立一个子目录)。

3.1.4 设置直流工作点分析参数

下面介绍设置直流工作点分析参数的方法。其步骤主要 包括:

(1) 在 AD 软件主界面选择 Simulate→Simulation DashBoard(仿真面板)命令。

图 3-9 指定电路节点网络标号

如果 Simulate 那一栏是空的,则是安装软件时没安装仿真模块。可以通过选择 Help→About→ Extension & Updates 命令,在 installed 选项卡中单击 Configure 按钮勾选 Platform Extension 中没选中的选项,再单击 Apply 按钮重启一下即可。

(2) 打开如图 3-10 所示的 Simulation DashBoard 界面。按下面参数设置:

Simulation Dashboard	× + ×
Affect Document (PCB_Project1/Sheet1.SchDoc)	•
Electrical Rule Check	Ø
Simulation Models	\odot
2 2. Preparation	
 Simulation Sources 	
✓ V1 (DC Source) + Add	DC 5V 🗙
✓ Probes	
 ✓ V_2 ✓ V_1 + Add 	■ × ■ ×
3 ▶ 3. Analysis Setup & Run	
Operating Point	🕟 Run
► DC Sweep	🕞 Run
▶ Transient	🕑 Run
► AC Sweep	🕑 Run
Temp. Sweep Sweep Monte Carlo	ැලි Settings
+ 4. Results	

图 3-10 设置直流工作点分析参数

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络1和网络2处加入两个 Probes(探针)V_1和 V_2,用于采集对应网络的静态工作点电压。

③ 在"3. Analysis Setup & Run 中 Operating Point"选项单击 Run 按钮,开始执行仿真。

3.1.5 直流工作点仿真结果分析

对直流工作点仿真的结果进行分析,其步骤主要包括:

(1) 弹出如图 3-11 所示的消息窗口,该消息窗口给出了对 Spice 电路的分析过程。

图 3-11 消息窗口

(2) 关闭消息窗口。

(3) 自动打开 PCB_Project1. sdf 文件,图 3-12 给出了对应于两个节点电压的分析结果。

图 3-12 文件中显示 V(1)和 V(2)值

(4) 下面通过 Simulation DashBoard 界面设置,选择 Operating Point 的 Display on schematic 下的 Voltage 和 Current 选项(如图 3-13 所示),在原理图中显示电路中各支路的电压和电流值,如图 3-14 所示。

(5) 如图 3-14 所示,原理图中显示流经电阻的电流为 4.545mA。

图 3-13 原理图中显示电路静态电压和电流设置

图 3-14 原理图中显示电路静态电压和电流

(6) 将该工程保存到 dc_analysis 目录下,并退出该设计工程,显示 Spice 直流分析程序,如图 3-15 所示。

图 3-15 Spice 直流分析程序

3.2 直流扫描分析

本节将使用前面设计的电路,实现直流扫描分析,主要内容包括打开前面的分析电路、设置直流扫描参数和分析直流扫描的仿真结果。

3.2.1 打开前面的设计

打开前面设计的步骤主要包括:

(1) 新建一个 dc_sweep_analysis 文件夹,把 dc_analysis 文件夹下的所有文件复制到 dc_sweep_ analysis 文件夹下。

(2) 在 AD 软件中,打开 dc_sweep_analysis 文件夹下的工程文件。

3.2.2 设置直流扫描分析参数

下面介绍设置直流扫描分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation DashBoard 命令。

(2) 打开如图 3-16 所示的 Simulation DashBoard 界面,按下面参数设置:

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面中保留探针 V_1 和 V_2,用于采集对应网络的电压。

③ 在"3. Analysis Setup & Run 中 DC Sweep"选项设置直流扫描电压源为 V1,起始电压(From)为 0V,停止电压(To)为 10V,步进电压(Step)为 1V。

(3) 单击 DC Sweep 选项 Run 按钮,开始执行仿真。

3.2.3 直流扫描仿真结果分析

介绍通过图形观察直流扫描仿真结果的方法。其步骤主要包括:

Simulation Dashboard	▼ + >
Affect Document (PCB_Project1/Sheet1.SchDoc)	Ţ
▶ 1. Verification	⊘
▶ 2. Preparation	⊘
▲ 3. Analysis Setup & Run	
Operating Point	🕞 Run
▲ DC Sweep	🕑 Run
V1 From To Step 0 10 1	×
+ Add Parameter Output Expressions + Add	
▶ Transient	🕞 Run
▸ AC Sweep	🕞 Run
Temp. Sweep Sweep Monte Carlo	ôð Settings
▶ 4. Results (1)	

图 3-16 设置直流扫描分析参数

- (1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。
- (2) 自动打开 PCB_Project1. sdf 文件。如图 3-17 所示为网络 V1 和 V2 的 DC Sweep 仿真结果显示。

图 3-17 DC Sweep 仿真结果显示

⁽³⁾ 保存设计工程,并关闭。

3.3 瞬态分析

本节将构建用于瞬态分析的电路,并执行瞬态分析,主要内容包括构建瞬态分析电路、设置瞬态分 析参数和分析瞬态仿真的结果。

3.3.1 建立新的瞬态分析工程

建立瞬态分析电路工程的步骤主要包括:

(1) 在 Windows 10 操作系统主界面的左下角选择【开始】→Altium Designer 命令,打开 AD 软件。

(2) 在 AD 软件主界面菜单下选择 File→New→Project 命令,创建一个名为 PCB_Project1. PrjPCB 的新工程。

(3) 按照前面所介绍的添加原理图的方法,添加名称为 Sheet1. SchDoc 的原理图文件。

3.3.2 构建瞬态分析电路

构建用于瞬态分析的电路,并执行瞬态分析。其步骤主要包括:

(1) 从 Miscellaneous Devices. IntLib 库中分别找到名为 Res1 的电阻元器件、名为 Cap 的电容元器件、名为 Op Amp 的运算放大器,并将其按照图 3-18 所示的位置分别进行放置。

图 3-18 放置元器件和信号源

(2) 从 Simulation Sources. IntLib 库中找到名为 VSRC 和 VPULSE 的元器件,并按照图 3-18 所示的位置进行放置。

(3) 单击 AD 软件主界面下工具栏内的 护按钮,将 GND 按照图 3-18 所示的位置进行放置。

(4) 单击 AD 软件主界面下工具栏内的连线按钮,将这些元器件和信号源按照图 3-19 所示的方式进行连接。

(5)按照前面所介绍的给元器件分配标识符的方法,为电路中的元器件和信号源分配唯一的标识符。图 3-20 给出分配完标识符后的原理图界面。

(6) 在如图 3-21 所示的电路中,按照前面的方法,将 V1 和 V3 的直流电源设置为+15V。

(7)为了后面分析仿真结果的方便,按图 3-21 所示的电路,在放大器的输入和输出端分别放置名称为 IN 和 OUT 的网络标号。

图 3-19 连接电路元器件和信号源

(8) 保存文件,将其保存到 transient_analysis 目录下。

3.3.3 设置瞬态分析参数

下面介绍设置瞬态分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。
(2) 打开如图 3-22 所示的 Simulation Dashboard 界面,按下面参数设置:

Simulation Dashboard	▼ += ×
Affect Document (PCB_Project1/Sheet1.SchDoc)	-
▶ 1. Verification	⊘
▶ 2. Preparation	Ø
▲ 3. Analysis Setup & Run	
Operating Point	🕑 Run
DC Sweep	🕑 Run
▲ Transient	🕑 Run
From To Step 0 30u 100n ♥ √	
Output Expressions + Add	
Advanced	
Fourier Analysis	
Use Initial Conditions	
+ AC Sweep	🕑 Run
Temp. Sweep Sweep Monte Carlo	ੴ Settings
▶ 4. Results	

图 3-22 设置瞬态分析参数

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络 IN 和网络 OUT 处加入 两个 Probes(探针)V_IN 和 V_OUT,用于采集对应网络的时域瞬态波形。

③ 在"3. Analysis Setup & Run"中 Transient 选项设置瞬态仿真参数起始时间(From)为 0,停止 时间(To)为 30µs,(Step)为 100ns。

(3) 单击 Transient 选项 Run 按钮,开始执行仿真。

3.3.4 瞬态仿真结果分析

下面介绍通过图形观察瞬态仿真结果的方法。其步骤主要包括: (1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。

(2) 自动打开 PCB_Project1. sdf 文件。显示如图 3-23 所示的图形, V(IN)为输入信号时域瞬态波形、V(OUT)为输出信号时域瞬态波形。

(3) 保存设计工程文件,将其保存到 transient_analysis 目录下,并退出该工程。

3.4 傅里叶分析

本节将构建单个 NPN 晶体管放大电路,并在瞬态分析的基础上执行傅里叶分析。主要内容包括 构建傅里叶分析电路、设置傅里叶分析参数和分析傅里叶仿真结果。

3.4.1 建立新的傅里叶分析工程

建立新的傅里叶分析电路工程的步骤主要包括:

(1) 在 Windows 10 操作系统主界面的左下角选择【开始】→Altium Designer 命令,打开 AD 软件。

(2) 在 AD 软件主界面菜单下选择 File→New→Project 命令,创建一个名称为 PCB_Project1. PrjPCB 的新工程。

(3) 按照前面所介绍的添加原理图的方法,添加名称为 Sheet1. SchDoc 的原理图文件。

3.4.2 构建傅里叶分析电路

构建傅里叶分析电路的步骤主要包括:

(1)从 Miscellaneous Devices. IntLib 库中分别找到名称为 Res1 的电阻元器件、名称为 Cap 的电容 元器件、名称为 NPN 的晶体管(必须选择 Model Type 为 Simulation 的元器件),并将其按照图 3-24 所 示的位置进行放置。

(2) 从 Simulation Sources. IntLib 库中找到名称为 VSRC 和 VSIN 的元器件,并按照图 3-24 所示的位置进行放置。

图 3-24 放置元器件和信号源

(3) 单击 AD 软件主界面下工具栏内的 据按钮,将 GND 按照图 3-24 所示的位置进行放置。

(4) 单击 AD 软件主界面下工具栏内的连线按钮,将这些元器件和信号源按照图 3-25 所示的方式进行连接。

图 3-25 连接电路元器件和信号源

(5)按照前面所介绍的给元器件分配标识符的方法,为电路中的元器件和信号源分配唯一的标识符。图 3-26 给出分配完标识符后的原理图界面。

图 3-26 为电路元器件和信号源分配唯一的标识符并设置电源参数

(6) 在如图 3-26 所示的电路中,按照前面的方法,将 V1 直流电源设置为+12V。如图 3-27 所示, 设置 V2 信号源,其参数设置为:

Amplitude: 0.01.
 Frequency: 10K.

