Chapter 5 Black-box test design

5.1 Overview of black-box test

Black-box test refers to the approach of treating the software under test as a
black box that can’t be opened, and the internal logical structure and features of
the software are not considered.

According to the specification of the software, the black-box test runs the
software, inputs the test data, and checks whether the running results meet the
specification.

Black-box test is a kind of test based on specifications from the point of
view of users. Black-box test is also known as data-driven test.

5.1.1 Characteristics of black-box test

Black-box test, which focuses on the execution results and external
characteristics of the software without considering its internal structure and
implementation details, is commonly used for test the software as a whole, such
as system test and acceptance test (as shown in Figure 5-1).

execution focus d for [ o
results OIL . system
and external bIaCk- _ tests |

features used for
internal structure box —m dpeatiis
and tests
implzmte[:tation Jon’ t teSt used For
etails s e
consider

software
Figure 5-1 Characteristics and uses of black-box test

The design of black-box test cases can be conducted concurrently with
software requirements analysis and design, thereby reduces the time required for
the entire software project. For instance, during software requirements analysis,

SR ERLA

ARSI R R



Chapter 5 Black-box test design

preparation for acceptance test and black-box test cases design for acceptance
test can be carried out. Similarly, during system specification determining,
preparation for system test and black-box test cases design for system test can
also be carried out.

The primary foundation of black-box test is software specification.
Therefore, prior to initiating black-box test, it is essential to ensure that the
software specification undergoes a thorough review and meets the established
quality requirements. If there is no specification, exploratory test can be
adopted.

Black-box test can be used not only to test the function of software, but
also to test the non-functional characteristics of software, such as performance,
security, etc. For example, in preparation for the 2022 Winter Olympics in
China, Shandong Inspur Ultra HD video industry Co., LTD dedicated 10 months
to extensive research and successfully overcame obstacles in 8K Ultra HD live
broadcasting technology. This enabled them to offer 8K Ultra HD decoder and
video services for live broadcasting of the opening ceremony of the Winter
Olympics.

8K is a kind of ultra-high-definition resolution, but the current domestic
urban outdoor large screen only supports 4K resolution. In order to ensure the
visual experience, the technicians decoded the video into four 4K signals, and
then seamlessly spliced and synchronized the four parts of the picture.

Before the opening ceremony, technicians conducted extensive tests on
large-screen circuits and control software, striving for that four images look
almost perfectly in sync. This requires compatibility test on a variety of
large-screen devices and products from mainstream splicer manufacturers in the
market. The whole team of more than 40 people repeatedly tested, and the stress
test alone was carried out tens of thousands of times.

5.1.2 Main black-box test methods = 1 2
WARES
The methods for black-box test case design mainly include equivalence
class division, boundary value analysis, error guess, cause-effect diagram,
decision table driven test, orthogonal experiment design, scenario method, and
so on. When facing actual software test tasks, using only one black-box test case

design method is insufficient to obtain comprehensive test cases. A practical

121



MR SRR (Software Test Practice Tutorial)

approach is to utilize a combination of test case design techniques in order to
improve both the efficiency and coverage of test. This necessitates a thorough
understanding of the principles behind these methods and the accumulation of
substantial software test experience in order to effectively elevate the level of
software test.

5.1.3 Software defects targeted by black-box test

Black-box test can mainly find the following types of errors.

1. Input and output errors

For example, in the user registration interface of an application, there is a
text box for entering the user’s cell phone number. However, during test it was
discovered that the application does not validate the input for a valid cell phone
number as required by program specifications. This means that letter input is
accepted, which deviates from the intended functionality of receiving a valid cell
phone number to send an authentication code later. This failure to perform
necessary validation on input data does not align with program specifications
and will impact subsequent functions.

2. Initialization, termination error

Initialization error refers to the inability to open the application software
normally, as shown in Figure 5-2. A compatibility test of an APP program found
that in a particular environment, the APP program will prompt “Security
initialization failed. Please start again.”, when it is opened after installation.

all FEEKE 4G 17:32 1B 17%0 )

Security initialization failed.
Please start again.

Figure 5-2  APP initialization failure

122

5 0 110
A



Chapter 5 Black-box test design

Termination errors, such as the APP program always being in a running
state after test and execution, but no longer responding to user operations

without prompts and unable to exit normally.
3. Incorrect or missing functions

The specification of a student schedule query APP states that it can query
the schedule of the current teaching week for students based on their student
number. However, black-box test reveals that it can only query the weekly
schedule for administrative classes and some elective classes cannot be found,
indicating a function omission.

