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3.1 Two
 

Types
 

of
 

Constraints
 

and
 

Circuit
 

Equations
 

3.1.1 Two
 

Types
 

of
 

Constraints

A
 

circuit
 

is
 

formed
 

by
 

connecting
 

components
 

in
 

a
 

specific
 

manner,
 

and
 

in
 

any
 

lumped-element
 

circuit,
 

the
 

currents
 

and
 

voltages
 

must
 

satisfy
 

two
 

types
 

of
 

constraints
 

related
 

to
 

the
 

properties
 

of
 

the
 

components
 

and
 

the
 

way
 

the
 

circuit
 

is
 

connected.
(1)

 

Constraints
 

related
 

to
 

the
 

properties
 

of
 

the
 

components:
 

The
 

voltage-current
 

relationships
 

of
 

the
 

components
 

provide
 

linear
 

constraints
 

on
 

the
 

voltages
 

and
 

currents
 

in
 

each
 

branch
 

(such
 

as
 

Ohms
 

Law
 

U=RI).
 

These
 

constraints
 

are
 

independent
 

of
 

the
 

circuits
 

connectivity.
(2)

  

Constraints
 

related
 

to
 

the
 

circuit
 

connection
 

methods:
 

Kirchhoffs
 

Current
 

Law
 

(KCL)
 

and
 

Kirchhoffs
 

Voltage
 

Law
 

(KVL)
 

respectively
 

provide
 

linear
 

constraints
 

on
 

the
 

branch
 

currents
 

and
 

branch
 

voltages
 

with
 

a
 

specific
 

connection
 

method.
 

These
 

constraints
 

are
 

independent
 

of
 

the
 

properties
 

of
 

the
 

components.
Kirchhoffs

 

Current
 

Law:
 

At
 

any
 

node
 

in
 

a
 

circuit,
 

the
 

sum
 

of
 

currents
 

flowing
 

into
 

the
 

node
 

at
 

any
 

given
 

moment
 

is
 

equal
 

to
 

the
 

sum
 

of
 

currents
 

flowing
 

out
 

of
 

the
 

node.
Kirchhoffs

 

Voltage
 

Law:
 

In
 

any
 

closed
 

loop,
 

the
 

algebraic
 

sum
 

of
 

the
 

voltage
 

drops
 

across
 

all
 

components
 

is
 

equal
 

to
 

the
 

algebraic
 

sum
 

of
 

the
 

electromotive
 

forces.
 

In
 

other
 

words,
 

when
 

traversing
 

a
 

closed
 

loop
 

and
 

returning
 

to
 

the
 

starting
 

point,
 

the
 

algebraic
 

sum
 

of
 

the
 

voltage
 

drops
 

across
 

each
 

segment
 

is
 

always
 

equal
 

to
 

zero.
In

 

any
 

lumped-element
 

circuit,
 

the
 

voltages
 

and
 

currents
 

must
 

simultaneously
 

satisfy
 

these
 

two
 

types
 

of
 

constraints.
 

Therefore,
 

the
 

fundamental
 

method
 

for
 

circuit
 

analysis
 

involves,
 

based
 

on
 

the
 

circuits
 

structure
 

and
 

parameters,
 

formulating
 

Kirchhoffs
 

Current
 

Law
 

(KCL),
 

Kirchhoffs
 

Voltage
 

Law
 

(KVL),
 

and
 

component
 

Voltage-Current
 

Relationship
 

(VCR)
 

equations
 

that
 

reflect
 

the
 

two
 

types
 

of
 

constraint
 

relationships.
 

These
 

equations,
 

collectively
 

known
 

as
 

circuit
 

equations,
 

are
 

then
 

solved
 

to
 

obtain
 

the
 

solutions
 

for
 

the
 

voltages
 

and
 

currents
 

in
 

the
 

circuit.

3.1.2 Circuit
 

Equations

For
 

a
 

circuit
 

with
 

b
 

branches
 

and
 

n
 

nodes,
 

the
 

circuit
 

equations
 

have
 

the
 

following
 

characteristics:
(1)

 

The
 

VCR
 

equations
 

for
 

the
 

b
 

branches
 

are
 

independent
 

of
 

each
 

other.
(2)

 

The
 

KCL
 

equations
 

for
 

any
 

n-1
 

nodes
 

are
 

independent
 

of
 

each
 

other,
 

and
 

the
 

number
 

of
 

independent
 

nodes
 

is
 

n-1.
(3)

 

The
 

KVL
 

equations
 

for
 

any
 

b-n+1
 

loops
 

are
 

independent
 

of
 

each
 

other,
 

and
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the
 

number
 

of
 

independent
 

loops
 

is
 

equal
 

to
 

the
 

number
 

of
 

meshes,
 

which
 

is
 

b-n+1.
(4)

 

The
 

total
 

number
 

of
 

independent
 

circuit
 

equations
 

is
 

b+(n-1)+(b-n+1)=
2b.

 

These
 

equations
 

represent
 

the
 

most
 

fundamental
 

circuit
 

equations
 

and
 

serve
 

as
 

the
 

basic
 

foundation
 

for
 

circuit
 

analysis.
(5)

 

The
 

VCR
 

equations
 

for
 

independent
 

power
 

sources
 

directly
 

provide
 

the
 

voltage
 

or
 

current
 

for
 

the
 

respective
 

branch,
 

thereby
 

reducing
 

constraint
 

equations
 

and
 

variables
 

 Figure
 

3.1.1 Example
 

3.1
 

circuit

in
 

the
 

solution
 

process.
Example

 

3.1 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.1.1,
 

uS=0.05cost(V),
 

calculate
 

the
 

voltages
 

and
 

currents
 

for
 

each
 

branch.
Solution:

 

The
 

circuit
 

has
 

4
 

branches,
 

2
 

independent
 

nodes,
 

and
 

2
 

meshes,
 

which
 

can
 

list
 

4
 

VCR
 

equations,
 

2
 

KCL
 

equations
 

and
 

2
 

KVL
 

equations.
4

 

VCR
 

equations:

uS=0.05cost

uR1=2.5iR1

iCCCS=100iR1

uR2=2iR2

  2
 

KCL
 

equations:

iU +iR1=0

iCCCS+iR2=0
  2

 

KVL
 

equations:

uR1-uS=0

uR2-uCCCS=0
  By

 

solving
 

the
 

above
 

equations,
 

we
 

can
 

obtain:

uR1=0.05cost(V)

iR1=
0.05cost
2.5 =0.02cost(mA)

iU =-0.02cost(mA)

iCCCS=100×0.02cost=2cost(mA)

iR2=-2cost(mA)

uCCCS=uR2=2×(-2cost)=-4cost(V)

  Example
 

3.2 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.1.2,
 

the
 

switch
 

is
 

closed
 

at
 

t=0.
 

