

91

5.1 概述

单片机又称为单片微控制器(Microcontroller

Unit,MCU),是智能电子系统的核心

部件。单片机系统的基本组成如图5.1.1所示。随着微电子技术的发展,图5.1.1中的

大部分功能模块都可以集成在单一的芯片中,成为真正意义的单片机。

图5.1.1 单片机系统的基本组成

单片机的主要技术指标:

①复杂指令集CISC还是精简指令集 RISC;

②单总线

(冯·诺依曼结构,也称为普林斯顿结构)还是多总线(哈佛结构);

③数据总线位宽;

④寻址空间;

⑤最高系统时钟频率;

⑥片内外设;

⑦I/O引脚数量。
由于单片机应用范围十分广泛,世界上各大半导体厂商都推出了富有特色的单片机

系列,同一系列又包含多个型号。丰富的单片机品种使设计者总能找到最合适的单片

机,使得所设计的系统在满足性能的前提下所需扩展的外围器件最少,从而达到小型化、
高性价比。从业界使用的广泛性、性能指标、未来发展趋势等角度考虑,本书在电子系统

设计中选用了STM32F4系列单片机。

STM32F4系列单片机是意法半导体(STMicroelectronics,ST)公司推出的基于

ARM内核Cortex-M4的32位微控制器。Cortex-M4内核是为低功耗和价格敏感的应

用而专 门 设 计 的,具 有 突 出 的 性 价 比 和 处 理 速 度。STM32F4系 列 单 片 机 又 分 为

STM32F40x、STM32F41x、STM32F42x和STM32F40x等几个系列,数十个产品型号。
不同型号单片机在软件和引脚方面具有良好的兼容性。本书选用的单片机型号为

STM32F40x系列的STM32F407VET6(以下简称STM32F407单片机),TQFP100封

装,其引脚排列如图5.1.2所示。

STM32F407单片机的简化框图如图5.1.3所示,其主要片内资源有:

(1)

采用先进的 Cortex-M4内核。带32位单精度硬件浮点处理单元(Floating

Point

Unit,FPU)。支持浮点指令集,支持DSP指令,可实现高效的信号处理和复杂的

算法。
(2)

内含自适应实时存储器加速器(Adaptive

Real-Time

Memory

Accelerator)。通

过预取指令和分支缓存,在运行频率达到168MHz时,CPU无须等待闪存,提高了系统

的总体速度和能效。
(3)

丰富的片内资源。片内含有192KB

SRAM、512KB

Flash

ROM、带摄像头接口

92

图5.1.2 STM32F407VET6单片机的引脚排列

(DCMI)、全速USB

OTG、真随机数发生器RNG、3个12位ADC、2个12位DAC、12个

16位定时器、2个32位定时器、DMA、3个I2C、4个 UART、3个SPI、2个CAN、SDIO
接口、10/100M

Ethernet

MAC等。
(4)

并行总线接口(Flexible

Static

Memory

Controller,FSMC)。
(5)

时钟系统。包括4~26MHz外部晶体、16MHz内部 RC振荡器(1%精度)、

32kHz内部低频振荡器、32kHz外部晶体振荡器。
(6)

更低的功耗。功耗为238μA/MHz。
从图5.1.3所示的框图可知,STM32F407单片机内部有多条总线,不同的外设挂在

不同的总线上。在使用片内外设时,需要了解该外设与什么总线相连、总线的带宽等信

息。单片机内部的几条主要总线说明如下:

93

图5.1.3 STM32F407单片机的简化框图

94

 (1)

AHB1(Advanced

High

performance

Bus)总线,最高时钟频率可达168MHz。
主要用于连接 GPIO 端口以及两个 AHB/APB桥。其中两个 AHB/APB桥与两个

DMA控制器单独开辟了用于DMA传输的总线,从而大大减轻了AHB1总线的负担。
(2)

AHB2总线。主要用于连接随机数生成器RNG、摄像头接口和全速USB-OTG
单元。因为在图像应用中摄像头接口数据量很大,单独开辟总线可以避免和其他设备竞

争总线造成系统反应缓慢。
(3)

AHB3总线。只连接了FSMC单元。FSMC单元用于外扩存储器(包括ROM、

SRAM和SDRAM等),FSMC单元使用独立总线可获得快速的存取响应。
(4)

APB1(Advanced

Peripheral

Bus)总线。最高时钟频率为42MHz,用于连接

I2C、SPI2、DAC、定时器2~7、定时器12~14等片内外设。
(5)

APB2总线。最高时钟频率为84MHz,用于连接SPI1、USART、ADC、定时器

1、定时器8~11等片内外设。
以下为了叙述方便,将单片机内部除Cortex-M4内核外的部件均称为片内外设,通

过单片机并行总线和串行总线扩展的外部器件称为片外外设。

5.2 时钟系统

单片机时钟如同人体的心脏脉搏,单片机的内核在时钟驱动下完成指令执行,单片

机的片内外设在时钟驱动下完成各种工作,时钟系统的重要性可见一斑。与早期的8051
单片机相比,STM32F407单片机设计了一个功能完善但却非常复杂的时钟系统,其内部

时钟树和时钟源如图5.2.1所示。
在STM32F407单片机中,有以下5个时钟源:

(1)

低速内部时钟LSI,频率约为32kHz,由RC振荡器产生。LSI用于独立看门狗

和自动唤醒单元的时钟源。
(2)

低速外部时钟LSE,频率为32.768kHz,由石英晶体振荡器产生。LSE主要用

于实时时钟(Real

Time

Clock,RTC)的时钟源。
(3)

高速外部时钟HSE,频率范围为4~26MHz,通常由石英晶体振荡器产生,或者

直接由外部时钟源提供。HSE可以直接作为系统时钟或者作为锁相环(Phase

Locked

Loop,PLL)输入。
(4)

高速内部时钟HSI,频率为16MHz,由RC振荡器产生。经过工厂校准,RC振

荡器的频率精度可以在整个温度范围内达到1%,HSI可以直接作为系统时钟或者作为

PLL输入。
(5)

锁相环PLL。STM32F407单片机有主PLL和专用PLL两个锁相环。主PLL
由HSE或HSI提供时钟源,产生两个不同的时钟输出。第一个输出PLLPCLK用于生

成频率高达168MHz的系统时钟SYSCLK;

第二个输出PLLQCLK用于生成频率为

48MHz的时钟,该时钟用于 USB

OTG、随机数发生器和SDIO接口等外设的时钟源。
专用PLL为I2S(Inter-IC

Sound,用于音频数据传输的一种总线)接口提供精确时钟,以
实现高品质音频性能。

95

图5.2.1 STM32F407单片机的时钟树和时钟源

系统时钟SYSCLK是单片机内部最重要的时钟。从图5.2.1可以看到,SYSCLK
来自3个时钟源HSI、HSE和PLLPCLK之一,通过一个3选1的数据选择器来选择其

中的 一 个 时 钟 源。因 为 HSI、HSE 的 频 率 比 较 低,因 此 在 实 际 应 用 中 通 常 采 用

PLLPCLK作为SYSCLK的时钟源,以获得较高的时钟频率。
假设HSE采用外部晶体振荡器产生,将外部晶体振荡器、锁相环、分频电路合在一

起,STM32F407单片机的系统时钟产生原理图如图5.2.2所示。单片机有专门的两个

引脚与石英晶体连接,石英晶体与单片机内部的振荡电路(HSE

OSC)构成晶体振荡器,
晶体振荡器产生的12MHz时钟信号要经过一个分频系数为 M 的分频器,然后经过倍频

系数为N 的倍频器,再经过一个分频系数为P 的分频器,产生PLLPCLK,然后通过3选

1数据选择器(图中省略)选择PLLPCLK作为系统时钟SYSCLK。
根据图5.2.2所示的参数,晶体振荡器频率为12MHz,锁相环预分频系数 M 为12,

96

图5.2.2 STM32F407单片机系统时钟产生原理图

锁相环倍频系数N 为336,锁相环分频系数P 为2,那么系统时钟SYSCLK的频率为

SYSCLK的频率=12MHz×N/(M ×P)=12×336/(12×2)=168(MHz)
(5.2.1)