4. Interface Error

During black-box test of a grade management APP, the main interface
displays “Welcome to the online bookstore,” which is an information error in the
program’s interface.

5. Performance does not meet the requirements

For example, a ticketing APP specifies that it should be able to handle
100,000 mobile customers buying tickets simultaneously. However, black-box
test revealed that when simulating 50,000 mobile customers buying tickets at
once, the system became paralyzed. This indicates that the system’s performance
does not meet requirements.

6. Database or other external data access errors

For example, an application requires access to the underlying database
during execution, and during black-box test, it encounters a failure in data
retrieval. This indicates a database or other external data access error, as
illustrated in Figure 5-3. The cause of this error could be attributed to a weak

network connection, system congestion, or programming errors.
7. User privacy, security issues, etc.

As an example, black-box test of a student management application
revealed that upon logging into the system with a specific student account, it
was possible to view and modify the information of other students. Such a
system presents user privacy and security issues that may result in unauthorized
information disclosure and tampering.

123



MR SRR (Software Test Practice Tutorial)

essee hEEE 4G LF9:48 LCE T oM
Q

Data acquisition failure,
click to try again!

* O] L]

Figure 5-3 Database or other external data access errors
5.2 Equivalence class division test R tEat

Theoretically, black-box test can theoretically identify all errors in a
program by exhaustively test all possible inputs. This includes not only test all
legitimate inputs, but also examining those inputs that are not legitimate but
likely to occur. However, exhaustive test is impractical, so it is essential to
enhance the focus of the test. This involves not only test a variety of potential
scenarios to improve test completeness, but also avoiding duplication and
reducing redundancy in order to save on test costs. The equivalence class
division test represents one such method for black-box test.

5.2.1 Equivalence class division EESIp)

What is equivalence class division? Let’s consider an example. A school
requires uniforms for all students. The school uniform factory takes a sample of
the uniforms and asks students to try them on. If there are many students in the

124



Chapter 5 Black-box test design

school, having everyone try on the uniforms can be very time-consuming and
laborious. An efficient approach would be to divide the students into different
groups based on their body types, as illustrated in Figure 5-4. In this way, only
one student from each group needs to try on the uniform. If it fits one student in
a group, then it will also fit the other students in that group because they share
the same size. This concept is known as equivalence class division.

all
students

Figure 5-4 Example of equivalence class division

The equivalence class of an element refers to the set of all elements that are
equivalent to each other based on a specific equivalence relation. It is a subset of
the complete data set, with elements sharing similar characteristics. For instance,
integers can be divided into two equivalence classes, odd and even, based on
parity.

0, 2, 4, ... even number, are all equivalent.

They form an even equivalence class
odd-even

property
1, 3, 5, ... odd number, are all equivalent.
They form an odd equivalence class

When dividing into equivalence classes, it is important to ensure that there
are no duplicate elements between two classes and that when combined, all
equivalence classes form the entire data set being divided, as depicted in Figure 5-5.

From the perspective of software test, the equivalence class division
method assumes that elements within the same equivalence class share similar
characteristics and play an equivalent role in discovering or exposing defects in

125



BN SEEEGE(Software Test Practice Tutorial)

Figure 5-5 Equivalence class division

the program. Therefore, it is reasonable to assume that test one representative
data from a certain equivalence class is equivalent to test all data within that
class.

In software test, the equivalence class division involves categorizing all
possible input data into several equivalence classes and then selecting one or a
few representative data from each class to test the program, as illustrated in
Figure 5-6.

I'll be the
representative )

even number

Figure 5-6  For an equivalence class, only a representative of it need be selected for test

By utilizing equivalence class division, we are able to transform potentially
infinite inputs into a finite number of equivalence classes. From there, we can
select a representative as a test case in order to achieve comprehensive test while
minimizing redundancy, reducing costs, and enhancing the effectiveness of the
test. Equivalence class division is considered to be the most fundamental and
widely used black-box test method.

Equivalence class division test is typically applied to input data based on
software specifications. The input data is categorized into different equivalence
classes according to various processing methods, and representatives are then
chosen from these classes for use as test cases. However, there are instances
where equivalence class division test may also be applicable to output data or

126



Chapter 5 Black-box test design

intermediate process data.

Equivalence classes can be categorized into valid equivalence classes and
invalid equivalence classes. A valid equivalence class refers to a collection of
input data that is reasonable and meaningful for the program specification. It
enables the verification of whether the program meets the predefined features,
such as functionality and performance, outlined in the specification. On the
other hand, an invalid equivalence class consists of input data that is
unreasonable and irrelevant to the program specification. It allows for test
whether the program can appropriately handle unusual inputs without
undesirable consequences.When designing test cases, it is crucial to consider
both types of equivalence classes. This is because software should not only be
capable of receiving and processing reasonable data but also resilient enough to
withstand unexpected inputs. When faced with unreasonable or irrelevant data
inputs, it is essential for the software to handle them properly.