Given
 

that
 

the
 

initial
 

voltage
 

across
 

the
 

capacitor
 

is
 

uC(0)=1V,
 

calculate
 

the
 

voltages
 

and
 

currents
 

in
 

each
 

branch
 

for
 

t≥0.
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Figure
 

3.1.2 Example
 

3.2
 

circuit
 

Solution:
 

After
 

the
 

switch
 

is
 

closed,
 

it
 

consists
 

of
 

3
 

branches,
 

2
 

independent
 

nodes,
 

and
 

1
 

mesh.
 

We
 

can
 

formulate
 

3
 

VCR
 

equations,
 

2
 

KCL
 

equations,
 

and
 

1
 

KVL
 

equation.
3

 

VCR
 

equations:

US=2V

uR =200×103iR

iC =5×10-6duC

dt
2

 

KCL
 

equations:

iU +iR =0

-iR +iC =0
  1

 

KVL
 

equation:

uR +uC -US=0
  Loop

 

KVL
 

equation:

200×103×5×10-6duC

dt +uC =
duC

dt +uC =2

uC(0)=1
  The

 

solution
 

to
 

a
 

first-order
 

nonhomogeneous
 

linear
 

differential
 

equation
 

consists
 

of
 

two
 

parts:
 

uC =uCh +uCp.
 

The
 

general
 

solution
 

uCh
 to

 

the
 

corresponding
 

homogeneous
 

linear
 

differential
 

equation
 

is
 

given
 

by:

uCh=Kest, t≥0 (3.1.1)

  In
 

the
 

equation:
 

s
 

represents
 

the
 

characteristic
 

roots
 

of
 

the
 

characteristic
 

equation;
 

K
 

is
 

an
 

undetermined
 

constant.
 

For
 

the
 

characteristic
 

equation
 

s+1=0,
 

the
 

characteristic
 

root
 

is
 

s=-1.
A

 

particular
 

solution
 

uCp
 for

 

the
 

first-order
 

nonhomogeneous
 

linear
 

differential
 

equation
 

generally
 

takes
 

the
 

same
 

form
 

as
 

the
 

excitation.
 

Assuming
 

uCp =C,
 

substituting
 

it
 

into
 

the
 

first-order
 

nonhomogeneous
 

linear
 

differential
 

equation
 

uCp=2.
 

Hence,
 

we
 

obtain:

uC =uCh+uCp=Ke-t+2, t≥0 (3.1.2)

  Solving
 

for
 

the
 

undetermined
 

constant
 

K
 

with
 

the
 

initial
 

voltage
 

uC(0)=1,
 

setting
 

t=0,
 

we
 

have:

uC(0)=K +2=1→K =-1→uC =2-e-t(V), t≥0 (3.1.3)

  After
 

solving
 

for
 

the
 

voltage
 

across
 

the
 

capacitor,
 

we
 

can
 

determine
 

the
 

voltage
 

across
 

the
 

resistor:

uR =US-uC =e-t(V), t≥0 (3.1.4)

  The
 

currents
 

flowing
 

through
 

each
 

component
 

are:
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iC =5×10-6duC

dt =5×10-6e-t(A)=5e-t(μA), t≥0 (3.1.5)

iR =iC =5e-t(μA), t≥0 (3.1.6)

iU =-iR =-5e-t(μA), t≥0 (3.1.7)

3.2 The
 

Three-Element
 

Method
 

for
 

First-Order
 

Circuits

3.2.1 First-Order
 

RC
 

Circuit

In
 

Figure
 

3.2.1(a),
 

we
 

have
 

a
 

simple
 

voltage-source
 

resistor-capacitor
 

(RC)
 

circuit.
 

Lets
 

write
 

the
 

Kirchhoffs
 

Current
 

Law
 

(KCL)
 

equation
 

for
 

the
 

top
 

node.

i(t)=
uC

R +C
duC

dt
(3.2.1)

 Figure
 

3.2.1 The
 

transient
 

response
 

of
 

capacitor
 

charging

Equation
 

(3.2.1)
 

can
 

be
 

rewritten
 

as:

duC

dt +
uC

RC=
i(t)
C

(3.2.2)

  To
 

find
 

uC (t),
 

it
 

is
 

necessary
 

to
 

solve
 

a
 

nonhomogeneous
 

linear
 

first-order
 

ordinary
 

differential
 

equation.
 

We
 

use
 

the
 

method
 

of
 

finding
 

homogeneous
 

and
 

particular
 

solutions
 

to
 

solve
 

this
 

equation.
 

Let
 

uCh(t)
 

be
 

an
 

arbitrary
 

solution
 

of
 

the
 

homogeneous
 

Equation
 

(3.2.3)
 

associated
 

with
 

the
 

inhomogeneous
 

Equation
 

(3.2.2).
duC

dt +
uC

RC=0 (3.2.3)

  Setting
 

the
 

original
 

driving
 

function
 

(here
 

denoted
 

as
 

i(t))
 

in
 

the
 

non-homogeneous
 

equation
 

to
 

zero
 

yields
 

the
 

corresponding
 

homogeneous
 

equation.
 

Subsequently,
 

let
 

uCp(t)
 

be
 

an
 

arbitrary
 

solution
 

to
 

Equation
 

(3.2.2).
 

Finally,
 

add
 

the
 

two
 

solutions
 

together
 

to
 

obtain
 

the
 

complete
 

solution:

uC(t)=uCh(t)+uCp(t) (3.2.4)

  Equation
 

(3.2.4)
 

represents
 

the
 

general
 

or
 

complete
 

solution
 

of
 

Equation
 

(3.2.2).
 

Here,
 

uCh(t)
 

is
 

referred
 

to
 

as
 

the
 

homogeneous
 

solution,
 

while
 

uCp(t)
 

is
 

called
 

the
 

particular
 

solution.
 