 图5.2.2中分频系数和倍频系数在system_stm32f4××.c文件中配置,如图5.2.3
所示。

图5.2.3 分频系数和倍频系数的设置

STM32F407单片机允许的最高系统时钟频率为168MHz,如果要降低系统时钟频

率,可以直接在system_stm32f4××.c源代码中修改分频系数或者倍频系数来实现。
另外,石英晶体的频率也需要在stm32f4××.h中设置,如图5.2.4所示。

图5.2.4 设置外部石英晶体频率

97

STM32F407单片机的时钟系统初始化是在system_stm32f4××.c中的SystemInit()
函数中完成的。SystemInit()函数的主要功能是启动 HSI时钟、选择 HSI作为系统时

钟、调用SetSysClock()函数来完成系统时钟关键寄存器的设置,相关代码如下。

 void

SystemInit void

 􀆺
 RCC- CR

|=

 uint32_t 0x00000001

 HSION

位置1

 RCC- CFGR

=

0x00000000

 复位CFGR寄存器
 RCC- CR

&=

 uint32_t 0xFEF6FFFF

 复位

HSEON、CSSON

和

PLLON位

 RCC- PLLCFGR

=

0x24003010

 复位PLLCFGR

寄存器

 RCC- CR

&=

 uint32_t 0xFFFBFFFF

 复位

HSEBYP

位

 RCC- CIR

=

0x00000000

 禁止所有中断
 􀆺
 SetSysClock

 调用SetSysClock 函数
 􀆺

SetSysClock()函数的主要功能是使能 HSE振荡器,等待 HSE就绪,配置 AHB、

APB1、APB2时钟相关的分频因子,打开主PLL时钟,然后设置主PLL作为系统时钟

SYSCLK时钟源。SetSysClock()函数相关代码如下。

 static

void

SetSysClock void

 __IO

uint32_t

StartUpCounter

=

0

HSEStatus

=

0
 RCC- CR

|=

 uint32_t RCC_CR_HSEON

 使能HSE
 do

 等待HSE工作稳定 如超时则退出

 HSEStatus

=

RCC- CR

&

RCC_CR_HSERDY

 StartUpCounter++

while HSEStatus

==

0

&&

 StartUpCounter

 =

HSE_STARTUP_TIMEOUT
 if

 RCC- CR

&

RCC_CR_HSERDY

 =

RESET

 HSEStatus

=

 uint32_t 0x01

 HSE工作稳定

 else

 HSEStatus

=

 uint32_t 0x00

 HSE未达到工作稳定

 if

 HSEStatus

==

 uint32_t 0x01

 注1

 RCC- APB1ENR

|=

RCC_APB1ENR_PWREN
 PWR- CR

|=

PWR_CR_VOS
 RCC- CFGR

|=

RCC_CFGR_HPRE_DIV1

 HCLK

=

SYSCLK

1
 RCC- CFGR

|=

RCC_CFGR_PPRE2_DIV2

 PCLK2

=

HCLK

2
 RCC- CFGR

|=

RCC_CFGR_PPRE1_DIV4

 PCLK1

=

HCLK

4
 RCC- PLLCFGR

=

PLL_M

|

 PLL_N

6

|

 PLL_P

1

-1

16

|
 RCC_PLLCFGR_PLLSRC_HSE

|

 PLL_Q

24
 RCC- CR

|=

RCC_CR_PLLON

 使能主PLL
 while RCC- CR

&

RCC_CR_PLLRDY

==

0

 等待主PLL工作稳定
 􀆺

98

从时钟系统的初始化程序SystemInit()可知,由于产生 HSI时钟为RC振荡器,起
振较快,所以在单片机刚上电时,默认使用HSI。HSE由于采用晶体振荡器,需要一定的

时间才能达到稳定状态,单片机通过软件检测到 HSE时钟稳定后就切换到 HSE。如果

HSE在一定的时间内不能达到稳定状态(如外部晶振不能稳定或者没有外部晶振),那么

仍然将HSI作为系统时钟。
当时钟切换到 HSE后,SetSysClock()就执行注1所示的这段代码。这一段代码描

述了如何从SYSCLK分频得到AHB、APB2和APB1的总线时钟,可以用图5.2.5所示

的示意图来说明。

图5.2.5 总线时钟的产生

从图5.2.5中可知,

AHB总线时钟 HCLK 频率为168MHz;

APB1总线时钟

PCLK1频率为

42MHz;

APB2总线时钟PCLK2频率为84MHz;

APB1定时器时钟频

率为84MHz;

APB2定时器时钟频率为168MHz。图5.2.5中有两个×2的倍频器,其
输出是专门给定时器提供时钟的。这两个倍频器只有当前面预分频器分频系数不为1
时才起作用。设置这个倍频器的目的是,在其他外设使用较低时钟频率时,定时器仍能

得到较高的时钟频率。

STM32F407单片机的所有片内外设都需要工作时钟,因此,编程时需要了解片内外

设使用什么时钟以及时钟的频率。

5.3 通用输入输出端口

1.

GPIO的基本结构

GPIO(General-Purpose

I/O

Port)是通用输入输出端口的简称。STM32F407单片

机通过GPIO引脚与外部设备连接起来,从而实现与外部通信、控制以及数据采集功能。
从图5.1.2可知,STM32F407VET6单片机有 GPIOA、GPIOB、GPIOC、GPIOD、

GPIOE

5个16位通用I/O端口。每位I/O端口基本结构如图5.3.1所示。每位I/O端

口含有两只保护二极管以及可选择的上拉电阻和下拉电阻。图中上半部分为输入通道,
当I/O引脚用作数字输入引脚时,数字信号经过施密特触发器后存储在输入数据寄存

器。施密特触发器用于输入信号的整形和抗干扰。当I/O引脚用作模拟输入引脚时,上
拉电阻和下拉电阻断开,施密特触发器关闭,模拟信号直接送到片内ADC。图中下半部

分为输出通道。输出通道中包含了由NMOS管和PMOS管构成的单元电路。通过输出

99

控制,可以将I/O引脚设置成推拉输出、漏极开路输出和高阻输出。当处于推拉式输出

模式时,两只管子轮流导通。当处于漏极开路输出模式时,PMOS管始终处于截止状态。
当处于高阻输出时,NMOS管和PMOS管都截止。在输出通道中,有两只寄存器:

置位/
复位寄存器、输出数据寄存器。使用置位/复位寄存器可以方便快速地实现对端口某些

特定位的操作,而不影响其他位的状态。

图5.3.1 I/O端口基本结构

STM32F407单片机有很多片内外设,这些外设的功能引脚都是与 GPIO复用的。
当这个GPIO给片内外设使用时,就叫作复用(Alternate

Functions)。复用器实际上是

一个16选1数据选择器,其示意图如图5.3.2所示。任何时刻只允许一个外设连接到对

应的I/O引脚,以确保共用同一个I/O引脚的外设之间不会发生冲突。通过GPIOx_

AFRL和GPIOx_AFRH寄存器的配置,选择其中一个外设连接到对应的I/O引脚。
图5.3.2所示的复用器不能理解为所有的外设可以与任何一个I/O引脚相连。例

如,单片机的 MCO1、USART1、I2C3、OTG、EVENTOUT等外设只能与PA8引脚相连。
某片内外设究竟能与哪些I/O引脚相连,应查阅STM32F407单片机的数据手册。

图5.3.2 复用器示意图

100

2.