图 3-27 为 V2 信号源设置参数

10K

🔒 Frequency

(7) 按照图 3-28 所示,将电阻和电容值改成相应的值。

(8)为了观察方便,如图 3-28 所示,在放大器的输入和输出端分别放置名称为 IN 和 OUT 的网络标号。

图 3-28 放置网络标号

(9) 保存设计,将其保存到 fourier_analysis 目录下。

3.4.3 设置傅里叶分析参数

下面介绍设置傅里叶分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。
(2) 打开如图 3-29 所示的 Simulation Dashboard 界面,按下面参数设置:

Simulation Dashboard	▼ += ×
Affect Document (PCB_Project1/Sheet1.SchDoc)	•
▶ 1. Verification	\odot
▶ 2. Preparation	\odot
4 3. Analysis Setup & Run	
Operating Point	🕑 Run
► DC Sweep	🕑 Run
▲ Transient	🕑 Run
From To Step 0 500u 2u ♥ Output Expressions	
+ Add Advanced	
Sourier Analysis	
Fundamental Frequency Number of Harmonics 10.00k 10	
Use Initial Conditions	
► AC Sweep	🕞 Run
Temp. Sweep Sweep Monte Carlo Sensitivity	る Settings
▶ 4. Results	

图 3-29 设置傅里叶分析参数

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络 IN 和网络 OUT 处加入 两个 Probes(探针) V_IN 和 V_OUT,用于采集对应网络的时域瞬态波形。

③ 在"3. Analysis Setup & Run"中 Transient 选项设置瞬态仿真参数起始时间(From)为 0,停止时间 (To)为 500µs,步进(Step)为 2µs,在 Advanced 部分选中 Fourier Analysis,参数使用默认设置即可。

(3) 单击 Transient 选项 Run 按钮,开始执行仿真。

3.4.4 傅里叶仿真结果分析

下面对傅里叶仿真结果进行分析。其步骤主要包括: (1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。

(2) 自动打开 PCB_Project1. sdf 文件,在该文件下有两个标签: Transient Analysis 和 Fourier Analysis, 单击 Fourier Analysis 标签, 如图 3-30 所示。

图 3-30 单击 Fourier Analysis 标签

(3) 看到如图 3-31 所示的傅里叶分析的结果。

图 3-31 傅里叶分析结果

(4) 单击 Transient Analysis 标签,打开时序分析结果。如果没有出现波形,则按照前面的方法手 工将 IN 和 OUT 信号波形添加到该界面中。图 3-32 给出了瞬态分析结果。

图 3-32 瞬态分析结果

3.4.5 修改电路参数重新执行傅里叶分析

修改电路参数并重新执行傅里叶分析的步骤主要包括:

(1) 将图 3-28 中的 R4 的值改成 56kΩ,重新执行傅里叶分析。

(2) 看到如图 3-33 所示的傅里叶分析的结果,很明显发生失真。

图 3-33 傅里叶分析结果

⁽³⁾图 3-34 给出了瞬态分析结果。

图 3-34 瞬态分析结果

(4)保存工程文件,将其保存 fourier_analysis 目录下(也可以根据情况保存到其他目录下),并且退出该设计工程。

3.5 交流小信号分析

本节将构建用于交流小信号分析的电路,并执行交流小信号分析,主要内容包括构建交流小信号电路、设置交流小信号分析参数和分析交流小信号的仿真结果。

3.5.1 建立新的交流小信号分析工程

首先建立交流小信号分析电路工程,其步骤主要包括:

(1) 在 Windows 10 操作系统主界面的左下角选择【开始】→Altium Designer 命令,打开 AD 软件。

(2) 在 AD 软件主界面菜单下选择 File→New→Project 命令,创建一个名为 PCB_Project1. PrjPCB 的新工程。

(3) 按照前面所介绍的添加原理图的方法,添加名称为 Sheet1. SchDoc 的原理图文件。

3.5.2 构建交流小信号分析电路

下面构建交流小信号分析电路。其步骤主要包括:

(1) 从 Miscellaneous Devices. IntLib 库中分别找到名称为 Res1 的电阻元器件、名称为 Cap 的电容 元器件、名称为 Diode 1N4001 的二极管,并将这些元器件按照图 3-35 所示的位置进行放置。

(2) 从 Simulation Sources. IntLib 库中找到名称为 VSRC 和 VSIN 的元器件,并按照图 3-35 所示的位置进行放置。

(3) 单击 AD 软件主界面下工具栏内的 据按钮,将 GND 按照图 3-35 所示的位置进行放置。

(4) 单击 AD 软件主界面下的工具栏内的连线按钮,将这些元器件和信号源按照图 3-36 所示的方式进行连接。

图 3-35 放置元器件和信号源

图 3-36 连接电路中的所有元器件和信号源

(5) 按照给元器件分配标识符的方法,为电路中的元器件和信号源分配唯一的标识符。图 3-37 给 出了分配完标识符后的原理图界面。 (6) 按照图 3-38 所示,修改电路中元器件和信号源的参数设置。为了便于后面对激励源信号的参数修改,下面给出修改 V2 的参数设置步骤。