In
 

the
 

context
 

of
 

circuit
 

response,
 

the
 

homogeneous
 

solution
 

can
 

also
 

be
 

termed
 

as
 

the
 

circuits
 

natural
 

response
 

since
 

it
 

solely
 

depends
 

on
 

the
 

internal
 

energy
 

storage
 

properties
 

of
 

the
 

circuit
 

and
 

is
 

independent
 

of
 

external
 

inputs.
 

The
 

particular
 

solution
 

can
 

also
 

be
 

referred
 

to
 

as
 

the
 

forced
 

response
 

or
 

forced
 

solution,
 

as
 

it
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is
 

determined
 

by
 

the
 

external
 

inputs
 

to
 

the
 

circuit.
To

 

make
 

the
 

problem
 

more
 

specific,
 

lets
 

assume
 

that
 

the
 

current
 

source
 

is
 

a
 

step
 

function.
i(t)=I0, t>0 (3.2.5)

  As
 

shown
 

in
 

Figure
 

3.2.1(b),
 

it
 

is
 

further
 

assumed
 

that
 

before
 

the
 

step
 

current
 

is
 

applied,
 

the
 

voltage
 

across
 

the
 

capacitor
 

is
 

0.
 

From
 

a
 

mathematical
 

perspective,
 

this
 

constitutes
 

the
 

initial
 

condition.
uC =0, t<0 (3.2.6)

  The
 

method
 

to
 

solve
 

for
 

the
 

homogeneous
 

solution
 

and
 

particular
 

solution
 

typically
 

involves
 

three
 

steps.
The

 

first
 

step
 

involves
 

finding
 

the
 

homogeneous
 

solution,
 

denoted
 

as
 

uCh(t),
 

which
 

is
 

given
 

by:

duCh

dt +
uCh

RC =0 (3.2.7)

  Assuming
 

the
 

form
 

of
 

the
 

solution
 

is:

uCh=Aest (3.2.8)

  To
 

substitute
 

Equation
 

(3.2.8)
 

into
 

Equation
 

(3.2.7),
 

we
 

obtain:

Asest+
Aest

RC =0 (3.2.9)

  The
 

equation
 

cannot
 

determine
 

the
 

value
 

of
 

A.
 

However,
 

by
 

excluding
 

the
 

special
 

case
 

of
 

A=0,
 

we
 

obtain:

sest+
est

RC=0 (3.2.10)

  For
 

finite
 

values
 

of
 

s
 

and
 

t,
 

the
 

term
 

est
 

will
 

never
 

be
 

equal
 

to
 

zero.
 

Therefore,
 

this
 

factor
 

can
 

be
 

eliminated,
 

resulting
 

in:

s=-
1
RC

(3.2.11)

  Equation
 

(3.2.10)
 

is
 

the
 

characteristic
 

equation
 

of
 

the
 

system,
 

and
 

s=-1/RC  
 

is
 

a
 

root
 

of
 

this
 

characteristic
 

equation.
 

Now,
 

knowing
 

that
 

the
 

homogeneous
 

solution
 

has
 

the
 

following
 

form:

uCh=Ae-t/RC (3.2.12)

  The
 

product
 

RC
 

has
 

the
 

dimension
 

of
 

time
 

and
 

is
 

referred
 

to
 

as
 

the
 

time
 

constant
 

of
 

the
 

circuit.
The

 

second
 

step
 

involves
 

finding
 

a
 

particular
 

solution,
 

denoted
 

as
 

uCp,
 

which
 

satisfies
 

the
 

original
 

differential
 

equation.
 

It
 

does
 

not
 

have
 

to
 

satisfy
 

the
 

initial
 

conditions,
 

i.e.,
 

it
 

is
 

required
 

to
 

satisfy
 

the
 

equation:

I0=
uCp

R +C
duCp

dt
(3.2.13)
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  Since
 

I0 is
 

a
 

constant
 

for
 

t>0,
 

an
 

acceptable
 

particular
 

solution
 

is
 

also
 

a
 

constant,
 

namely:

uCp=K
 

(3.2.14)

  To
 

prove
 

this,
 

substitute
 

it
 

into
 

Equation
 

(3.2.13),
 

yielding:

I0=
K
R +0 (3.2.15)

K =I0R (3.2.16)

  Since
 

Equation
 

(3.2.15)
 

can
 

be
 

used
 

to
 

determine
 

K,
 

there
 

is
 

confidence
 

in
 

the
 

assumption
 

about
 

the
 

particular
 

solution
 

form,
 

that
 

is,
 

Equation
 

(3.2.13)
 

is
 

correct.
 

Therefore,
 

the
 

particular
 

solution
 

is:

uCp=I0R (3.2.17)

  The
 

third
 

step
 

involves
 

determining
 

the
 

complete
 

solution.
 

The
 

complete
 

solution
 

is
 

the
 

sum
 

of
 

the
 

homogeneous
 

solution
 

and
 

the
 

particular
 

solution.
uC =Ae-t/RC +I0R (3.2.18)

  The
 

only
 

remaining
 

unknown
 

constant
 

is
 

A,
 

and
 

it
 

can
 

be
 

determined
 

using
 

the
 

initial
 

conditions.
 

Equation
 

(3.2.6)
 

applies
 

to
 

t<0,
 

while
 

Equation
 

(3.2.18)
 

applies
 

to
 

t>0.
 

As
 

the
 

instantaneous
 

jump
 

in
 

capacitor
 

voltage
 

requires
 

an
 

infinite
 

pulse
 

current,
 

the
 

capacitor
 

voltage
 

must
 

be
 

continuous
 

for
 

finite
 

current.
 

The
 

circuit
 

cannot
 

provide
 

an
 

infinitely
 

large
 

current,
 

thus
 

it
 

is
 

reasonable
 

to
 

assume
 

that
 

the
 

voltage
 

across
 

the
 

capacitor
 

uC
 is

 

continuous.
 

Consequently,
 

the
 

solutions
 

for
 

the
 

positive
 

and
 

negative
 

time
 

intervals
 

are
 

equal
 

at
 

the
 

moment
 

t=0.
 

0=A+I0R (3.2.19)

  Therefore,
 

we
 

have:

A=-I0R (3.2.20)

  The
 

complete
 

solution
 

for
 

t>0
 

is:

uC =-I0Re-t/RC +I0R (3.2.21)

  Or:

uC =I0R 1-e-t/RC  (3.2.22)

  Plot
 

the
 

graph
 

of
 

the
 

complete
 

solution,
 

as
 

shown
 

in
 

Figure
 

3.2.1(c).
Here

 

are
 

some
 

explanatory
 

notes
 

to
 

deepen
 

the
 

understanding:

①
 

Note
 

that
 

the
 

capacitor
 

voltage
 

starts
 

from
 

0
 

at
 

t=0,
 

and
 

after
 

a
 

considerable
 

time
 

t,
 

reaches
 

its
 

final
 

value
 

of
 

I0R.
 