GPIO的初始化

在使用GPIO之前,首先应该对GPIO进行初始化。对GPIO的初始化有两种方法:

一种是寄存器配置,另一种是库函数配置。早期的单片机通常直接操作寄存器来进行外

设的初始化,这种方法需要掌握每个寄存器的用法。对STM32F407单片机来说,理解数

百个寄存器谈何容易,于是单片机生产厂家推出了官方固件库(也称为库函数),将寄存

器的底层操作都封装起来,开发者一般不需要知道操作的是哪个寄存器,只需要调用哪

些函数就可以。GPIO的初始化就是采用以下库函数配置。

 void

GPIO_Init GPIO_TypeDef*

GPIOx

GPIO_InitTypeDef*

GPIO_InitStruct

GPIO初始化结构体为

 typedef

struct

 uint32_t

 GPIO_Pin

 GPIOMode_TypeDef

 GPIO_Mode

 GPIOSpeed_TypeDef

 GPIO_Speed

 GPIOOType_TypeDef

 GPIO_OType
 GPIOPuPd_TypeDef

 GPIO_PuPd

 GPIO_InitTypeDef

GPIO初始化结构体中各参数的含义如表5.3.1所示。

表5.3.1 GPIO初始化结构体中各参数含义

控制寄存器 参 数 说 明

GPIO_Mode

GPIO_Mode_IN 输入模式

GPIO_Mode_OUT 输出模式

GPIO_Mode_AF 复用模式

GPIO_Mode_AN 模拟模式

GPIO_OType
GPIO_OType_PP 推拉式输出

GPIO_OType_OD OD输出

GPIO_PuPd
GPIO_PuPd_NOPULL 无上拉下拉

GPIO_PuPd_UP 上拉

GPIO_PuPd_DOWN 下拉

GPIO_Speed

GPIO_Speed_2MHz 低速

GPIO_Speed_25MHz 中速

GPIO_Speed_50MHz 快速

GPIO_Speed_100MHz 高速

从表5.3.1可知,GPIO有多种工作模式,应根据具体应用来选择。例如,I/O引脚

用于产生方波,则应选择推拉式输出模式。I/O引脚用于按键输入或者外部中断输入,
则应设成输入模式,同时,为了避免引脚悬空,可以选择内部上拉电阻。如果I/O引脚用

于ADC的输入,则应设成模拟输入。

GPIO的引脚速度也要跟应用相匹配。速度配置越高,噪声越大,功耗越高。使用合

适的引脚速度可以降低功耗和噪声。比如USART串口,若最大波特率只需115.2kb/s,

101

那用2MHz的速度就够了;

对于I2C接口,若使用400kHz的时钟,可以选用25MHz速

度;

对于SPI接口,若使用10MHz以上的时钟速率,需要选用50MHz速度。
例5.3.1 MCP4802是一片双路电压输出8位串行D/A转换器,与单片机连接如

图5.3.3(a)所示。图5.3.3(b)为 MCP4802的时序图,每次传送16位数据,在时钟信号

的上升沿将数据送入 MCP4802。请编写程序实现图5.3.3(b)的时序。

图5.3.3 MCP4802的连接图和时序图

解:

(1)

主程序

 #define

SPI_SCK_LOW

GPIO_ResetBits GPIOB

GPIO_Pin_13

 时钟信号置低

#define

SPI_SCK_HIGH

GPIO_SetBits GPIOB

GPIO_Pin_13

 时钟信号置高

#define

SPI_MOSI_LOW

GPIO_ResetBits GPIOB

GPIO_Pin_15

 输出数据线置低

#define

SPI_MOSI_HIGH

GPIO_SetBits GPIOB

GPIO_Pin_15

 输出数据线置高

#define

SPI_CS_LOW

GPIO_ResetBits GPIOB

GPIO_Pin_12

 片选信号置低

#define

SPI_CS_HIGH

GPIO_SetBits GPIOB

GPIO_Pin_12

 片选信号置高

GPIO_InitTypeDef

GPIO_InitStructure
u16

dacdat
u8

AV
main void

 􀆺
 dacdat=AV

 待转换的8位数据

 dacdat= dacdat 4 |0x3000

 把最高位置0 选择A通道

 Write_MCP4802 dacdat
 􀆺

(2)

写串行D/A子程序

 void

Write_MCP4802 u16

dat

 u8

i

102

 SPI_CS_LOW

 将片选信号置成低电平

 for i=0 i 16 i++

 向DAC写入16位数据

 SPI_SCK_LOW

 时钟信号置低电平

 if

 dat&0x8000 ==0x8000

 SPI_MOSI_HIGH

 数据线置高电平

 else

 SPI_MOSI_LOW

 数据线置低电平

 dat =1
 SPI_SCK_HIGH

 产生时钟信号上升沿

 SPI_CS_HIGH

 片选信号恢复成高电平

(3)

GPIO初始化程序

 void

GPIO_Configuration void

 RCC_AHB1PeriphClockCmd RCC_AHB1Periph_GPIOB

ENABLE

 使能GPIOB时钟

 GPIO_InitStructure GPIO_Mode

=

GPIO_Mode_OUT

 GPIO_InitStructure GPIO_OType

=

GPIO_OType_PP
 GPIO_InitStructure GPIO_PuPd

=

GPIO_PuPd_NOPULL
 GPIO_InitStructure GPIO_Speed

=

GPIO_Speed_50MHz
 GPIO_InitStructure GPIO_Pin

=

GPIO_Pin_12

|

GPIO_Pin_13

|

GPIO_Pin_15

 GPIO_Init GPIOB

&GPIO_InitStructure

本例通过软件的方法在I/O引脚输出时序信号,这是单片机学习中必须掌握的技能。
例5.3.2 如何将系统时钟从I/O引脚输出?
解:

MCO(Microcontroller

Clock

Output)时钟输出功能是STM32F407单片机一项

非常实用的功能,它可以将内部时钟信号输出到外部引脚,为外部设备提供时钟。从

图5.2.1可知,单片机内部时钟信号可以通过 MCO引脚输出,以便为电子系统中的其他

芯片提供精确的时钟信号。根据STM32F407单片机的数据手册,MCO1从单片机的

PA8引脚输出。相关的程序代码如下。

1)

初始化PA8

 void

GPIO_Configuration void

 GPIO_PinAFConfig GPIOA GPIO_PinSource8 GPIO_AF_MCO
 GPIO_InitStructure GPIO_Mode

=

GPIO_Mode_AF

 选择复用模式

 GPIO_InitStructure GPIO_OType

=

GPIO_OType_PP
 GPIO_InitStructure GPIO_PuPd

=

GPIO_PuPd_NOPULL

 无上拉下拉

 GPIO_InitStructure GPIO_Speed

=

GPIO_Speed_50MHz
 GPIO_InitStructure GPIO_Pin

=

GPIO_Pin_8

 GPIO_Init GPIOA

&GPIO_InitStructure

103

在PA8的初始化程序中,调用了函数GPIO_PinAFConfig,该函数入口第1、第2个

参数用于确定是哪个I/O端口,对于第3个参数选择哪个复用外设。单片机的复用外设

在函数stm32f4××_gpio.h中非常详细地列出来了,如图5.3.4所示。

图5.3.4 复用外设预定义

2)

选择 MCO时钟源

 RCC_MCO1Config RCC_MCO1Source_HSE RCC_MCO1Div_4

该函数表示 MCO1选择高速外部时钟HSE,并对HSE进行4分频。假设高速外部

时钟采用12MHz晶振,则

PA8输出3MHz时钟信号。
例5.3.3 通过按键控制信号灯示意图如图5.3.5所示。要求每按一次键,信号灯

状态改变一次。所谓状态改变,就是由点亮变为熄灭,或者由熄灭到点亮。请编写相关

程序。

图5.3.5 按键控制信号灯示意图

解:

独立式键盘的按键识别通过软件实现。按键识别首先判断是否有键按下,由于

按键闭合时机械抖动,还需要消抖处理。按键的检测和消抖可以用图5.3.6所示的时序

图来说明。如果检测到低电平,单片机软件延时10ms再检测一次按键电平,如果还是低

电平,说明按键已经稳定闭合,置键有效标志。因为按键的闭合时间通常大于10ms,为
了避免按键重复执行,在程序中设置了key_up标志。一旦检测到键有效,就将key_up
标志置0,直到按键释放后,将key_up标志置1,为下一次检测按键做好准备。

104

图5.3.6 按键读取时序

1)

主程序

 #define

KEY0

GPIO_ReadInputDataBit GPIOC

GPIO_Pin_0

 读PC0引脚电平

u8

key_up keysign

posbit

 定义3个8位无符号变量

main void

 􀆺
 GPIO_Configuration

 对PC0、PE0两个I O端口初始化

 while

 1

 if

 key_up&&key0==0

 如果key_up=1而且按键闭合

 delay_ms 10

 延时10ms
 key_up=0

 if key0==0

keysign=1

 置键有效标志

 else

if

 key0==1

key_up=1
 if

 keysign

==

1

 keysign

=

0

 清键有效标志

 PE0Tog

 通过PE0改变信号状态

 􀆺

2)