① 双击 V2 交流信号源符号,打开其配置界面。

② 如图 3-39 所示,单击其配置界面 General 选项卡下方的 Parameters 选项中 AC Magnitude 项, 设置交流仿真幅度为 1V。

(7)为了分析方便,按照图 3-40 所示为电路的一些节点指定网络标识符。

图 3-39 修改信号源配置参数界面

图 3-40 为电路节点指定网络标识符

(8)保存设计文件,将其保存 ac_analysis 目录下(可根据情况确定保存路径)。

3.5.3 设置交流小信号分析参数

下面介绍设置交流小信号分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。

(2) 打开如图 3-41 所示的 Simulation Dashboard 界面,按下面参数设置:

Simulation Dashboard	▼ # >
Affect Document (PCB_Project1/Sheet1.SchDoc) 🔻
▶ 1. Verification	⊘
▶ 2. Preparation	⊘
▲ 3. Analysis Setup & Run	
Operating Point	🕑 Run
DC Sweep	🕑 Run
▶ Transient	🕑 Run
AC Sweep	🕑 Run
Start Frequency End Frequency Points/Dec 10 100MEG 100	Type Decade
Start Frequency End Frequency Points/Dec 10 100MEG 100 Output Expressions 100 100	Type Decade
Start Frequency End Frequency Points/Dec 10 100MEG 10 100 Output Expressions Image: MAG(v(MID)) •••• 1	Type Decade
Start Frequency End Frequency Points/Dec 10 100MEG 100 Output Expressions ✓ MAG(v(MID)) •••• 1 ✓ MAG(v(OUT)) •••• 2	Type Decade
Start Frequency End Frequency Points/Dec 10 100MEG 100 Output Expressions MAG(v(MID)) ···· 1 MAG(v(OUT)) ··· 2 + Add Advanced	Type Decade
Start Frequency End Frequency Points/Dec 10 100MEG Output Expressions MAG(v(MID)) 1 MAG(v(OUT)) 2 + Add Advanced Noise Analysis	Type Decade
Start Frequency End Frequency Points/Dec 10 100MEG Output Expressions MAG(v(MID)) 1 MAG(v(OUT)) 2 + Add Advanced Noise Analysis Temp. Sweep Sweep Monte Carlo Sensitivity	Type Decade

图 3-41 设置交流分析参数

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"3. Analysis Setup & Run"中 AC Sweep 选项设置交流分析参数起始频率(Start Frequency) 为 10Hz,停止频率(End Frequency)100MHz,点数(Points/Dec)为 100,类型(Type)为 Decade。

③ 在 Output Expressions 界面单击 Add 分别添加 MAG(v(MID))和 MAG(v(OUT))信号作为显示输出。

(3) 单击 AC Sweep 选项 Run 按钮,开始执行仿真。

3.5.4 交流小信号仿真结果分析

对交流小信号仿真结果分析的步骤主要包括:

(1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。

(2) 自动打开 PCB_Project1. sdf 文件,如图 3-42 所示,可以看到 MID 和 OUT 两个网络节点的交

流小信号分析的结果。

图 3-42 交流小信号仿真结果分析

下面将在图 3-42 中增加 Y 轴,其单位改成 dB。实现该过程的步骤主要包括:

(1) 在图 3-42 所示的界面的 mid 波形图内单击鼠标右键,出现快捷菜单,选择 Add Wave To Plot 选项,出现图 3-43 所示的界面。在该界面内按如下设置:

Add Wave To Plot	×
Expression Measurements	
Wave Setup	
Waveforms Fur	nctions
All 👻 Al	I -
boltz e echarge false frequency kelvin pi planck true V(mid) kexpression X 4 Expression Y V(mid)	COS() COSH() RCCOS() mplex Functions agnitude (dB) V
Name	Units
Plot Number 1 🔻 Axis Number 2 💌	Color
Create	Cancel

图 3-43 添加波形的选择窗口

① 在 Waveforms 窗口下选择 v(mid)。

② 在 Complex Functions 下选择 Magnitude(dB)。

③ 在 AxisNumber 下拉菜单中选择 New axis(添加新的 Y 轴),使用第 2 个 Y 轴显示 dB 单位。

(2) 单击 Create 按钮。

(3) 在图 3-44 所示界面的 mid 图形中添加了 Y 轴。

图 3-44 mid 添加的新波形

(4) 按照前面的方法,为 out 添加波形。图 3-45 给出了 out 添加的新波形。

图 3-45 out 添加的新波形

(5) 保存设计工程和相关文件,将其保存到 ac_analysis 目录下。

(6) 关闭该设计工程。

3.6 噪声分析

本节将构建用于噪声分析的电路,并执行噪声分析,主要内容包括构建噪声分析电路、设置噪声分 析参数和分析噪声仿真结果。首先对噪声分析中的一些理论知识进行介绍。

输入噪声和输出噪声的定义如下:

1) 输出噪声

输出噪声是指与指定输出网络相关的所有噪声设备噪声的 RMS 值。

2) 输入噪声

输入噪声是一个等效噪声,是指在一个无噪声的理想电路中,在输入源所施加的噪声,用于等效在 指定输出网络计算所得到的噪声。表 3-1 是不同元器件所产生的噪声列表。

元器件类型	噪 声 类 型(V ² /Hz)	含 义
	FID	闪烁噪声
	RD	与 RD 相关的热噪声
	RG	与 RG 相关的热噪声
B(GaAsFE1)	RS	与 RS 相关的热噪声
	SID	散粒噪声
	ТОТ	总噪声
	FID	闪烁噪声
ひ(一拓英)	RS	与 RS 相关的热噪声
し(二)(以信)	SID	散粒噪声
	ТОТ	总噪声
	RHI	与 RHI 相关的热噪声
数字输入	RLO	与 RLO 相关的热噪声
	ТОТ	总噪声
数字输出	ТОТ	总噪声
	FID	闪烁噪声
	RD	与 RD 相关的热噪声
	RG	与 RG 相关的热噪声
J(JFEI)	RS	与 RS 相关的热噪声
	SID	散粒噪声
	ТОТ	总噪声
	FID	闪烁噪声
	RB	与 RB 相关的热噪声
	RD	与 RD 相关的热噪声
M(MOSFET)	RG	与 RG 相关的热噪声
	RS	与 RS 相关的热噪声
	SID	散粒噪声
	ТОТ	总噪声
	FIB	闪烁噪声
	RB	与 RB 相关的热噪声
	RC	与 RC 相关的热噪声
Q(BJT)	RE	与 RE 相关的热噪声
	SIB	和基极电流相关的散粒噪声
	SIC	和集电极电流相关的散粒噪声
	ТОТ	总噪声
R(电阻)	ТОТ	总噪声
Iswitch	ТОТ	总噪声
Vswitch	ТОТ	总噪声

表 3-1 不同元器件所产生的噪声

注:

① 闪烁噪声和 $K_{f} \cdot (I^{af}/f^{b})$ 成正比。

②散粒噪声:对于 BJT,和 2qI 成正比;对于 GaAsFET、JFET 和 MOSFET 来说,和 4kT · (dI/dV) · 2/3 成正比。

③ 热噪声:和 4kT/R 成正比。

④ 器件总噪声:是器件内所有噪声的总和。

⑤ NTOT(ONOISE): 电路的总输出噪声。

⑥ V(ONOISE): 电路总输出噪声的 RMS。

⑦ V(INOISE): 等效输入噪声,由 V(ONOISE)/增益得到。

3.6.1 建立新的噪声分析工程

建立新的噪声分析电路工程的步骤主要包括:

(1) 在 Windows 10 操作系统主界面的左下角选择【开始】→Altium Designer 命令,打开 AD 软件。

(2) 在 AD 软件主界面菜单下选择 File→New→Project 命令,创建一个名为 PCB_Project1. PrjPCB 的新工程。

(3) 按照前面所介绍的添加原理图的方法,添加名为 Sheet1. SchDoc 的原理图文件。

3.6.2 构建噪声分析电路

构建噪声分析电路步骤主要包括:

(1) 从 Miscellaneous Devices. IntLib 库中分别找到名称为 Res1 的电阻元器件、名称为 Cap 的电容 元器件、名称为 NPN 的晶体管,并将其按照图 3-46 所示的位置进行放置。

图 3-46 放置仿真元器件和信号源

这里放置多个对称的晶体管,可以镜像放置。方法是:

① 双击需要镜像放置的晶体管,打开其配置界面。

② 如图 3-47 所示,在该界面下选中 Mirrored 复选框,就可以 镜像放置晶体管。

(2) 从 Simulation Sources. IntLib 库中找到名称为 VSRC 和 VSIN 的元器件,并按照图 3-46 所示的位置进行放置。

▲ Graphical	
Mode	Normal 👻
	Mirrored
Local Colors	
图 3-47	谙像 故 罟 昂 休 管

(3) 单击 AD 软件主界面下工具栏内的 据按钮,将 GND 按照图 3-46 所示的位置进行放置。

(4) 单击 AD 软件主界面下工具栏内的连线按钮,将这些元器件和信号源按照图 3-48 所示的方式进行连接。

(5) 按照前面所介绍的为元器件分配标识符的方法,为电路中的元器件和信号源分配唯一的标识符。图 3-48 给出分配完标识符后的原理图界面。

图 3-48 为电路元器件和信号源分配唯一的标识符

(6) 如图 3-49 所示,将 V1 和 V3 分别设置为+12V 和-12V。其他元器件参数按图 3-49 所示进 行设置。

图 3-49 修改电路元器件参数并放置网络标号

(7)为了方便对仿真结果的分析,如图 3-49 所示,在电容 C1 的两端分别放置名称为 OUT1 和 OUT2 的网络标号。

3.6.3 设置噪声分析参数

下面介绍设置噪声分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。

(2) 打开如图 3-50 所示的 Simulation Dashboard 界面,按下面参数设置:

Simulation Dashboard	▼ +≡ X
Affect Document (PCB_Project1/Sheet2.SchDoc)	-
▶ 1. Verification	⊘
▶ 2. Preparation	⊘
✓ 3. Analysis Setup & Run	
▶ Operating Point	🕞 Run
► DC Sweep	🕞 Run
▶ Transient	🕞 Run
✓ AC Sweep	🕑 Run
Start Frequency End Frequency Points/Dec Type 100K 10G 100 Decade	-
Output Expressions + Add	
Advanced	
V Noise Analysis	
Noise Source Output Node Ref Node	
Points Per Summary	
100 🗘	
Temp. Sweep Sweep Monte Carlo	る Settings
▶ 4. Results (4)	

