
Chapter 1
Introduction

1.1 Research Background and Significance

1.1.1 Development Trends of Neural Network

Artificial Intelligence (AI) has promoted the development of modern society in many
aspects [1], and will profoundly change human social life and the world [2]. Artificial
intelligence has been applied in the fields including social security, medical treatment,
finance, traffic navigation, agriculture, etc., which shows an increasing number in
consumer products. In 2017–2018, a number of governments, including China and
the United States, have released the development strategies of artificial intelligence
[3]. It can be observed that artificial intelligence owns a broad prospect. The relevant
research is of considerable significance to national strategy and social development.

Neural Network (NN) is a typical algorithm implementation of the modern artifi-
cial intelligence. With the development of big data, adequate computing resources,
and advanced NN algorithm model, the fast developing neural network technique
presents much better results than the traditional algorithms in recent years. In the
2012 ImageNet Large Scale Visual Recognition Challenge [4], the multi-layer con-
volutional neural network (CNN) algorithm improved the Top-5 accuracy to 84.7%
[5], which is 10.8% higher compared with the conventional algorithms with manually
designed features. The following several works further improve the Top-5 accuracy
to 96.4% [6–9]. The classification accuracy of neural networks has exceeded humans
since 2014.

The NN algorithm models are developing rapidly, and the application field is
expanding. NN models were used in the field of computer vision in the early stage,
such as image classification, recognition, etc. One representative algorithm model is
the convolutional neural network (CNN) [5–9], including convolutional layers and
fully connected layers.

The recurrent neural network (RNN), e.g. long short-term memory (LSTM),
shows good performance in the recognition of speech, text and other sequence infor-
mation, which can be widely applied on automatic translation, image to text con-
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version, voice to text conversion, etc. At present, the self-attention NN model [10]
(transformer) is also widely used in the field of natural language processing. Besides,
the generative adversarial network [11] (GAN) is applied to image generation, such
as super-resolution image restoration, image style migration, semantic segmentation,
etc. The AlphaGo intelligent algorithm [12] developed by Google has defeated world
Go Champions Sedol Lee and Jie Ke in 2016 and 2017, respectively. Neural network
is also gradually applied to a wider range of practical scenarios, such as web page
recommendation, financial risk prediction, vaccine research and development, chip
design optimization, navigation, weather forecasting, and so on.

In summary, neural network and its application have been widely applied to almost
every aspect of human society. AI chip, i.e. NN processor, is the hardware foundation
to implement neural network algorithm. A research report from Askci Consulting
company predicts that the global artificial intelligence chip market will exceed 70
billion US dollars by 2025 [13]. The research of NN processor will promote the
practical application of NN algorithm in various intelligent devices, which further
promotes social development and progress.

1.1.2 Requirements of NN Processor

Neural network algorithm requires a huge amount of computation and parameters.
Figure 1.1 in previous work [14] has shown the accuracy and complexity of vari-
ous neural network models on the ImagenNet dataset. The horizontal and vertical
coordinates are the number of floating-point operations required to perform one NN
inference operation and the Top-1 accuracy of the NN model, respectively. The size
of each circular icon represents the number of parameters required by the NN model.
With the increasing demand for accuracy, the amount of computation and the number
of parameters show an upward trend. These NN models generally require .109–.1010

computation and.106–.108 parameters. Such a huge amount of computation, storage,
and memory access overhead will seriously affect the performance and power con-
sumption of NN processors. In addition, the parameters of NN structures are also
diverse. Supporting different NN parameters will also affect the performance and
power consumption of NN processor to a certain extent.

Conventional general-purpose processor (GPP) cannot satisfy the need for a wide
range of low-power intelligent devices to run NN algorithms. Central Processing
Unit (CPU) is the most common GPP solution at the early stage. However, as the
size of NN models grows, CPU cannot meet the training and inference requirement
for large-scale NN models. For example, a VGG model of the ImageNet dataset
requires 818 ms inference time [15] for each image on the Qualcomm Snapdragon
855 CPU, which can hardly satisfy the real-time requirements. For CPU platforms
with lower power supply, such as the ARM Cortex-M0, the processing time of NN
model may reach several seconds or even hundreds of seconds.

Graphics Processing Unit (GPU) provides sufficient computational support for
large-scale training and reasoning of NN models. However, GPU cannot meet the
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Fig. 1.1 Related research on digital NN processors

low-power requirement. GPU owns a large number of parallel computing units. The
latest NVIDIA A100 GPU can reach the peak performance of 624TFLOPS [16].1.
However, the high performance of GPU comes at the cost of high power consumption.
Even for the mobile GPU [17], it still requires 5–10 W power consumption. As a
general-purpose high-parallelism processor, GPU lacks special optimization for NN
algorithms, and a large number of GPU computing resources cannot be fully utilized.