GPIO的初始化程序

 void

GPIO_Configuration void

 RCC_AHB1PeriphClockCmd RCC_AHB1Periph_GPIOC

ENABLE

 使能GPIOC时钟

 RCC_AHB1PeriphClockCmd RCC_AHB1Periph_GPIOE

ENABLE

 使能GPIOE时钟

 GPIO_InitStructure GPIO_Mode

=

GPIO_Mode_OUT

 输出模式

 GPIO_InitStructure GPIO_OType

=

GPIO_OType_PP

 推拉输出

 GPIO_InitStructure GPIO_PuPd

=

GPIO_PuPd_NOPULL

 无上拉下拉

 GPIO_InitStructure GPIO_Speed

=

GPIO_Speed_2MHz
 GPIO_InitStructure GPIO_Pin

=

GPIO_Pin_0

 初始化PE0
 GPIO_Init GPIOE

&GPIO_InitStructure
 GPIO_InitStructure GPIO_Mode

=

GPIO_Mode_IN

 输入模式

 GPIO_InitStructure GPIO_PuPd

=

GPIO_PuPd_UP

 注1
 GPIO_InitStructure GPIO_Pin

=

GPIO_Pin_0
 GPIO_Init GPIOC

&GPIO_InitStructure

 初始化

PC0

注1:

这条语句启用PC0口的内部上拉电阻,图5.3.5中的上拉电阻R1 实际上可以

省略。

105

3)

PE0取反子程序

 void

PE0Tog void

 posbit=~posbit

 posbit在0x00和0xFF之间切换
 if

 posbit==0xFF

 GPIO_SetBits GPIOE

GPIO_Pin_0

 将PE0置高电平

 else

 GPIO_ResetBits GPIOE

GPIO_Pin_0

 将PE0置低电平

4)

软件延时程序

 void

delay_ms volatile

u16

time

 volatile

u16

i

=

0
 while

 time--

 i

=

18660

 通过改变i的值来调节软件延时
 while

 i--

5.4 定时器

1.

STM32M407单片机内部定时器

STM32F407单片机总共有14个定时器之多,分为高级定时器、通用定时器和基本

定时器3类,具体如表5.4.1所示。高级定时器、通用定时器和基本定时器形成了上下

级的关系。通用定时器包含了基本定时器的所有功能,同时增加了向下、向上/向下计数

器、PWM生成、输出比较、输入捕获等功能;

而高级定时器又包含了通用定时器的所有

功能外,还增加了死区互补输出、刹车信号、加入重复计数器等功能。

表5.4.1 各个定时器特性

定时器

类型
名称

计数器

位数/位
计数器

类型

预分频

系数

DMA请

求生成

捕获/比
较通道

互补

输出

最高定时器时

钟频率/MHz

高级
TIM1
TIM8

16
递增、递减、
递增/递减

1~65636 有 4 有 168

通用

TIM2
TIM5

32
递增、递减、
递增/递减

1~65636 有 4 无 84

TIM3
TIM4

16
递增、递减、
递增/递减

1~65636 有 4 无 84

TIM9 16 递增 1~65636 无 2 无 168
TIM10
TIM11

16 递增 1~65636 无 1 无 168

106

续表

定时器

类型
名称

计数器

位数/位
计数器

类型

预分频

系数

DMA请

求生成

捕获/比
较通道

互补

输出

最高定时器时

钟频率/MHz

通用

TIM12 16 递增 1~65636 无 2 无 84
TIM13
TIM14

16 递增 1~65636 无 1 无 84

基本
TIM6
TIM7

16 递增 1~65636 有 0 无 84

2.

基本定时器

基本定时器功能少,结构简单,是理解通用寄存器和高级寄存器的基础。基本定时

器主要用于定时,生成时基或触发数模转换器。
基本定时器的原理框图如图5.4.1所示。基本定时器的计数过程主要涉及3个16

位寄存器,分别是计数器寄存器TIMx_CNT、预分频寄存器TIMx_PSC、自动重载寄存

器TIMx_ARR。基本定时器时钟TIMxCLK来自如图5.2.1所示的单片机时钟系统。
由于基本定时器挂在APB1总线上,因此,TIMxCLK的最高时钟频率为84MHz。

图5.4.1 基本定时器的原理框图

TIMxCLK经过预分频寄存器TIMx_PSC分频后得到计数器时钟CK_CNT,其频

率由下式确定

CK_CNT=TIMx_CLK/(PSC+1)
式中,PSC就是存放在TIMx_PSC中的值,范围为0~65535。通过设置PSC的值可以得

到不同频率的CK_CNT。
自动重装载寄存器TIMx_ARR用来存放与计数器值比较的数值,范围为1~65535。

定时器开始计数时,每来一个CK_CNT脉冲,计数器 TIMx_CNT值加1。当 TIMx_

CNT值与TIMx_ARR的设定值相等时就自动生成事件,同时TIMx_CNT清零,然后重

新开始计数。由此可见,只要设置TIMx_PSC和TIMx_ARR两个寄存器的值,就可以

控制生成事件的间隔时间。定时器在生成事件的同时,产生中断和DMA输出。定时时

间可以用下式计算

T=
(PSC+1)×(ARR+1)
TIMxCLK(MHz)

(μs) (5.4.1)

107

定时器的初始化结构体为

 typedef

struct

 uint16_t

TIM_Prescaler
 uint16_t

TIM_CounterMode

 uint32_t

TIM_Period

 uint16_t

TIM_ClockDivision

 uint8_t

TIM_RepetitionCounter

TIM_TimeBaseInitTypeDef

TIM_Prescaler:

定时器预分频器设置。它设定TIMx_PSC寄存器的值。

TIM_CounterMode:

定时器计数模式。分别为向上计数、向下计数和中央对齐模

式。向上计数即TIMx_CNT从0向上累加到重载寄存器TIMx_ARR的值,产生上溢事

件。向下计数即TIMx_CNT从TIMx_ARR的值累减至0,产生下溢事件。中央对齐模

式为向上计数模式和向下计数模式的结合体,TIMx_CNT先从0向上累加到重载寄存

器TIMx_ARR的值减1时,产生一个上溢事件,然后向下计数到1时,产生一个下溢事

件,再从0开始重新计数。

TIM_Period:

定时器周期,实质是存储到重载寄存器TIMx_ARR的值。

TIM_ClockDivision:

时钟分频因子。该参数只对计数器使用外部时钟源时才有影

响。基本定时器只采用内部时钟源,因此该参数不需设置。

TIM_RepetitionCounter:

重复计数器,属于高级定时器的专用寄存器。
例5.4.1 利用基本定时器TIM7中断在PE0产生50Hz的方波。
解:

要在PE0产生50Hz的方波,TIM7的定时时间常数应设为10ms。TIM7的时

钟频率为84MHz。将 TIM7的预分频器设置为83,定时器周期设为9999,则根据

式(5.4.1)定时时间为

T=(9999+1)×(83+1)/84=10000(μs)=10(ms)

1)

TIM7初始化程序

 void

TIM7_init void

 RCC_APB1PeriphClockCmd RCC_APB1Periph_TIM7

ENABLE

 使能TIM7时钟

 TIM_TimeBaseStructInit &TIM_TimeBaseStructure

 TIM_TimeBaseStructure TIM_Period

=

9999

 设置自动重装载寄存器的值

 TIM_TimeBaseStructure TIM_Prescaler

=

83

 设置预分频值

 TIM_TimeBaseStructure TIM_CounterMode

=

TIM_CounterMode_Up

 设为向上计数

 TIM_TimeBaseInit TIM7

&TIM_TimeBaseStructure

 初始化TIM7
 TIM_Cmd TIM7

ENABLE

 使能TIM7

计数器

2)

TIM7中断初始化程序

 void

TIM7INT_init void

 NVIC_InitStructure NVIC_IRQChannel

=

TIM7_IRQn
 NVIC_InitStructure NVIC_IRQChannelPreemptionPriority

=

1
 NVIC_InitStructure NVIC_IRQChannelSubPriority

=

1

108

 NVIC_InitStructure NVIC_IRQChannelCmd

=

ENABLE
 NVIC_Init &NVIC_InitStructure
 TIM_ITConfig TIM7 TIM_IT_Update ENABLE

 允许溢出中断

3)

TIM7中断服务程序

 void

TIM7_IRQHandler void

 if TIM_GetITStatus TIM7 TIM_IT_Update =RESET

 TIM_ClearITPendingBit TIM7 TIM_IT_Update

 清中断标志

 PE0Tog

 PE0口取反程序 参见例5 3 3

3.