The
 

growth
 

process
 

from
 

0
 

to
 

I0R
 

has
 

a
 

time
 

constant
 

of
 

RC.
 

The
 

final
 

value
 

of
 

the
 

capacitor
 

voltage,I0R,
 

indicates
 

that
 

all
 

the
 

current
 

emitted
 

by
 

the
 

current
 

source
 

flows
 

through
 

the
 

resistor.
 

The
 

capacitor
 

appears
 

as
 

an
 

open
 

circuit.
②

 

The
 

initial
 

value
 

of
 

the
 

capacitor
 

voltage
 

being
 

0
 

implies
 

that
 

at
 

t=0,
 

all
 

the
 

current
 

emitted
 

by
 

the
 

current
 

source
 

must
 

flow
 

through
 

the
 

capacitor,
 

and
 

there
 

is
 

no
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current
 

through
 

the
 

resistor.
 

Therefore,
 

at
 

t=0,
 

the
 

capacitor
 

appears
 

as
 

an
 

instantaneous
 

short
 

circuit.

Figure
 

3.2.2 Time
 

constant

③
 

Now
 

the
 

physical
 

significance
 

of
 

the
 

time
 

constant
 

RC
 

becomes
 

apparent.
 

As
 

shown
 

in
 

Figure
 

3.2.2,
 

it
 

is
 

a
 

factor
 

that
 

characterizes
 

transient
 

behavior,
 

determining
 

the
 

speed
 

at
 

which
 

the
 

transition
 

process
 

concludes.
The

 

capacitor
 

is
 

now
 

fully
 

charged,
 

assuming
 

the
 

current
 

source
 

is
 

suddenly
 

set
 

to
 

zero,
 

as
 

shown
 

in
 

Figure
 

3.2.3(a).
 

For
 

convenience,
 

the
 

time
 

axis
 

is
 

redefined
 

in
 

the
 

figure
 

so
 

that
 

the
 

current
 

source
 

is
 

turned
 

off
 

at
 

t=0.
 

The
 

circuit
 

used
 

to
 

analyze
 

the
 

transient
 

process
 

of
 

RC
 

discharge
 

now
 

only
 

contains
 

a
 

resistor
 

and
 

a
 

capacitor,
 

as
 

shown
 

in
 

Figure
 

3.2.3(c).
 

The
 

initial
 

condition
 

describing
 

the
 

voltage
 

across
 

the
 

capacitor
 

at
 

the
 

beginning
 

of
 

the
 

experiment
 

is
 

given
 

by:

uC =I0R, t<0 (3.2.23)

  In
 

this
 

scenario,
 

the
 

RC
 

discharge
 

process
 

is
 

the
 

same
 

as
 

that
 

of
 

a
 

circuit
 

containing
 

only
 

a
 

resistor
 

and
 

a
 

capacitor,
 

with
 

the
 

initial
 

capacitor
 

voltage
 

uC(0)=I0R.

Figure
 

3.2.3 Transient
 

process
 

of
 

capacitor
 

discharge

Since
 

the
 

drive
 

current
 

is
 

0,
 

the
 

differential
 

equation
 

for
 

t>0
 

is

0=
uC

R +
CduC

dt
  As

 

before,
 

the
 

homogeneous
 

solution
 

is
uCh=Ae-t/RC (3.2.24)

  However,
 

the
 

particular
 

solution
 

is
 

now
 

0
 

because
 

there
 

is
 

no
 

forced
 

input,
 

so
 

Equation
 

(3.2.24)
 

is
 

the
 

complete
 

solution.
 

In
 

other
 

words
uC =uCh=Ae-t/RC (3.2.25)

  Let
 

Equation
 

(3.2.23)
 

and
 

Equation
 

(3.2.24)
 

be
 

equal
 

at
 

time
 

t=0,
 

obtain
I0R=A (3.2.26)

  Therefore,
 

when
 

t>0,
 

the
 

waveform
 

of
 

the
 

capacitor
 

voltage
 

is
uC =I0Re-t/RC (3.2.27)

  The
 

solution
 

diagram
 

is
 

shown
 

in
 

Figure
 

3.2.3(b).
Generally

 

speaking,
 

a
 

circuit
 

composed
 

of
 

a
 

resistor
 

and
 

a
 

capacitor.
 

If
 

the
 

initial
 

value
 

of
 

the
 

capacitor
 

voltage
 

is
 

uC(0),
 

the
 

waveform
 

of
 

the
 

capacitor
 

voltage
 

at
 

t>0
 

is
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uC =uC(0)e-t/RC (3.2.28)

3.2.2 Properties
 

of
 

Exponent

Since
 

decay
 

exponents
 

often
 

occur
 

in
 

the
 

solution
 

of
 

simple
 

RC
 

and
 

RL
 

transient
 

problems,
 

discussing
 

certain
 

properties
 

of
 

these
 

functions
 

here
 

will
 

be
 

beneficial
 

for
 

plotting
 

their
 

graphs.
The

 

general
 

form
 

of
 

an
 

exponential
 

function
 

is
x=Ae-t/τ (3.2.29)

  The
 

starting
 

slope
 

of
 

the
 

exponent
 

is
dx
dt t=0

= -A
τ

(3.2.30)

  Therefore,
 

by
 

extending
 

the
 

initial
 

slope
 

of
 

the
 

curve
 

as
 

a
 

straight
 

line
 

to
 

intersect
 

with
 

the
 

time
 

axis,
 

the
 

intersection
 

occurs
 

at
 

t=τ,
 

which
 

is
 

independent
 

of
 

the
 

value
 

of
 

A,
 

as
 

shown
 

in
 

Figure
 

3.2.4(a).
In

 

addition,
 

notice
 

that
 

when
 

t=τ,
 

the
 

function
 

in
 

Equation
 

(3.2.29)
 

becomes

x(t=τ)=
A
e

(3.2.31)

  In
 

other
 

words,
 

the
 

function
 

reaches
 

its
 

initial
 

value
 

of
 

1/e,
 

regardless
 

of
 

the
 

value
 

of
 

A.
 