Field Programmable Gate Array (FPGA) accelerated the early-stage development,
iteration, and deployment of NN processors due to its high flexibility and fast recon-
figuration. FPGA is a programmable hardware processor, which can quickly convert
hardware description language (HDL) into corresponding hardware implementation.
In the period of rapid development and change of NN models, FPGA can quickly
adjust the hardware architecture according to the change of algorithms to realize
rapid iteration and deployment. As the stability of NN model and the deepening of
NN processor optimization, the inherent characteristics of FPGA restrict its further
reduction of power consumption and energy efficiency improvement. On one hand,
compared with the fully customized application specific integrated circuits (ASIC)
design, the semi-customized programmable gate array adopted by FPGA brings a
larger area and power overhead. On the other hand, some specifical circuit designs
are difficult to be implemented on FPGA, and must be implemented by ASIC chips.

In conclusion, traditional general-purpose processors (CPU, GPU and FPGA) are
difficult to meet the needs of a wide range of low-power intelligent devices in terms
of performance and power consumption. The energy-efficient specific processor for
NN algorithm is required, which is the core reserach top of this book. A report
from the Chinese government points out that “Aim at artificial intelligence, quantum
information, integrated circuits, life and health ... Implement a number of forward-

1 The concepts and calculation methods of performance and OPS are detailed in Sect. 2.2
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looking and strategic national science and technology projects” [18]. The research on
energy-efficient NN processor is oriented to two important scientific fields (artificial
intelligence and integrated circuit), which is of important strategic significance and
social value.

1.1.3 Energy-Efficient NN Processors

The existing research work of NN processors can be mainly divided into two cat-
egories: conventional digital NN processors and computing-in-memory (CIM) NN
processors. In the digital NN processors, all the storage and computation of the NN
algorithm are realized by the digital circuits, which are featured with separated stor-
age and calculation unit. Different from that, the CIM NN processor combines the
storage unit and the computing unit together, and completes the computing operation
inside the storage unit.

The digital NN processor has adopted three main techniques: data reuse, low-bit
quantization and NN model compression. The representative research work of digital
NN chips is shown in Fig. 1.1. The early-stage work of NN processors [19–21] adopts
the data reuse characteristics of NN algorithms. By optimizing the chip architecture
and data path, it can reduce the memory access at each level, especially the bottom-
level memory access, to reduce power consumption. With the in-depth study of NN
algorithms, the technical route of reducing algorithm redundancy through low bit
quantization [22, 23] and NN model compression [24–28] is gradually adopted.
In the aspect of low bit quantization, many kinds of circuit optimization techniques,
such as time-domain and space-domain multiplication splitting, are adopted [29, 30].
The initial floating-point operations are transferred to low bit fixed-point calculation
to reduce the area and power consumption of storage and computation. NN model
compression, represented by sparse pruning technique, is applied to accelerate NN
processors [31–34]. By compressing zero-value storage and skipping zero-value
calculation, computation time and power consumption are saved to achieve equivalent
energy efficiency improvement.

Computing-in-memory (CIM) architecture implements storage and computation
in the same circuit unit. In modern NN processor architecture, the proportion of
memory access power is more important than computation power consumption [35].
The concept of Computing-in-memory has emerged in the 1990s and has been used
to implement specific circuit functions [36–39]. In recent years, CIM technology
based on regular array structure has been applied to the architecture and chip design
of NN processors [40–50]. The representative research work is shown in Fig. 1.2.

Compared with the digital NN processor based on von Neumann architecture, CIM
architecture integrates memory and computing array together, reducing the cost of
reading a large amount of data from memory. The Related work has been explored
from the level of bottom-level devices, circuits, and CIM intellectual property (IP)
cores. At device level, conventional storage devices, such as the static random access
memory (SRAM), dynamic random access memory (DRAM) and Flash, are adopted
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Fig. 1.2 Related research on CIM NN processors

in CIM circuits [45, 46, 51–54]. Several emerging non-volatile memory (NVM)
devices such as the resistive random access memory (RRAM), ferroelectric random
access memory (FeRAM), phase change memory (PCM), and magnetic random
access memory (MRAM), are also considered for CIM circuits [43, 55–58]. The
emerging NVM devices show advantages in read/write power, density, etc. compared
with the conventional storage devices, but there is still a certain gap in reliability,
consistency and process maturity compared with traditional memory devices. At
the circuits level, related research has explored digital-to-analog converter (DAC),
CIM array, analog-to-digital converter (ADC), etc. [40–49], which aims to improve
stability and accuracy, reducing errors, reducing power/area, etc. At CIM IP core
level, there have been several IP-level CIM chips utilizing CIM architecture [40–49],
which verifies the feasibility and high energy efficiency advantage of implementing
NN algorithm on CIM architectures.