通用定时器

通用定时器的原理框图如图5.4.2所示。与基本定时器相比,通用定时器增加了以

下功能。

图5.4.2 通用定时器原理框图

109

(1)

通用定时器有多个时钟源:

内部时钟源CK_INT,该时钟源与基本定时器相同;

外部输入引脚TIx,就是图5.4.2中的TI1~TI4,TIx引脚的上升沿或者下降沿可以产

生计数时钟;

外部触发输入TIMx_ETR,通过极性选择、边沿检测和预分频后可以作为

时钟;

内部触发输入ITRx,就是图5.4.2中的ITR0、ITR1、ITR2、ITR3。利用该时钟源

可以实现一个定时器作为另一个定时器的预分频器,从而大大延长定时时间。
(2)

增加了捕获/比较寄存器TIMx_CCR。在脉冲输入时,TIMx_CCR用于捕获(存
储)在输入脉冲电平翻转时计数器TIMx_CNT的当前计数值,从而实现脉冲的频率测量

或者脉宽测量。在产生脉冲时,TIMx_CCR用于存储一个脉冲数值,把这个数值与计数

器TIMx_CNT的当前计数值进行比较,根据比较结果进行不同的电平输出。
通用定时器具有4个独立通道,这些通道可以用来作为输入捕获、输出比较、PWM

生成和单脉冲模式输出。
以下事件发生时产生中断或DMA:

(1)

更新:

计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部

触发);

(2)

触发事件(计数器启动、停止、初始化或者由内部/外部触发计数);

(3)

输入捕获;

(4)

输出比较。
通用定时器除了基本定时功能外,还可以用于测量输入信号的脉冲宽度(输入捕获)

或者产生输出波形(产生PWM波形)等。
例5.4.2 利用定时器TIM4输出比较功能,在PB6产生1kHz、占空比为10%的

PWM信号,如图5.4.3所示。

图5.4.3 例5.4.2图

解:

PWM信号从TIM4的通道1(TIM4_CH1)输出。根据STM32F407VET6单片

机的数据手册,TIM4的通道1与PB6对应。产生PWM波形的主要任务就是控制频率

和占空比。频率和占空比分别通过自动重装寄存器 ARR和捕获/比较寄存器CCR控

制。计数器计到ARR寄存器的值后就清零并重新开始计数,这样PWM 信号的频率就

是CK_CNT/(ARR+1)。在计数过程中,计数器的值会不停地与CCR中的数值进行比

较。如果计数器的值小于CCR中的值,PB6输出高电平,否则,PB6输出低电平。可见,

CCR的值就控制了占空比。从图5.4.3可知,频率为84MHz的时钟信号首先通过预分

频器进行84分频得到1MHz的计数器时钟CK_CNT。ARR设为999,因此,PWM信号

110

的周期为1000μs。CCR的值设为100,因此,PWM信号的高电平持续时间设为100μs。

1)

主程序相关代码

 􀆺
TIM4_PWM_Init 999 83

 设置PWM信号频率

TIM_SetCompare1 TIM4 100

 设置CCR的值

􀆺

2)

PWM初始化程序

PWM初始化程序包括PB6初始化和TIM4初始化,源程序介绍如下:

 void

TIM4_PWM_Init u32

arr u32

psc

 RCC_AHB1PeriphClockCmd RCC_AHB1Periph_GPIOB

ENABLE
 RCC_APB1PeriphClockCmd RCC_APB1Periph_TIM4 ENABLE
 GPIO_PinAFConfig GPIOB GPIO_PinSource6 GPIO_AF_TIM4
 GPIO_InitStructure GPIO_Mode=GPIO_Mode_AF
 GPIO_InitStructure GPIO_OType=GPIO_OType_PP
 GPIO_InitStructure GPIO_PuPd=GPIO_PuPd_NOPULL
 GPIO_InitStructure GPIO_Speed=GPIO_Speed_50MHz
 GPIO_InitStructure GPIO_Pin=GPIO_Pin_6
 GPIO_Init GPIOB &GPIO_InitStructure

 TIM_DeInit TIM4
 TIM_TimeBaseStructure TIM_Prescaler=psc

 预分频

 TIM_TimeBaseStructure TIM_CounterMode=TIM_CounterMode_Up

 加计数

 TIM_TimeBaseStructure TIM_Period=arr

 定时器的周期值

 TIM_TimeBaseStructure TIM_ClockDivision=TIM_CKD_DIV1

 时钟分割

 TIM_TimeBaseInit TIM4 &TIM_TimeBaseStructure

 TIM_OCInitStructure TIM_OCMode=TIM_OCMode_PWM1

 配置为PWM模式1
 TIM_OCInitStructure TIM_OutputState=TIM_OutputState_Enable
 TIM_OCInitStructure TIM_Pulse=0

 注1
 TIM_OCInitStructure TIM_OCPolarity=TIM_OCPolarity_High

 注2
 TIM_OC1Init TIM4 &TIM_OCInitStructure

 输出比较通道初始化

 TIM_Cmd TIM4 ENABLE

 使能定时器4

注1:

该语句用于设置CRR的值,当计数器计到这个值时,电平发生跳变。CRR的

值实际上就是脉冲宽度。这里将CRR的值设为0,是因为CRR的值将在主程序中通过

TIM_SetCompare1(TIM4,100)函数来设定。
注2:

该语句表示当计数值小于跳变值时PWM信号设为高电平。
比较例5.4.1和例5.4.2两种产生方波的方法,例5.4.2的方法不需要软件开销,而

且占空比可调。
例5.4.3 利用定时器TIM4的输入捕获功能,测量方波信号的频率。输入捕获电

路测频的框图如图5.4.4所示。
解:

频率测量最简单的方法是将被测信号作为外部中断源,然后在外部中断服务程

序中读取定时器中的计数值,将相邻两次的定时器值相减就是被测信号的周期,从而得

111

图5.4.4 例5.4.3图

到被测信号的频率。由于外部中断处理需要时间,会影响测量精度。使用通用定时器的

捕获功能,在指定脉冲边沿的时刻及时地将此时的计数器计数值锁存在“捕获/比较寄存

器”中,从而有效地避免了上面提到的方法中进入中断时延造成的计时误差。
假设第1个上升沿时得到的计数值存在ReadValue1中,第2个上升沿时,得到的计

数值存在ReadValue2中,则被测信号周期为

T=ReadValue2-ReadValue1
由于计数器的时钟CK_CNT频率为4MHz,则被测信号的频率为

f=
4000000

T
(Hz)

1)

主程序相关代码

 void

TIM4_CH1_Cap_Init u32

arr u16

psc
u16

Period

 存放周期值

u16

ReadValue1 ReadValue2
􀆺
TIM4_CH1_Cap_Init 0xffff 21-1

 以

84MHz 21=4MHz

的频率计数

while 1

 s=4000000

Period
 if

 count==32

 每0 5s显示1次

 count=0
 LCD_ShowStringBig 170 160 "

" YELLOW

 清除上次显示值

 LCD_ShowNumBig 170 160 s YELLOW

 显示当前频率值

􀆺

2)

捕获中断服务程序

 void

TIM4_IRQHandler void

 if

 TIM_GetITStatus TIM4

TIM_IT_CC1

 =

RESET

 捕获1发生捕获事件

 ReadValue2

=

TIM_GetCapture1 TIM4
 Period

=

 ReadValue2

-

ReadValue1
 ReadValue1

=

ReadValue2

112

 TIM_ClearITPendingBit TIM4

TIM_IT_CC1|TIM_IT_Update

 清除中断标志位

3)