This
 

is
 

depicted
 

on
 

the
 

exponential
 

curve
 

in
 

Figure
 

3.2.4(b).
Since

 

e-5=0.0067,
 

it
 

is
 

generally
 

assumed
 

that
 

t
 

is
 

greater
 

than
 

5
 

time
 

constants,
 

i.e.
t>5τ (3.2.32)

  The
 

function
 

is
 

essentially
 

already
 

0,
 

which
 

implies
 

that
 

the
 

transient
 

process
 

is
 

assumed
 

to
 

have
 

concluded.
We

 

shall
 

see
 

later
 

that
 

these
 

properties
 

of
 

the
 

time
 

constant
 

τ
 

are
 

very
 

useful
 

for
 

estimating
 

roughly
 

the
 

duration
 

of
 

exponential
 

growth
 

or
 

decay.

Figure
 

3.2.4 Properties
 

of
 

exponents

3.3 Superposition
 

Theorem
 

and
 

Its
 

Application

3.3.1 Superposition
 

Theorem

The
 

voltage
 

or
 

current
 

of
 

any
 

branch
 

generated
 

by
 

the
 

combined
 

action
 

of
 

m
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independent
 

voltage
 

sources
 

and
 

n
 

independent
 

current
 

sources
 

in
 

a
 

circuit
 

is
 

equal
 

to
 

the
 

algebraic
 

sum
 

of
 

the
 

corresponding
 

branch
 

voltage
 

or
 

current
 

components
 

generated
 

by
 

the
 

separate
 

action
 

of
 

each
 

independent
 

power
 

source,
 

where
 

all
 

branch
 

voltages
 

or
 

current
 

components
 

take
 

the
 

same
 

reference
 

direction.

y=∑
m+n

i=1
yi=∑

m+n

i=1
Kixi (3.3.1)

yi=y ∩j≠ixj =0=Kixi, i,j=1,2,…,m+n (3.3.2)

y=u
 

or
 

i
xi=uSi or

 

iSi (3.3.3)

  When
 

a
 

particular
 

independent
 

source
 

acts
 

alone,
 

it
 

is
 

equivalent
 

to
 

setting
 

all
 

other
 

independent
 

sources
 

in
 

the
 

circuit
 

to
 

zero,
 

i.e.,
 

short-circuiting
 

independent
 

voltage
 

sources
 

and
 

open-circuiting
 

independent
 

current
 

sources.
 

Controlled
 

sources,
 

however,
 

do
 

not
 

fall
 

into
 

the
 

category
 

of
 

acting
 

alone
 

or
 

being
 

set
 

to
 

zero.

3.3.2 Application
 

of
 

Superposition
 

Theorem

To
 

determine
 

the
 

voltage
 

or
 

current
 

in
 

any
 

branch
 

of
 

a
 

circuit
 

due
 

to
 

the
 

combined
 

action
 

of
 

several
 

independent
 

sources,
 

it
 

is
 

only
 

needed
 

to
 

calculate
 

the
 

respective
 

branch
 

voltage
 

or
 

current
 

components
 

produced
 

by
 

each
 

independent
 

source
 

acting
 

alone
 

and
 

then
 

superimpose
 

these
 

components.
Example

 

3.3 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.3.1,
 

uS=0.01cost(V),
 

determine
 

the
 

voltage
 

uO.

Figure
 

3.3.1 Example
 

3.3
 

circuit

Solution:
 

When
 

all
 

DC
 

power
 

supplies
 

act
 

(as
 

shown
 

in
 

Figure
 

3.3.2),
 

there
 

is

IR1=
1-0.7
24+2.2≈

0.0115(mA)

UO=
100
4+100×12-100×0.0115

4×100
4+100  =11.5-11.5×3.85≈7.08(V)

  When
 

AC
 

power
 

supply
 

acts
 

alone(as
 

shown
 

in
 

Figure
 

3.3.3):

iR1=
0.01cost
24+2.2≈

0.0004cost(mA)
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uO=-100×0.0004cost
4×100
4+100  =-0.04cost×3.85≈-0.15cost(V)

Figure
 

3.3.2 Example
 

3.3(a)
 

Diagram

Figure
 

3.3.3 Example
 

3.3(b)
 

diagram

  The
 

output
 

voltage
 

after
 

superposition
 

is
uO=UO+uO=7.08-0.15cost(V)

3.4 Network
 

Equivalence
 

with
 

the
 

Application
 

of
 

Thevenins
 

Theorem
 

and
 

Nortons
 

Theorem

3.4.1 Network
 

Equivalence

A
 

single-port
 

network
 

is
 

a
 

circuit
 

that
 

has
 

only
 

one
 

external
 

port.
 

A
 

network
 

that
 

is
 

connected
 

to
 

other
 

circuits
 

only
 

through
 

two
 

terminals
 

is
 

referred
 

to
 

as
 

a
 

two-terminal
 

network.
 

When
 

the
 

port
 

characteristics
 

of
 

the
 

two-terminal
 

network
 

are
 

emphasized
 

without
 

concern
 

for
 

the
 

internal
 

situation
 

of
 

the
 

network,
 

the
 

two-terminal
 

network
 

is
 

called
 

a
 

single-port
 

network,
 

or
 

single
 

port
 

for
 

short.
 

Active
 

single-port
 

contains
 

an
 

independent
 

power
 

supply,
 

generally
 

represented
 

by
 

N.
 

Passive
 

single
 

port
 

does
 

not
 

contain
 

an
 

independent
 

power
 

supply
 

and
 

is
 

generally
 

represented
 

by
 

N0.
The

 

external
 

circuit
 

refers
 

to
 

the
 

other
 

parts
 

of
 

the
 

circuit
 

connected
 

by
 

a
 

single
 

port,
 

and
 

the
 

external
 

characteristics
 

of
 

the
 

single
 

port
 

are
 

determined
 

by
 

the
 

port
 

VCR.
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If
 

two
 

single
 

port
 

ports
 

have
 

the
 

same
 

VCR,
 

a
 

single
 

port
 

network
 

can
 

be
 

referred
 

to
 

as
 

external
 

equivalence.
 

Two
 

equivalent
 

single
 

ports
 

have
 

the
 

same
 

effect
 

on
 

the
 

external
 

circuit,
 

but
 

their
 

internal
 

structural
 

parameters
 

can
 

be
 

completely
 

different.
 

The
 

single
 

port
 

circuit
 

is
 

shown
 

in
 

Figure
 

3.4.1.