Let’s look at an example of the simplest equivalence class division. The
symbolic function input x, output y, if x>0, then y =1; if x =0, then y =0; if x<0,
theny =-1.

x>0->y=1
x=0—->y=0
X<0->y=-1

It is not difficult to classify equivalence classes for x. There are three valid
equivalence classes for x, x>0, x =0 and x<0.

And the invalid equivalence classes for x can be categorized as all data that
cannot be compared with 0.

In the example of the symbolic function, the valid equivalence class of x is
divided according to the range, and for different data types and processing rules,
the division of equivalence class is not in the same way. The common ways of
division are as follows.

(O By range.

@ By value.

(3 By set.

@ By restriction or restriction rule.

® By processing mode, etc.

For example, to test the individual income tax calculation software, in

127



BN SEEEGE(Software Test Practice Tutorial)

accordance with the individual income tax classification calculation standards,
the input data “annual taxable income” is divided into equivalence class by the
range, shown as Table 5-1.

Table 5-1 Equivalence class division of “annual taxable income” according to ranges

o nmber ol e s "o | deductio
1 Not exceeding 36,000 yuan 3 0
2 Exceeding 36,000 to 144,000 yuan 10 2,520
3 Exceeding 144,000 to 300,000 yuan 20 16,920
4 Part exceeding 300,000 to 420,000 Yuan 25 31,920
5 The portion exceeding 420,000 to 660,000 yuan 30 52,920
6 Over 660,000 to 960,000 yuan 35 85,920
7 Exceeding 960,000 yuan 45 181,920

There is a grade processing program for converting five-level points to a
100-point scale. When testing it, the input data can be divided into equivalence
classes according to the processing method, shown as Table 5-2.

Table 5-2  Equivalence classes can be divided according to the processing method

Equivalence class number Five-level points Processing
1 Excellent convert to 90
2 Good convert to 80
3 Moderate convert to 70
4 Pass convert to 60
5 Fail convert to 40

Up to this point, there is no standardized method for classifying
equivalence classes with high quality. Different specifications of the software
may require different equivalence classes, and the quality of test cases obtained
from these classes can vary. When classifying equivalence classes, the following
suggestions can be considered.

(1) If the input condition specifies a range of values, then one valid
equivalence class and two invalid equivalence classes can be identified.

For example, if the program input condition is an integer x less than or
equal to 100, greater than or equal to 0, the valid equivalence class would be 0

128



Chapter 5 Black-box test design

<x=<100 and the two invalid equivalence classes would be x < 0 and x > 100.

(2) If the input condition specifies a set of input values, then one valid
equivalence class and one invalid equivalence class can be determined.

For example, if a program specifies that valid values for the input data job
title come from the set R = { Teaching Assistant, Lecturer, Associate Professor,
Professor, Other, None }, then the valid equivalence class is that the job title
belongs to R and the invalid equivalence class is that the job title does not
belong to R.

(3) A valid equivalence class and an invalid equivalence class can be
determined if the input condition specifies that the input values must satisfy
some requirement.

For example, if a program specifies that the input data x must take a
numeric symbol as a condition, then the valid equivalence class is x is a numeric
symbol and the invalid equivalence class is x contains a non-numeric symbol.

(4) In the case where the input condition is a boolean quantity, a valid
equivalence class and an invalid equivalence class can be determined.

For example, if a program specifies that its valid input is a boolean truth
value, the valid equivalence class is the Boolean true value, and the invalid
equivalence class is the boolean false value.

(5) If the input data is specified as a set of values (assume n) and the
program is to process each input values separately, then n valid equivalence
classes and one invalid equivalence class can be determined.

For example, the input of a program comes from the set {excellent, good,
medium, pass, fail}, and the program will process these 5 values separately, then
there are 5 effective equivalence classes, respectively, x= “excellent”, x=
“good”, x= “medium”, x= “pass”, x= “fail”, invalid equivalence class of x is
which does not belong to the set {excellent, good, medium, pass, fail}.

(6) If it is stipulated that the input data must conform to certain rules, then
it is possible to determine a valid equivalence class (conforming to the rules)
and a number of invalid equivalence classes that violate the rules from different
perspectives respectively.

For example, a certain message encryption code consists of three parts, the
names and contents of which are shown as follows.

Encryption type code : blank or three digits.

129