TIM4初始化程序

 void

TIM4_CH1_Cap_Init u32

arr u16

psc

 GPIO_InitTypeDef

GPIO_InitStructure

 TIM_TimeBaseInitTypeDef

TIM_TimeBaseStructure
 NVIC_InitTypeDef

NVIC_InitStructure

 TIM_ICInitTypeDef

TIM4_ICInitStructure

 RCC_APB1PeriphClockCmd RCC_APB1Periph_TIM4 ENABLE

 TIM4

时钟使能

 RCC_AHB1PeriphClockCmd RCC_AHB1Periph_GPIOB ENABLE

 使能PORTB时钟

 GPIO_InitStructure GPIO_Mode=GPIO_Mode_AF

 GPIO_InitStructure GPIO_Speed=GPIO_Speed_50MHz

 速度为50MHz

 GPIO_InitStructure GPIO_PuPd=GPIO_PuPd_DOWN

 下拉

 GPIO_InitStructure GPIO_Pin=GPIO_Pin_6

 GPIO_Init GPIOB &GPIO_InitStructure

 初始化

PB6

 GPIO_PinAFConfig GPIOB GPIO_PinSource6 GPIO_AF_TIM4

 PB6

复用

 TIM_TimeBaseStructure TIM_Prescaler=psc

 定时器分频

 TIM_TimeBaseStructure TIM_CounterMode=TIM_CounterMode_Up

 向上计数模式

 TIM_TimeBaseStructure TIM_Period=arr

 自动重装载值

 TIM_TimeBaseStructure TIM_ClockDivision=TIM_CKD_DIV1

 TIM_TimeBaseInit TIM4 &TIM_TimeBaseStructure

 TIM4_ICInitStructure TIM_Channel=TIM_Channel_1

 选择输入端

IC1

映射到

TI1

上

 TIM4_ICInitStructure TIM_ICPolarity=TIM_ICPolarity_Rising

 上升沿捕获

 TIM4_ICInitStructure TIM_ICSelection=TIM_ICSelection_DirectTI

 映射到

TI1

上

 TIM4_ICInitStructure TIM_ICPrescaler=TIM_ICPSC_DIV1

 配置输入分频 不分频

 TIM4_ICInitStructure TIM_ICFilter=0x00

 IC1F=0000

配置输入滤波器 不滤波

 TIM_ICInit TIM4

&TIM4_ICInitStructure

 初始化

TIM4

 TIM_ITConfig TIM4 TIM_IT_Update|TIM_IT_CC1 ENABLE

 允许更新和捕获中断

 TIM_Cmd TIM4 ENABLE

 使能定时器4

 NVIC_InitStructure NVIC_IRQChannel=TIM4_IRQn
 NVIC_InitStructure NVIC_IRQChannelPreemptionPriority=2

 抢占优先级

2

 NVIC_InitStructure NVIC_IRQChannelSubPriority=0

 子优先级

0

 NVIC_InitStructure NVIC_IRQChannelCmd=ENABLE

 IRQ

通道使能

 NVIC_Init &NVIC_InitStructure

 根据指定的参数初始化NVIC

寄存器

5.5 中断系统

单片机在正常运行程序时,由于内部或外部事件引起暂时中止现行程序,转去执行

请求单片机为其服务的那个外设或事件的服务程序,等该服务程序执行完成后又返回被

中止的地方继续运行程序,这个过程称为中断。中断过程示意如图5.5.1所示。
中断系统是单片机的重要组成部分。实时控制、及时处理紧急任务、故障处理、单片

113

 图5.5.1 中断过程示意图

机与外设之间的数据交换都需要依靠中断系统。如果没有中

断,则单片机的工作效率会大打折扣。以键盘输入程序为例,
何时按下按键是随机的,如果单片机采用不断查询按键状态

的方式,则单片机几乎做不了其他事情。如果采用中断的方

式,则有键按下时,键盘接口电路向单片机发出中断请求,单
片机响应中断,执行键盘中断服务程序,完成按键处理后再返

回主程序继续执行。通过中断这种机制来实现按键输入,工
作效率自然就提高了。

中断系统通常由中断源、中断使能控制、中断优先级控制等几部分组成。中断源是

指产生中断的外设。通常每个中断源都分配一个固定的中断入口地址,这个地址称为中

断向量。单片机响应中断时,就跳转到中断源对应的中断入口地址,而在中断入口地址

上,放置一条调用中断服务程序的语句,从而使单片机转而执行该中断源的中断服务程

序。每个中断源都可以通过中断使能控制被允许或被禁止。中断源之间有优先级之分,
高优先级可以中断低优先级程序。例如,假设发生了一个优先级比较低的中断,单片机

转到其中断服务函数去执行,在执行过程中,发生更高优先级的中断,那么,单片机同样

中止当前的代码,转到高优先级的中断源对应的中断入口去执行中断服务函数,当高优

先级中断服务函数执行完成后再返回原来被中断的低优先级的中断服务函数断点处继

续运行,运行完成后,返回主程序的断点片继续运行。中断源之间的优先级通过中断优

先级控制电路来实现。

1.

STM32F407单片机的中断源

STM32F407单片机总共有92个中断源,包括10个内核中断源和82个可屏蔽中断

源。部分常用可屏蔽中断源如表5.5.1所示。中断向量名称在stm32f4××.h定义,中
断服务程序名在startup_stm32f407.s中定义。

表5.5.1 STM32F407单片机部分常用可屏蔽中断源

中 断 源 中断向量 中断服务程序名

EXTI线0中断 EXTI0_IRQn EXTI0_IRQHandler
EXTI线1中断 EXTI1_IRQn EXTI1_IRQHandler
ADC1、ADC2和ADC3全局中断 ADC_IRQn ADC_IRQHandler
CAN1

TX中断 CAN1_TX_IRQn CAN1_TX_IRQHandler
CAN1

RX0中断 CAN1_RX0_IRQn CAN1_RX0_IRQHandler
TIM1更新中断和TIM10全局中断 TIM1_UP_TIM10_IRQn TIM1_UP_TIM10_IRQHandler
TIM1捕获/比较中断 TIM1_CC_IRQn TIM1_CC_IRQHandler
TIM2全局中断 TIM2_IRQn TIM2_IRQHandler
TIM3全局中断 TIM3_IRQn TIM3_IRQHandler
TIM4全局中断 TIM4_IRQn TIM4_IRQHandler
I2C1事件中断 I2C1_EV_IRQn I2C1_EV_IRQHandler
I2C1错误中断 I2C1_ER_IRQn I2C1_ER_IRQHandler
SPI1全局中断 SPI1_IRQn SPI1_IRQHandler

114

续表

中 断 源 中断向量 中断服务程序名

SPI2全局中断 SPI2_IRQn SPI2_IRQHandler
USART1全局中断 USART1_IRQn USART1_IRQHandler
TIM8更新中断和TIM13全局中断 TIM8_UP_TIM13_IRQn TIM8_UP_TIM13_IRQHandler
TIM8捕获/比较中断 TIM8_CC_IRQn TIM8_CC_IRQHandler
TIM5全局中断 TIM5_IRQn TIM5_IRQHandler
TIM6全局中断

DAC1和DAC2下溢错误中断
TIM6_DAC_IRQn TIM6_DAC_IRQHandler

TIM7全局中断 TIM7_IRQn TIM7_IRQHandler

2.

嵌套矢量中断控制器(NVIC)

NVIC是

Cortex-M4

的一个内部器件。所有含有Cortex-M4内核的单片机的NVIC
是完全相同的,NVIC的配置函数也是由ARM公司提供。NVIC功能非常强大,在中断

处理上效率很高,优先级配置也很灵活。NVIC含有以下这些寄存器:

(1)

中断使能寄存器组ISER[8]:

ISER(Interrupt

Set-Enable

Register)由8个32位

寄存器组成,寄 存 器 中 的 每 一 位 对 应 一 个 中 断,因 此,总 共 可 以 支 持256个 中 断。

STM32F407总共有92个中断,因此,只需要用到3个32位寄存器就可以了。要使能某

个中断,只须将ISER寄存器中的相应位置1即可。
(2)

中断除能寄存器组ICER[8]:

ICER(Interrupt

Clear-Enable

Register)与ISER
的作用刚好相反,是用来清除某个中断使能的。这里专门设置了一个ICER来清除中断

位,而不是对ISER写0来清除,这是因为这些寄存器都是写1有效的,写0是无效的。
(3)

中断挂起控制寄存器组ISPR[8]:

ISPR(Interrupt

Set-Pending

Registers)通过

置1,将已经产生中断请求但无法马上执行的中断挂起,等可以执行中断服务程序时,再
执行挂起的中断。例如,当高、低级别的中断同时发生时,就挂起低级别中断,等高级别

中断程序执行完,再执行低级别中断。
(4)

中断解挂控制寄存器组ICPR[8]:

ICRP(Interrupt

Clear-Pending

Registers)的
作用与ISPR相反,通过置1,可以将正在进行的中断解挂。

(5)

中断激活标志寄存器组IABR[8]:

IABR(Interrupt

Active

Bit

Registers)某位

置1,表示该位所对应的中断正在被执行。这是一个只读寄存器。通过它可以知道当前

在执行的中断是哪个。当中断执行完后由硬件自动清零。
(6)

中断优先级控制的寄存器组IPR[240]:

IPR(Interrupt

Priority

Registers)用于

设置每个中断的抢占优先级(Preemption

Priority)和子优先级(Sub

Priority)。IPR由

240个8位寄存器组成,不过STM32F407单片机只用到其中的82个寄存器IPR[0]~
IPR[81],而每个8位寄存器又只用到了其中的高4位,用来指定每个中断源的两种优

先级。
对于上述寄存器,只需要作一般性了解,因为在实际编程中,通常不是直接对寄存器

操作,而是调用相应的库函数来对寄存器间接操作。

115

3.