Figure
 

3.4.1 Single-port
 

circuit

A
 

single-port
 

equivalent
 

circuit
 

is
 

the
 

simplest
 

circuit
 

that
 

can
 

reflect
 

a
 

port
 

VCR.
Example

 

3.4 Are
 

the
 

two
 

single-port
 

networks
 

shown
 

in
 

Figure
 

3.4.2
 

equivalent?

Figure
 

3.4.2 Example
 

3.4
 

circuit

Solution:
 

For
 

both
 

single-port
 

networks,
 

the
 

terminal
 

(VCR)
 

is
 

equivalent,
 

characterized
 

by
 

U=I.
(1)

  

For
 

both
 

single-port
 

networks,
 

the
 

effect
 

on
 

the
 

external
 

circuit
 

is
 

I=-1mA;
(2)

  

The
 

internal
 

one
 

of
 

the
 

two
 

single
 

ports
 

is
 

a
 

1kΩ
 

resistor,
 

and
 

the
 

other
 

is
 

two
 

2kΩ
 

resistors
 

in
 

parallel.
 

Example
 

3.5 Are
 

the
 

two
 

single-port
 

networks
 

as
 

shown
 

in
 

Figure
 

3.4.3
 

equivalent?

Figure
 

3.4.3 Example
 

3.5
 

circuit

Solution:
 

For
 

both
 

single-port
 

networks,
 

the
 

terminal
 

(VCR)
 

is
 

equivalent,
 

characterized
 

by
 

U=1V.
(1)

  

For
 

both
 

single-port
 

networks,
 

the
 

effect
 

on
 

the
 

external
 

circuit
 

is
 

I=-1mA;
(2)

  

The
 

internal
 

one
 

of
 

the
 

two
 

single
 

ports
 

is
 

a
 

1V
 

voltage
 

source,
 

and
 

the
 

other
 

is
 

a
 

1V
 

voltage
 

source
 

in
 

parallel
 

with
 

a
 

1kΩ
 

resistor.
 

The
 

single-port
 

equivalent
 

circuit
 

is
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the
 

1V
 

voltage
 

source.

3.4.2 Thevenins
 

Theorem
 

and
 

Nortons
 

Theorem

1.
  

Thevenins
 

theorem
  The

 

port
 

characteristic
 

of
 

any
 

active
 

resistance
 

single
 

port
 

N
 

is
 

equivalent
 

to
 

a
 

series
 

of
 

voltage
 

source
 

resistors,
 

and
 

this
 

circuit
 

is
 

called
 

Thevenin
 

equivalent
 

Road,
 

as
 

shown
 

in
 

Figure
 

3.4.4.
 

Where
 

the
 

voltage
 

source
 

uoc is
 

the
 

port
 

open
 

voltage
 

of
 

N.
 

Resistance
 

Ro is
 

the
 

equivalent
 

resistance
 

of
 

single
 

port
 

N0 of
 

passive
 

resistance
 

which
 

corresponds
 

to
 

the
 

original
 

network
 

N
 

with
 

all
 

independent
 

sources
 

set
 

to
 

zero.
 

This
 

resistance
 

is
 

known
 

as
 

the
 

Thevenin
 

equivalent
 

resistance.

Figure
 

3.4.4 Thevenin
 

equivalent
 

circuit

The
 

port
 

VCR
 

of
 

the
 

Thevenin
 

equivalent
 

circuit
 

is
u=uoc+Roi (3.4.1)

  The
 

meaning
 

of
 

Thevenins
 

theorem:
(1)

 

It
 

is
 

established
 

that
 

any
 

active
 

resistor
 

single-port
 

can
 

be
 

equivalently
 

represented
 

as
 

a
 

series
 

connection
 

of
 

a
 

voltage
 

source
 

and
 

a
 

resistor;
(2)

 

Provides
 

methods
 

for
 

simplifying
 

an
 

active
 

resistance
 

single
 

port.
  

2.
  

Nortons
 

theorem
The

 

port
 

characteristic
 

of
 

any
 

active
 

resistance
 

single
 

port
 

N
 

is
 

equivalent
 

to
 

the
 

current
 

source
 

resistance
 

in
 

parallel,
 

which
 

is
 

called
 

Norton
  

equivalent
 

circuit,
 

as
 

shown
 

in
 

Figure
 

3.4.5.
 

Where,
 

the
 

current
 

source
 

isc is
 

the
 

port
 

short
 

circuit
 

current
 

of
 

N,
 

and
 

the
 

resistance
 

Ro is
 

the
 

equivalent
 

resistance
 

of
 

the
 

passive
 

single-port
 

network
 

N0,
 

obtained
 

by
 

setting
 

all
 

independent
 

sources
 

within
 

network
 

N
 

to
 

zero.
 

This
 

resistance
 

is
 

referred
 

to
 

as
 

the
 

Norton
 

equivalent
 

resistance,
 

and
 

it
 

is
 

also
 

known
 

as
 

the
 

Thevenin
 

equivalent
 

resistance.
The

 

port
 

VCR
 

of
 

the
 

Norton
  

equivalent
 

circuit
 

is
i=-isc+u/Ro (3.4.2)

  The
 

meaning
 

of
 

Nortons
 

theorem:
(1)

 

The
 

single
 

port
 

of
 

any
 

active
 

resistance
 

is
 

equivalent
 

to
 

the
 

parallel
 

current
 

source
 

resistance;
(2)

  

Provides
 

the
 

method
 

of
 

simplifying
 

the
 

active
 

resistance
 

single
 

port.
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Figure
 

3.4.5 Norton
 

equivalent
 

circuit

3.
  

The
 

equivalence
 

of
 

Thevenin’s
 

theorem
 

and
 

Nortons
 

theorem
1)

  

The
 

equivalent
 

transformation
 

of
 

the
 

Thevenin/
 

Norton
 

equivalent
 

circuit
The

 

port
 

VCR
 

is
 

the
 

same
 

if
 

an
 

active
 

resistance
 

single
 

port
 

N
 

can
 

be
 

equivalent
 

to
 

both
 

the
 

Thevenin
 

and
 

Norton
 

equivalent
 

circuits.
Port

 

VCR
 

of
 

Thevenin
 

equivalent
 

circuit:
 

u=uoc+Roi
  Port

 

VCR
 

of
 

Norton
 

equivalent
 

circuit:

i=-isc+u/Ro

u=uoc+Roi
Ro≠0

→i=-
uoc
Ro

+
1
Ro

u=-isc+
1
Ro

u (3.4.3)

  In
 

the
 

formula,
 

isc=
uoc
Ro
.