Previous related research has explored the design of NN processors in two ways:
digital circuits and computing-in-memory, which effectively reduces the power con-
sumption and area overhead, and improve the energy efficiency of NN processor.
However, there are still unexplored scientific problems and still much room for opti-
mization. In the digital circuit NN processor, the utilization of data reuse is insuffi-
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cient. A part of data still needs to be accessed repeatedly, which still requires large
area overhead or memory access power consumption. Irregular sparsity optimiza-
tion technology leads to significant additional power/area overhead, which limits the
further improvement of energy efficiency. In the CIM NN processors, there is a lack
of research on the system-level CIM chips. A single macro-level CIM IP cannot
constitute a complete CIM system. At present, there is little research on network
mapping, data reuse and sparse optimization in CIM chips. It also lacks system-level
optimization to integrate CIM IPs and digital circuits. In addition, there is still a
gap between the current small-scale on-chip CIM IP capacity and the large-scale
practical NN models. It is necessary to explore the optimization of energy-efficient
CIM chip to support the large-scale NN models.

1.2 Summary of the Research Work

1.2.1 Overall Framework of the Research Work

To sum up, the energy-efficient application-specific processor is the foundation and
core component of low-power intelligent devices. However, there is a large optimiza-
tion space for the existing NN processors, which needs to be further optimized to
achieve higher energy efficiency.

The theme of this book is energy-efficient NN processor integrating digital cir-
cuits and CIM IPs. Aiming at the shortcomings of existing NN processors and the
unexplored design space, systematic research work is carried out. This book contains
four main parts of research contents (Chaps. 3–6), as shown in Fig. 1.3. The first part
mainly studies the data reuse optimization, which designs a specific architecture opti-
mization for the specific convolution kernel to achieve more efficient data reuse. In the
second part, a regular NN model compression method is adopted, and the frequency-
domain compression algorithm is used to achieve higher energy efficiency. In the
third part, based on the research on digital circuit NN processor in the first two parts,
the data reuse and model compression technologies are transferred to the CIM chip
design. Data reuse and sparsity techniques in CIM chips are explored to combine
the benefits of digital circuits and CIM IPs. The fourth part research combines the
requirements of the actual NN application, further optimizes the sparse utilization,
and considers the weight update cost, which further improves the energy efficiency
of the actual system. It can be expanded to support larger-scale NN models.

Focusing on the theme of “High energy efficiency neural network processor
with combined digital and computing-in-memory architecture”, the four parts of
the research work gradually go deeper with an obvious progressive relationship. The
first part starts from the data reuse optimization, which deeply studies the data reuse
opportunities in the NN algorithm. The relevant data reuse technologies are adopted
in all the second, third and fourth parts. The second part explores the compression
optimization of the NN model, and adopts a structured frequency-domain compres-
sion algorithm. Based on the first part, an efficient two-dimensional data reuse is
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realized in the frequency-domain computing array. In order to achieve higher energy
efficiency, the third part converts from pure digital circuits to the system-level chip
design with combined digital and CIM circuits, which inherit the technical ideas of
data reuse and model compression in the first two parts. It explores the data reuse tech-
nology in the CIM system, and proposes the structured block-wise sparsity strategy on
the CIM architecture. The fourth part further extends the third part, and proposes the
set-associate block-wise sparsity. Meanwhile, for the weight updating problem when
implementing large-scale NN models on small CIM chips, a ping-pong mechanism
to support simultaneous weight updating and CIM operations is proposed, so that the
CIM chip can be extended to support large-scale NN models. Overall, the four parts
of the research work are deepening around the same theme, with strong connections
and progressive relationships. The technical solutions of each part are combined to
realize an energy-efficient NN processor with combined digital and CIM circuits.

1.2.2 Main Contributions of This Book

The main contributions and achievements of this book are as follows.