中断优先级

NVIC中断优先级总共可以分为5个组,如表5.5.2所示。

表5.5.2 NVIC中断优先级

组 调

用

函

数 分

配

结

果

0 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0) 0位抢占优先级,4位子优先级

1 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) 1位抢占优先级,3位子优先级

2 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2) 2位抢占优先级,2位子优先级

3 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_3) 3位抢占优先级,1位子优先级

4 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4) 4位抢占优先级,0位子优先级

假设中断优先级设在第2组,根据表5.5.2,每个中断可以设置抢占优先级0~3,子
优先级亦为0~3,数值越小所代表的优先级越高。

抢占优先级和子优先级遵循以下原则:

高抢占优先级可以打断正在进行的低抢占优

先级中断。抢占优先级相同的中断,高子优先级不可以打断低子优先级的中断,只有在

两个中断同时发生的情况下,高子优先级中断先执行。如果两个中断的抢占优先级和子

优先级都是一样的,则看哪个中断先发生就先执行。如果两个中断的抢占优先级和子优

先级都是一样的,而且这两个中断同时到达,则根据它们在中断表中的排位顺序决定先

处理哪个。

4.

外部中断

STM32F407的中断控制器支持23个外部中断/事件请求。STM32F407的23个外

部中断为:

EXTI

0~15:

对应外部I/O引脚的输入中断。

EXTI

16:

连接到PVD输出。

EXTI

17:

连接到RTC闹钟事件。

EXTI

18:

连接到USB

OTG

FS唤醒事件。

EXTI

19:

连接到以太网唤醒事件。

EXTI

20:

连接到USB

OTG

HS(在FS中配置)唤醒事件。

EXTI

21:

连接到RTC入侵和时间戳事件。

EXTI

22:

连接到RTC唤醒事件。

EXTI

0~15这16个外部中断请求从单片机的I/O引脚输入,EXTI

16~22这7个

外部中断请求来自单片机内部相关外设。例如,EXTI

16的中断请求来自可编程电压检

测器PVD(Programmable

Voltage

Detector)。PVD将单片机的电源电压VDD 和参考电

压比较,将比较结果作为EXTI

16的中断请求信号,这样就可以在中断服务程序中对电

源电压异常时进行处理。

STM32F407单片机的每个I/O引脚都可以作为外部中断EXTI

0~15的中断输入

口。由于STM32F407单片机供I/O引脚使用的中断线只有16根,而I/O引脚却远不

止16根,因此,每根中断线对应了多个I/O引脚,如图5.5.2所示。以线EXTI

0为例,
它对应了PA0、PB0、PC0、PD0、PE0等多根I/O引脚,通过配置来决定对应的中断线配

116

置到哪根I/O引脚上。

图5.5.2 I/O引脚跟中断线的映射关系

STM32F407单片机外部中断原理框图如图5.5.3所示。

图5.5.3 STM32F407单片机外部中断原理框图

当中断输入口出现上升沿或者下降沿(究竟是上升沿有效还是下降沿有效,或者两

者都有效,由图中的两个触发选择寄存器选择)时,边沿检测电路产生中断事件信号。中

断事件信号经过或门G1后,同时送到两个与门G2和G3。中断事件信号能否通过G2
受中断屏蔽寄存器控制,如果中断屏蔽寄存器相应为置1,中断事件信号就能通过G2形

成中断请求信号,并保存到挂起寄存器中。如果CPU没有正在执行同级或更高级别的

中断,挂起寄存器中的中断请求信号就会送到NVIC中。
中断事件信号能否通过G3受事件屏蔽寄存器控制,如果事件屏蔽寄存器相应为置

1,中断事件信号就能通过G3形成事件信号。脉冲发生器将事件信号转换成一个脉冲信

号。该脉冲信号可以给其他电路使用,如启动A/D转换或者DMA传输等。
从图5.5.3可知,外部中断源同时产生了中断和事件,这里有必要对事件和中断的

区别作一点说明。中断一定要有中断服务函数,但是事件却没有对应的函数。中断必须

要CPU介入,但是事件可以在不需要CPU干预的情况下,执行一些操作。以外部I/O
引脚触发A/D转换为例,如果使用中断通道,需要I/O引脚触发产生外部中断,外部中

断服务程序启动A/D转换,A/D转换完成,通过A/D中断服务程序读取转换结果。如

果使用事件通道,I/O引脚触发产生事件,然后事件触发A/D转换,A/D转换完成,通过

117

A/D中断服务程序读取转换结果。相比之下,事件触发A/D转换,响应速度更快,软件

开销更小。可见,事件机制提供了一个完全由硬件自动完成的触发到产生结果的通道,
提高了响应速度,是利用硬件来提升单片机处理事件能力的一种有效方法。

例5.5.1 双音频信号发生器框图如图5.5.4所示。单片机在通过内部DAC在

PA4引脚产生1000Hz和800Hz的正弦波,每种信号持续时间为2s。

图5.5.4 双音频信号发生器框图

解:

该双音频信号发生器需要采用以下3个中断源:

(1)

按键中断的外部中断(INT0)。通过键盘中断读取4位键值。4×4键盘中有任

一个键按下时,键盘编码电路的 DAV引脚产生由高到低的跳变,向单片机发出中断

请求。
(2)

定时器1(TIM1)中断。通过 TIM1中断控制 DAC在 PA4口产生频率为

1000Hz和800Hz的正弦波信号。
(3)

定时器7(TIM7)中断。通过TIM7中断实现2s的定时。

假设正弦波的每个周期由256点数据构成,为了得到800Hz和1000Hz的正弦波,

TIM1的定时时间计算如下:

T1=
106

1000×256≈
3.906(μs), T2=

106

800×256≈
4.883(μs)

 为了提高定时精度,采用高级定时器TIM1,其计数时钟频率可达168MHz。可计算

得到T1 和T2 的定时时间常数为

TIMPR1=3.906μs×168MHz≈656, TIMPR2=4.883μs×168MHz≈820
为了避免正弦波信号的失真,将TIM1中断优先级设为最高,TIM7的中断优先级次

之,INT0的中断优先级最低。将中断优先级组设为2,在中断初始化程序中将INT0的

抢占优先级为2,子优先级为2;

TIM7中断的抢占优先级为1,子优先级为1;

TIM1中断

的抢占优先级为0,子优先级为0。那么这3个中断的优先级顺序为:

TIM1中断>TIM7
中断>INT0中断。

程序流程图如图5.5.5所示。
(1)

主程序

 int

main void

 􀆺
 NVIC_PriorityGroupConfig NVIC_PriorityGroup_2

 中断分组

 EXTI0_init

 外部中断初始化

 TIM1_init

 TIM1初始化

 TIM1INT_init

 TIM1中断初始化

118

图5.5.5 双音频信号发生器流程图

 TIM7_init

 TIM7初始化

 TIM7INT_init

 TIM7中断初始化

 DAC_init

 DAC初始化

 keysign=0

 funsign=0
 while 1

 if keysign==1

 keysign=0 键有效标志清零

 switch keycode

 case

0x00

 K0键

 TIM_Cmd TIM1 ENABLE

 开启TIM1计数
 break

 case

0x01

 K1键

 TIM_Cmd TIM1

 DISABLE

 关闭TIM1计数
 break

 if

 count==200

 定时两秒

 count=0
 funsign

=

~funsign

 funsign

取反

 if funsign

==

0x00

 TIM_TimeBaseStructure TIM_Period=TIMPR1

 TIM_TimeBaseStructure TIM_Prescaler=0

 设置时钟频率除数的预分频值

 TIM_TimeBaseInit TIM1

&TIM_TimeBaseStructure

 else

119

 TIM_TimeBaseStructure TIM_Period=TIMPR2

 TIM_TimeBaseStructure TIM_Prescaler=0

 TIM_TimeBaseInit TIM1

&TIM_TimeBaseStructure

􀆺

(2)