As
 

long
 

as
 

the
 

resistance
 

of
 

the
 

Thevenin
 

equivalent
 

circuit
 

is
 

not
 

zero
 

(not
 

a
 

voltage
 

source
 

branch),
 

it
 

can
 

be
 

converted
 

to
 

a
 

Norton
 

equivalent
 

circuit.

i=-isc+
1
Ro

u
Ro≠ ∞

→u=Roisc+Roi=uoc+Roi (3.4.4)

Where
 

uoc=Roisc.
As

 

long
 

as
 

the
 

resistance
 

of
 

the
 

Norton
 

equivalent
 

circuit
 

is
 

not
 

infinite
 

(not
 

the
 

current
 

source
 

branch),
 

it
 

can
 

be
 

converted
 

to
 

the
 

Thevenin
 

equivalent
 

circuit.
2)

  

When
 

the
 

equivalent
 

transformation
 

of
 

the
 

Thevenin/
 

Norton
 

equivalent
 

circuit
(1)

  

Ro takes
 

the
 

same
 

value
 

but
 

is
 

connected
 

in
 

a
 

different
 

way.
(2)

  

The
 

direction
 

of
 

the
 

uoc is
 

opposite
 

to
 

the
 

direction
 

of
 

the
 

isc.
Another

 

way
 

to
 

find
 

the
 

Thevenin/
 

Norton
 

equivalent
 

resistance
 

Ro:

isc=
uoc
Ro

 or
 

uoc=Roisc→Ro=
uoc
isc

  There
 

is
 

no
 

need
 

to
 

set
 

all
 

independent
 

sources
 

within
 

the
 

active
 

resistor
 

single-port
 

N
 

to
 

zero
 

to
 

obtain
 

the
 

corresponding
 

passive
 

resistor
 

single-port
 

N0 and
 

then
 

calculate
 

the
 

equivalent
 

resistance.
 

Instead,
 

one
 

can
 

directly
 

determine
 

uoc and
 

isc within
 

N,
 

and
 

the
 

ratio
 

of
 

these
 

two
 

values
 

yields
 

the
 

equivalent
 

resistance
 

Ro.
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3.4.3 Application
 

of
 

Thevenins
 

Theorem
 

and
 

Nortons
 

Theorem

Thevenins
 

theorem
 

and
 

Nortons
 

theorem
 

are
 

primarily
 

used
 

for
 

determining
 

the
 

voltage
 

or
 

current
 

in
 

a
 

particular
 

branch
 

or
 

the
 

dynamic
 

circuit
 

of
 

a
 

single
 

dynamic
 

component
 

within
 

a
 

resistive
 

circuit.
 

The
 

resistive
 

circuit
 

outside
 

the
 

branch
 

under
 

consideration
 

is
 

represented
 

as
 

an
 

active
 

resistor
 

single-port
 

using
 

Thevenins
 

equivalent
 

circuit
 

and
 

Nortons
 

equivalent
 

circuit.
(1)

 

The
 

two
 

steps
 

for
 

finding
 

the
 

Thevenin
 

equivalent
 

circuit
 

and
 

Norton
 

equivalent
 

circuit
 

of
 

an
 

active
 

resistor
 

single
 

port.
 

Firstly,
 

calculate
 

the
 

open
 

circuit
 

voltage
 

uoc or
 

short
 

circuit
 

current
 

isc of
 

N
 

port,
 

and
 

then
 

calculate
 

the
 

Thevenin/Norton
 

equivalent
 

resistance
 

of
 

N.
 

There
 

are
 

two
 

methods
 

to
 

calculate
 

the
 

equivalent
 

resistance
 

Ro:
 

one
 

is
 

the
 

external
 

power
 

supply
 

method,
 

which
 

adds
 

a
 

current
 

source
 

to
 

the
 

N0 (all
 

independent
 

power
 

sources
 

within
 

N
 

are
 

set
 

to
 

zero)
 

port
 

corresponding
 

to
 

N
 

to
 

calculate
 

the
 

port
 

voltage,
 

or
 

adds
 

a
 

voltage
 

source
 

to
 

the
 

port
 

to
 

calculate
 

the
 

port
 

current;
 

The
 

second
 

is
 

to
 

simultaneously
 

calculate
 

the
 

uoc and
 

isc of
 

N,
 

and
 

the
 

ratio
 

of
 

the
 

two
 

is
 

Ro.
 

Example
 

3.6 Find
 

the
 

Thevenin
 

equivalent
 

circuit
 

and
 

Norton
 

equivalent
 

circuit
 

of
 

an
 

active
 

resistor
 

single
 

port
 

as
 

shown
 

in
 

Figure
 

3.4.6.
 

Solution:
 

When
 

calculating
 

the
 

open
 

circuit
 

voltage
 

uoc of
 

port
 

N
 

(I=0,
 

as
 

shown
 

in
 

Figure
 

3.4.7),
 

there
 

is

Uoc=
18
12+6×12-

6×12
12+6  ×2=12-8=4(V)

Figure
 

3.4.6 Example
 

3.6
 

circuit Figure
 

3.4.7 Example
 

3.6
 

diagram
 

(1)

When
 

calculating
 

the
 

short-circuit
 

current
 

Isc of
 

port
 

N
 

(U=0,
 

as
 

shown
 

in
 

Figure
 

3.4.8),
 

there
 

is

Isc=
18
6-2=3-2=1(mA)

  There
 

are
 

two
 

methods
 

for
 

calculating
 

the
 

Thevenin
 

equivalent
 

resistance
 

and
 

Norton
 

equivalent
 

resistance
 

Ro:
 

one
 

is
 

the
 

external
 

power
 

supply
 

method
 

(as
 

shown
 

in
 

Figure
 

3.4.9),
 

where
 

N
 

corresponds
 

to
 

N0 (with
 

an
 

18V
 

voltage
 

source
 

and
 

a
 

2mA
 

current
 

source
 

set
 

to
 

zero
 

within
 

N)
 

and
 

a
 

current
 

source
 

I
 

is
 

added
 

to
 

the
 

port
 

to
 

calculate
 

the
 

port
 

voltage
 

U.
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Ro=
U
I =

6×12
12+6=4(kΩ)