• Propose a data reuse optimization architecture based on specific convolution
kernel. By trade-off with the flexibility of different convolution kernel sizes, a
computing array dedicated to a specific convolution kernel is designed to achieve
more efficient data reuse. Compared with two representative NN chips, it reduces
4.9.× SRAM access overhead or 16.7.× SRAM area, and achieves 4.× energy
efficiency.
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• Implement a NN processor with regular frequency-domain compression and
acceleration. In order to solve the significant additional power/area overhead
incurred by irregular sparsity, a high-performance low-power fast Fourier trans-
form (FFT) circuit and a frequency-domain two-dimensional data-reuse compu-
tation array based on transpose SRAM (TRAM) are designed by adopting a struc-
tured frequency-domain compression algorithm. The test chip was fabricated in
TSMC 65 nm process. Compared with the representative NN chip, the area effi-
ciency and energy efficiency are 8.1.× and 4.2.×, respectively.

• Explore system-level CIM chip design with sparsity technique. A CIM chip
supporting block-wise sparsity is designed, and an inter/intra-macro data reuse
technology for CIM architecture is proposed. This work has fabricated a CIM chip
in TSMC 65 nm process, which achieves 35TOPS/W peak energy efficiency.

• Explore data update operations and large network expansion of the CIM
architecture. The set-associate block-wise sparsity technology, ping-pong CIM
and weight update technology are proposed. The adaptive precision analog-to-
digital converter (ADC) is also explored. This work fabricated a CIM chip in
TSMC 65 nm process, which achieves 6.3.× energy efficiency compared with the
state-of-the-art CIM chip.

1.3 Overall Structure of This Book

This book investigates the wide application requirements of NN algorithms on low-
power intelligent devices, and explores energy-efficient NN processors that integrate
digital and CIM circuits. The organization of this book is as follows.

This chapter introduces the background of artificial intelligence and neural net-
work. It points out the significance of energy-efficient NN processor for a wide range
of low-power intelligent devices, and briefly introduces the current research status
and shortcomings of NN processors based on digital or CIM circuits, which then
motivates the main contents and contributions of this book.

Chapter 2 introduces the basics and related research work of NN algorithms and
NN processors. Firstly, the basic structure of NN algorithms and the challenges of
energy-efficient NN chip are introduced. Then, the related optimization technologies
of NN processors based on digital circuits and CIM architectures are introduced,
respectively. The advantages and disadvantages are analyzed. Besides, the potential
optimization space of integrating digital and CIM circuits are pointed out.

Chapter 3 introduces the data reuse optimization architecture for specific convo-
lution kernel. This chapter first analyzes the insufficient data reuse caused by the
traditional NN processors’ equal support for different convolution kernels, and then
introduces the three main techniques: Make data reuse more sufficiently by (1) opti-
mizing the processing array for a specific convolution kernel and (2) the cyclic access
of the local memory; (3) Realize module-level parallelism through the instruction set
of one-instruction-multi-cycle execution, which improves high utilization rate and
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high average energy efficiency. Finally, this chapter shows the chip layout based on
the above techniques and the improvement compared with the representative work,
and analyzes the advantages and disadvantages of this design.

Chapter 4 introduces the NN chip based on a frequency-domain structured com-
pression algorithm. This chapter first analyzes the significant additional power/area
overhead introduced by irregular sparse compression, and then introduces the
frequency-domain structured compression acceleration algorithm. In this chapter,
a high-performance low-power global-parallel bit-serial FFT circuit, a block-wise
TRAM and a frequency-domain two-dimensional (2D) data reuse processing array
are designed to realize an energy-efficient frequency-domain NN chip. Finally, this
chapter shows the improvement compared with the representative work, and explains
the advantages and disadvantages.

Chapter 5 introduces a sparse NN chip that combines digital and CIM circuits.
This chapter first analyzes the design deficiencies of system-level CIM chips, and
introduces the challenges of implementing sparsity and data reuse techniques in
a CIM system. Then, this chapter introduces the block-wise weight sparsity and
dynamic activation sparsity, flexible network mapping and intra/inter-macro data
reuse techniques. Besides, the CIM macro (IP) is designed to support dynamic power-
off ADC. Finally, this chapter shows the test results of the fabricated CIM chip and
the comparison with the representative work.

Chapter 6 introduces the application-oriented “Digital + CIM” NN chip. This
chapter first analyzes the challenges of insufficient sparsity utilization and difficulty in
supporting large-scale NN applications in the CIM architecture, and then introduces
the set-associate block-wise sparsity, ping-pong CIM and weight update, and the
CIM macro with adaptive precision. Finally, this chapter shows the test results and
comparison, and analyzes the improvement on the large-scale NN model, showing
the advantages and future improvement of this design.

Chapter 7 summarizes the research and main contributions of this book, and
analyzes the development trend and application prospect of energy-efficient NN
processors.
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