外部中断初始化函数

 void

EXTI0_init void

 RCC_AHB1PeriphClockCmd RCC_AHB1Periph_GPIOB

ENABLE

 使能GPIOB

时钟

 RCC_APB2PeriphClockCmd RCC_APB2Periph_SYSCFG

ENABLE

 使能SYSCFG时钟

 GPIO_InitStructure GPIO_Mode

=

GPIO_Mode_IN

 将I O引脚设置成输入模式

 GPIO_InitStructure GPIO_PuPd

=

GPIO_PuPd_UP
 GPIO_InitStructure GPIO_Speed

=

GPIO_Speed_2MHz
 GPIO_InitStructure GPIO_Pin

=

GPIO_Pin_0
 GPIO_Init GPIOB

&GPIO_InitStructure

 SYSCFG_EXTILineConfig EXTI_PortSourceGPIOB

EXTI_PinSource0

 注1
 EXTI_InitStructure EXTI_Line

=

EXTI_Line0

 注2
 EXTI_InitStructure EXTI_Mode

=

EXTI_Mode_Interrupt

 注3
 EXTI_InitStructure EXTI_Trigger

=

EXTI_Trigger_Falling

 注4
 EXTI_InitStructure EXTI_LineCmd

=

ENABLE

 注5
 EXTI_Init &EXTI_InitStructure
 EXTI_ClearFlag EXTI_Line0

 NVIC_InitStructure NVIC_IRQChannel

=

EXTI0_IRQn

 写入中断向量

 NVIC_InitStructure NVIC_IRQChannelPreemptionPriority

=

0x02

 抢占优先级

 NVIC_InitStructure NVIC_IRQChannelSubPriority

=

0x02

 子优先级

 NVIC_InitStructure NVIC_IRQChannelCmd

=

ENABLE

 使能该中断

 NVIC_Init &NVIC_InitStructure

注1:

该语句用于配置I/O引脚与中断线的映射关系的函数,其功能是将EXTI

0连

到PB0。该函数在stm32f4xx_syscfg.h文件中。
注2:

该语句用于设置中断线的标号,其取值范围为EXTI_Line0~EXTI_Line15。
注3:

该语句用于设置中断模式,可选值为中断EXTI_Mode_Interrupt和事件EXTI_

Mode_Event。
注4:

该语句用于设置触发方式,可选值为上升沿触发EXTI_Trigger_Rising,下降

沿触发EXTI_Trigger_Falling,或者任意边沿触发EXTI_Trigger_Rising_Falling。
注5:

该语句用于设置中断使能,可选值为ENABLE和DISABLE。
(3)

TIM1初始化程序

 void

TIM1_init void

 RCC_APB2PeriphClockCmd RCC_APB2Periph_TIM1 ENABLE

 使能TIM1
 TIM_TimeBaseStructure TIM_Period=TIMPR1

 设置自动重装载寄存器周期的值

 TIM_TimeBaseStructure TIM_Prescaler=0

 设置时钟频率除数的预分频值

120

 TIM_TimeBaseStructure TIM_ClockDivision=TIM_CKD_DIV1

 设置时钟分割TIM_CKD_DIV1=0x0000
 TIM_TimeBaseStructure TIM_RepetitionCounter=0x00

 设置RCR寄存器值 这个只有高级定时器中有
 TIM_TimeBaseStructure TIM_CounterMode=TIM_CounterMode_Up

 TIM1向上计数

 TIM_TimeBaseInit TIM1 &TIM_TimeBaseStructure

 初始化TIM1
 TIM_Cmd TIM1 ENABLE

 开启TIM1计数

 TIM_ClearFlag TIM1

TIM_FLAG_Update

 清溢出标志

(4)

TIM1中断初始化程序

 void

TIM1INT_init void

 NVIC_InitStructure NVIC_IRQChannel

=

TIM1_UP_TIM10_IRQn
 NVIC_InitStructure NVIC_IRQChannelPreemptionPriority

=0
 NVIC_InitStructure NVIC_IRQChannelSubPriority

=

0
 NVIC_InitStructure NVIC_IRQChannelCmd

=

ENABLE
 NVIC_Init &NVIC_InitStructure
 TIM_ITConfig TIM1 TIM_IT_Update ENABLE

 允许溢出中断

(5)

TIM7初始化程序和中断初始化程序见例5.4.1。
(6)

DAC初始化程序参考8.4节有关内容。
(7)

INT0(键盘中断)的中断服务程序

 void

EXTI0_IRQHandler void

 keycode

=

KEY_RAM

 读4位键值 KEY_RAM为键盘接口的片选地址

 keycode

&=

0x0F
 keysign

=

1

 设置键值有效标志

 EXTI_ClearITPendingBit EXTI_Line0 清中断标志

(8)

TIM1的中断服务程序

 void

TIM1_UP_TIM10_IRQHandler void

 if

 TIM_GetITStatus TIM1

TIM_IT_Update

 =

RESET

 是否发生定时器更新中断

 TIM_ClearITPendingBit TIM1

TIM_FLAG_Update

 清除中断待处理位

 DACDAT=sindata k

 读波形数据

 DACDAT=DACDAT 4

 注1
 k++
 DAC_SetChannel1Data DAC_Align_12b_R DACDAT

 通过波形数据到DAC1

注1:

DACDAT为预先定义的16位无符号变量,从波形数据表中读取的数据为8
位,通过这条左移4位指令,将8位波形数据转化为12位的DAC数据。

(9)

TIM7的中断服务程序

 void

TIM7_IRQHandler void

121

 if TIM_GetITStatus TIM7 TIM_IT_Update =RESET

 TIM_ClearITPendingBit TIM7 TIM_IT_Update
 count++

 每隔10ms软件计数器count加1

通过本例,在编程中断有关的程序时,应注意以下几点:

(1)

中断分组函数应放在所有中断源的中断初始化程序之前。
(2)

如果分组为2,则抢占优先级设为4级,子优先级设为4级。如果将某中断源的

抢占优先级设为0x0F,则相当于设为0x03;

如果将某中断源的抢占优先级设为0x08,则
相当于设为0x00;

总之,只有低两位有效。
(3)

中断服务程序名可以通过查找表5.5.1得到。中断服务程序中要有清除中断标

志的指令。
(4)

中断服务函数编写原则:

快进快出,在中断不要执行占用CPU 较长时间的

代码。

思考题

1.

选择题。
(1)

STM32F407单片机的最高时钟频率为多少?

 A.

42MHz B.

72MHz C.

84MHz D.

168MHz
(2)

当STM32F407单片机与速度较慢的外设连接时,如何降低系统时钟的频率?

A.

减小锁相环倍频系数PLL-N的值
B.

增大锁相环倍频系数PLL-N的值

C.

增大锁相环分频系数PLL-P的值
D.

采用低速外部时钟LSE
(3)

关于STM32F407单片机,以下哪种说法是错误的?

A.

内部锁相环的作用是为了获得较高的系统时钟频率

B.

内部定时器TIM1的时钟频率可以为168MHz
C.

使用外部晶振时,外部晶振的频率不能低于4MHz
D.

采用复杂指令集CISC
(4)

STM32F407单片机如果没有安装外部晶振,那么单片机的系统时钟来自哪里?

A.

HSI B.

LSI C.

LSE D.

HSE
2.

STM32F407单片机内部有哪几种总线? 分别连接什么外设?

3.

STM32F407单片机有哪些时钟源? 各有什么用途?

4.

STM32F407单片机内部有多少个定时器? 可分成哪几类?

5.

计数时钟为84MHz时,基本定时器TIM7的最大定时时间是多少?

6.

用单片机在I/O引脚产生方波有哪几种方法? 分别有什么优点?

122

7.

根据图5.4.4所示的参数设置,要求频率测量精度不低于1%,允许被测信号的

频率范围为多少?

8.

简述你对中断和事件这两个概念的理解。

9.

在编写STM32F407单片机的中断服务程序时,其函数名为什么不能任意命名?

10.

抢占优先级和子优先级有什么区别?