图 3-50 设置噪声分析参数

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络 OUT2 处加入 Probes(探针) V_OUT2,用于采集对应网络的幅频波形。

③ 在"3. Analysis Setup & Run"中 AC Sweep 选项,设置交流分析参数起始频率(Start Frequency)为 100kHz,停止频率(End Frequency)为 10GHz,点数(Points/Dec)为 100,类型为 Decade,在 Advanced 部分选中 Noise Analysis,参数噪声源(Noise Source)设置为 V2,输出节点(Output Node)设置为 OUT2,参考节点(Ref Node)设置为 0,点数(Points Per Summary)设置为 100。

(3) 单击 AC Sweep 选项 Run 按钮,开始执行仿真。

3.6.4 噪声仿真结果分析

下面对噪声仿真结果进行分析。其步骤主要包括:

(1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。

(2)自动打开 PCB_Project1.sdf 文件。在该文件下,有三个标签:第一个是 AC Analysis(AC 分析);第二个是 Noise Spectral Density(噪声谱密度);第三个是 Intergrated Noise(噪声积分),单击 Noise Spectral Density 标签,如图 3-51 所示。

AC Analysis	Noise Spectral Density	Integrated Noise

图 3-51 选择 Noise Spectral Density

(3) 在 Noise Spectral Density 界面需要加入观测的噪声波形信号。单击鼠标右键选择 Add Plot...,在 Plot Wizard 对话框中单击 Next,进入最后一步,单击 Finish 按钮生成一个绘图图表。

(4) 在 Noise Spectral Density 界面单击鼠标右键选择 Add Wave to Plot...,如图 3-52 所示选择 inoise_spectrum 并单击 Create 按钮加入波形,输入噪声谱密度仿真波形如图 3-53 所示。

Add Wave To Plot	×
Expression Measurements	
Wave Setup	
Waveforms	Functions
All	All 👻
boltz e echarge false frequency inoise_spectrum kelvin conside a 1	! • • •
onoise_q1_loverf onoise_q1_lb	· /
✓ Expression Y	
inoise_spectrum	
Name	Units
Plot Number 1 🔻 Axis Number 1	Color
	reate Cancel

图 3-52 在绘图图标中加入波形

(5) 在 Noise Spectral Density 界面按照上述的步骤创建一个新的绘图图表,并加入 onoise_spectrum,输出噪声谱密度仿真波形如图 3-54 所示。

(6)保存工程文件,将其保存到 noise_analysis 目录下(可以根据情况保存到其他目录下),退出该设计工程。

图 3-53 输入噪声谱密度仿真波形

图 3-54 输出噪声谱密度仿真波形

3.7 参数扫描分析

本节将构建用于参数扫描分析的电路,并执行参数扫描分析,主要内容包括修改前面的设计、设置 参数扫描分析参数和分析参数扫描的仿真结果。

3.7.1 打开前面的设计

打开前面设计的步骤主要包括:

(1) 新建一个 parametric_analysis 文件夹,把 transient_analysis 文件夹下的所有文件复制到 parametric_analysis 文件夹下。

(2) 在 AD 软件中,打开 parametric_analysis 文件夹下的工程文件。

3.7.2 设置参数扫描分析参数

下面介绍设置参数扫描分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。

(2) 打开如图 3-55 所示的 Simulation Dashboard 界面,按下面参数设置:

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络 OUT 处加入 Probes(探针) V_OUT,用于采集对应网络的时域瞬态波形。

③ 在"3. Analysis Setup & Run"中 Transient 选项设置瞬态仿真参数起始时间(From)为 0,停止 时间(To)为 30µs,步进(Step)为 100ns。

④ 选中 Sweep 选项并单击 Settings 按钮进入 Advanced Analysis Settings 设置窗口,如图 3-56 所示设置扫描参数源为 R1,开始值(From)为 1kΩ,结束值(To)为 10kΩ,步进值(Step)为 1kΩ。

Simulation Dashboard	▼ + ×		
Affect Document (PCB_Project1/Sheet1.SchDoc)	-	Advanced Analysis Settings	×
▶ 1. Verification	\odot	General Global Parameters Sensitivity Advanced	
		Temperature	
▶ 2. Preparation	\odot	From To Step	
✓ 3. Analysis Setup & Run		-10 60 10	
Operating Point	🕞 Run	✓ Sweep Parameter	
► DC Sweep	🕞 Run	R1	
▲ Transient	🕑 Run	From To Step 1K 10K 1K	
From To Step 0 30u 100n 💽 🗸		+ Add Parameter	
Output Expressions		Monte Carlo	
+ Add		Number of Runs Distribution Seed (?)	
Advanced		10 Gaussian -1	
Fourier Analysis		Group Tolerances	
Use Initial Conditions		Resistor 10% Capacitor 10%	
► AC Sweep	⊙ Run	✓ Inductor 10% ✓ Transistor 10%	
Temp, Sweep Sweep Monte Carlo	}} Settings	DC Source 10% Digital Tp 10%	
► 4. Results		OK Cancel	

图 3-55 设置瞬态及参数分析参数

图 3-56 设置参数扫描分析参数

(3) 单击 Transient 选项 Run 按钮,开始执行仿真。

3.7.3 参数扫描结果分析

下面对参数扫描的结果进行分析。其步骤主要包括:

(1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。

 (2) 自动打开 PCB_Project1. sdf 文件。显示如图 3-57 所示的图形,V(OUT)p1~V(OUT)p10 分 别为 R1 在 1~10kΩ不同阻值下的输出信号时域瞬态波形。

(3)保存工程文件,并退出设计工程。

图 3-57 参数扫描仿真波形结果

3.8 温度分析

本节将构建温度分析电路,并执行温度分析,主要内容包括构建温度分析电路、设置温度分析参数 和分析温度仿真结果。带有温度系数的器件包括 GaAsFET、电容、二极管、JFET、电感、MOSFET、 BJT、电阻和电压开关(只用于噪声计算)。

3.8.1 建立新的温度分析工程

建立新的温度分析电路工程的步骤主要包括:

(1) 在 Windows 10 操作系统主界面的左下角下,选择"开始"→Altium Designer 命令,打开 AD 软件。

(2) 在 AD 软件主界面菜单下选择 File→New→Project 命令,创建一个名称为 PCB_Project1. PrjPCB 的新工程。

(3) 按照前面所介绍的添加原理图的方法,添加名称为 Sheet1. SchDoc 的原理图文件。

3.8.2 构建温度分析电路

构建温度分析电路步骤主要包括:

(1)从 Miscellaneous Devices. IntLib 库中分别找到名称为 Res1 的电阻元器件、名称为 Res Tap 的

可变电阻、名称为 Diode IN4148 的二极管、名称为 Diode 18TQ045 的二极管、名称为 Op Amp 的运算放 大器,并将其按照图 3-58 所示的位置进行放置。

图 3-58 放置元器件和信号源

(2) 从 Simulation Sources. IntLib 库中找到名称为 VSRC 的元器件,并按照图 3-58 所示的位置进行放置。

(3) 单击 AD 软件主界面下工具栏内的 据 按钮,将 GND 按照图 3-58 所示的位置进行放置。

(4) 单击 AD 软件主界面下工具栏内的连线按钮,将这些元器件和信号源按照图 3-59 所示的方式进行连接。

图 3-59 连接电路元器件和信号源

(5)按照前面所介绍的给元器件分配标识符的方法,为电路中的元器件和信号源分配唯一的标识符。图 3-60 给出分配完标识符后的原理图界面。

图 3-60 为电路元器件和信号源分配唯一的标识

(6) 如图 3-61 所示,将 V1 和 V2 设置为+15V,其他元器件参数按图中设置。

(7)为了方便对仿真结果的分析,如图 3-61 所示,在放大器的输出端放置名称为 OUT 的网络标号。

图 3-61 修改电路元器件参数并放置网络标号

(8) 保存设计文件,将其保存到 temperature_analysis 目录下。

3.8.3 设置温度分析参数

下面介绍设置温度分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。

(2) 打开如图 3-62 所示的 Simulation Dashboard 界面,按下面参数设置:

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络 OUT 处加入 Probes(探针) V_OUT,用于采集对应网络的时域瞬态波形。

③ 选中 Temp. Sweep 选项,并单击 Settings 按钮进入 Advanced Analysis Settings 窗口,如图 3-63 所示设置温度开始值(From)为 0 度,结束值(To)为 100 度,步进(Step)值为 10 度。

Simulation Dashboard	▼ # ×		
Affect Document (PCB_Project1/Sheet1.SchDoc) -	Advanced Analysis Settings	×
1 Martination	0	General Global Parameters Sensitivity Advanced	
r i. verification	۲	✓ Temperature	
► 2. Preparation	\odot	From To Step	
		0 100 10	
▲ 3. Analysis Setup & Run		Sweep Parameter	
▶ Operating Point	🕞 Run		×
	2	Temp Vinear V	
► DC Sweep	(•) Run	From To Step	
▲ Transient	🕑 Run	1n 1u 100n	
From To Step		+ Add Parameter	
0 5u 0.1u	⊙ √		
Output Expressions		Monte Carlo	
+ Add		Number of Runs Distribution Seed (?)	
Advanced			
Fourier Analysis			
Use Initial Conditions		✓ Resistor 10% ✓ Capacitor 10%	
► AC Sweep	🕞 Run	V Inductor 10%	
Temp. Sweep Sweep Monte Carlo	{ô} Settings	DC Source 10% Digital Tp 10%	
Sensitivity			
▶ 4. Results			col
			cer

图 3-62 设置瞬态和温度分析参数

图 3-63 设置温度扫描分析参数

(3) 单击 Transient 选项 Run 按钮,开始执行仿真。

3.8.4 温度仿真结果分析

下面对温度仿真结果进行分析。其步骤主要包括:

(1)运行 Spice 仿真后,弹出消息对话框,关闭该对话框。

 (2) 自动打开 PCB_Project1. sdf 文件。如图 3-64 所示,显示 V(OUT)t1~V(OUT)t11 分别在 0~100℃不同温度下的输出信号时域瞬态波形。

(3) 保存工程文件,将其保存 temperature_analysis 目录下,退出设计工程。

图 3-64 温度扫描仿真结果

3.9 蒙特卡洛分析

本节将构建蒙特卡洛分析电路,并执行蒙特卡洛分析,主要内容包括构建蒙特卡洛分析电路、设置 蒙特卡洛分析参数和分析蒙特卡洛仿真结果。

3.9.1 建立新的蒙特卡洛分析工程

建立新的蒙特卡洛分析电路工程的步骤主要包括:

(1) 在 Windows 10 操作系统主界面的左下角下,选择【开始】→Altium Designer 命令,打开 AD 软件。

(2) 在 AD 软件主界面菜单下选择 File→New→Project 命令,创建一个名称为 PCB_Project1. PrjPCB 的新工程。

(3) 按照前面所介绍的添加原理图的方法,添加名称为 Sheet1. SchDoc 的原理图文件。

3.9.2 构建蒙特卡洛分析电路

下面构建用于蒙特卡洛分析的单个 BJT 放大电路。其步骤主要包括:

(1) 从 Miscellaneous Devices. IntLib 库中分别找到名称为 Res1 的电阻元器件、名称为 Cap 的电容 元器件、名称为 2N3904 的晶体管,并将其按照图 3-65 所示的位置进行放置。

(2) 从 Simulation Sources. IntLib 库中找到名称为 VSRC 和 VSIN 的元器件,并按照图 3-65 所示的位置进行放置。

(3) 单击 AD 软件主界面下工具栏内的 据按钮,将 GND 按照图 3-65 所示的位置进行放置。

(4) 单击 AD 软件主界面下工具栏内的连线按钮,将这些元器件和信号源按照图 3-66 所示的方式进行连接。

图 3-65 放置元器件和信号源

图 3-66 连接电路元器件和信号源

(5) 按照前面所介绍的为元器件分配标识符的方法,为电路中的元器件和信号源分配唯一的标识符。图 3-67 给出分配完标识符后的原理图界面。

图 3-67 为电路元器件和信号源分配唯一的标识符

(6) 如图 3-68 所示,将元器件参数按照图中设置。

(7)为了方便对仿真结果的分析,按照图 3-68 所示的电路,在电容 Cc 的输出端放置名称为 OUT 的网络标号。

图 3-68 修改电路元器件参数和放置网络符号

3.9.3 设置蒙特卡洛分析参数

下面介绍设置蒙特卡洛分析参数的方法。其步骤主要包括:

(1) 在 AD 软件主界面菜单下选择 Simulate→Simulation Dashboard 命令。
(2) 打开如图 3-69 所示的 Simulation Dashboard 界面,按下面参数设置:

Simulation Dashbo	ard		▼ # ×
Affect Docume	nt (PCB_Proje	ct1/Sheet1.Sch	iDoc) 👻
▶ 1. Verificatio	n		⊘
▶ 2. Preparation	on		\odot
▲ 3. Analysis 5	Setup & Ri	ın	
▶ Operating Po	int		🕑 Run
► DC Sweep			🕑 Run
▲ Transient			🕑 Run
From O	To 5m	Step 1u	0 1
Output Express + Add Advanced Fourier Ana Use Initial C	ions lysis conditions		Q Pure
Temp. Sweep	Sweep	Monte Ca	rlo 💮 Settings
• 4. Results			

图 3-69 设置瞬态和蒙特卡洛分析参数

① 在"1. Verification"中单击 Start Verification 按钮进行电路检查,检查通过后 Electrical Rule Check 和 Simulation Models 标识为绿色对号。

② 在"2. Preparation"中 Probes 界面单击 Add 按钮选择 Voltage,在网络 OUT 处加入 Probes(探针) V_OUT,用于采集对应网络的时域瞬态波形。

③ 在"3. Analysis Setup & Run"中 Transient 选项设置瞬态仿真参数起始时间(From)为 0,停止 时间(To)为 5ms,步进(Step)为 1µs。

④ 选中 Monte Carlo 选项并单击 Settings 按钮进入 Advanced Analysis Settings 窗口,如图 3-70 所示设置运行次数(Number of Runs)为 30,分布(Distribution)为 Uniform,种子值(Seed)为 32767,将所有的 Tolerance(容差)设置为 10%。

Advanced Analysis Settings							×	
General	Global Pa	ameters	Sensitivity	Advanced]			
Tempo	erature							
From			Ste	р				
-10								
Sweep	p Parameter							
	Teme				Linna	_		×
Erom	Temp	То	Sten		Linear			
110			100					
- Add								
Monto	e Carlo	Distribut			_			
30		Uniform	→ 32	.u (:) :767				
Group	Tolerances							
	Resistor	1	0%		Capacitor	(10%	
	nductor	1	0%) 🖸 1	iransistor		10%	
	DC Source	1)%		Digital Tp	(10%	
L						ОК		Cancel

图 3-70 设置蒙特卡洛分析参数

(3) 单击 Transient 选项 Run 按钮,开始执行仿真。

3.9.4 蒙特卡洛仿真结果分析

下面对蒙特卡洛仿真结果进行分析。其步骤主要包括:

(1)运行 Spice 仿真后,弹出消息对话框。关闭该对话框。

(2) 自动打开 PCB_Project1. sdf 文件。仿真波形显示如图 3-71 所示, V(OUT) m1~V(OUT) m3D 分别为在不同蒙特卡洛参数下输出信号时域瞬态波形。

(3) 保存工程文件,将其保存到 montecarlo_analysis 目录下,退出设计工程。

图 3-71 蒙特卡洛分析结果