Figure
 

3.4.8 Example
 

3.6
 

diagram
 

(2) Figure
 

3.4.9 Example
 

3.6
 

diagram
 

(3)

The
 

second
 

is
 

the
 

ratio
 

of
 

Uoc and
 

Isc of
 

N
 

(as
 

shown
 

in
 

Figure
 

3.4.10):

Ro=
Uoc
Isc

=
4
1=4kΩ

Figure
 

3.4.10 Example
 

3.6
 

diagram
 

(4)

  Example
 

3.7 In
 

the
 

active
 

resistor
 

single
 

port
 

shown
 

in
 

Figure
 

3.4.11,
 

uS=
0.05cost(V),

 

calculate
 

its
 

Thevenin
 

equivalent
 

circuit.
Solution:

 

As
 

shown
 

in
 

Figure
 

3.4.12,
 

when
 

calculating
 

the
 

open
 

circuit
 

voltage
 

uoc 

of
 

port
 

N,
 

i=0.

uR1=2×
5-0.05cost
2+3 =2-0.02cost(V)

uoc=-4× 2-0.02cost-1.5  ×2=-4+0.16cost(V)

Figure
 

3.4.11 Example
 

3.7
 

circuit
 

Figure
 

3.4.12 Example
 

3.7
 

diagram(1)

The
 

external
 

power
 

supply
 

method
 

is
 

used
 

to
 

find
 

Thevenin
 

equivalent
 

resistance
 

Ro,
 

as
 

shown
 

in
 

Figure
 

3.4.13.
 

The
 

uS,
 

5V
 

and
 

1.5V
 

voltage
 

sources
 

are
 

set
 

to
 

zero,
 

and
 

the
 

current
 

i
 

is
 

added
 

to
 

the
 

N0 port
 

corresponding
 

to
 

N
 

to
 

find
 

the
 

voltage
 

u.
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uR1=0

4uR1=0

u=2i

Ro=
u
i =2(kΩ)

Figure
 

3.4.13 Example
 

3.7
 

diagram(2)

  The
 

final
 

Thevenin
 

equivalent
 

circuit
 

in
 

Example
 

3.7
 

is
 

shown
 

in
 

Figure
 

3.4.14.

Figure
 

3.4.14 Final
 

Thevenin
 

equivalent
 

circuit
 

of
 

Example
 

3.7

(2)
  

Find
 

the
 

voltage
 

or
 

current
 

of
 

a
 

branch
 

in
 

the
 

resistance
 

circuit.
For

 

the
 

resistive
 

circuit
 

outside
 

the
 

branch
 

of
 

interest,
 

represent
 

it
 

as
 

an
 

active
 

resistor
 

single-port
 

using
 

Thevenins
 

equivalent
 

circuit
 

and
 

Nortons
 

equivalent
 

circuit.
 

Then,
 

calculate
 

the
 

branch
 

voltage
 

or
 

current
 

for
 

a
 

single-loop
 

circuit
 

or
 

a
 

single
 

independent
 

node
 

circuit
 

(resistor
 

voltage
 

divider
 

circuit
 

or
 

resistor
 

current
 

divider
 

circuit).
 

After
 

converting
 

to
 

a
 

single-loop
 

circuit,
 

there
 

are
 

specifically
 

two
 

forms:

①
 

Resistor
 

voltage
 

divider
 

circuit:
 

a
 

number
 

of
 

resistors
 

and
 

a
 

voltage
 

source
 

composed
 

of
 

a
 

single
 

loop
 

circuit.
 

A
 

resistor
 

voltage
 

divider
 

circuit
 

composed
 

of
 

two
 

resistors
 

and
 

a
 

voltage
 

source,
 

as
 

shown
 

in
 

Figure
 

3.4.15.
Loop

 

current:

uS=u1+u2=R1i+R2i= R1+R2  i

i=
1

R1+R2
uS

  Voltage
 

division
 

across
 

each
 

resistor:
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u1=R1i=
R1

R1+R2
uS, u2=R2i=

R2
R1+R2

uS

  n
 

resistors
 

and
 

a
 

voltage
 

source
 

composed
 

of
 

resistance
 

a
 

resistor
 

voltage
 

divider
 

circuit:

voltage
 

division
 

formula

ui=
Ri

∑
n

j=1
Rj

uS, i=1,2,…,n (3.4.5)

  ②
  

Resistor
 

current
 

divider
 

circuit:
 

A
 

single
 

independent
 

node
 

circuit
 

composed
 

of
 

several
 

resistors
 

and
 

a
 

current
 

source.
 

A
 

resistor
 

current
 

divider
 

circuit
 

composed
 

of
 

two
 

resistors
 

and
 

a
 

current
 

source,
 

as
 

shown
 

in
 

Figure
 

3.4.16.

Figure
 

3.4.15 Resistor
 

voltage
 

divider
 

circuit
   

Figure
 

3.4.16 Resistor
 

current
 

divider
 

circuit

Voltage
 

at
 

both
 

ends
 

of
 

parallel
 

resistor:
iS=i1+i2=G1u+G2u=(G1+G2)u

u=
1

G1+G2
iS

  Current
 

divided
 

by
 

each
 

resistor:

i1=G1u=
G1

G1+G2
iS=

R2
R1+R2

iS

i2=G2u=
G2

G1+G2
iS=

R1
R1+R2

iS

  Resistor
 

current
 

divider
 

circuit
 

composed
 

of
 

n
 

resistors
 

and
 

a
 

current
 

source:

Diversion
 

formula

ii=
Gi

∑
n

j=1
Gj

iS, i=1,2,…,n (3.4.6)

  Example
 

3.8 Calculate
 

the
 

current
 

i
 

of
 

the
 

bridge
 

circuit
 

shown
 

in
 

Figure
 

3.4.17.
 

If
 

i=0
 

(bridge
 

balance)
 

is
 

required,
 

what
 

relationship
 

should
 

be
 

satisfied
 

between
 

the
 

bridge
 

arm
 

resistances?
Solution:

 

When
 

calculating
 

the
 

open
 

circuit
 

voltage
 

uoc of
 

a
 

single
 

port
 

N
 

of
 

an
 

active
 

resistor
 

other
 

than
 

RL,
 

i=0,
 

as
 

shown
 

in
 

Figure
 

3.4.18.

uoc=ua-ub=
R2

R1+R2
-

R4
R3+R4  uS
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Figure
 

3.4.17 Example
 

3.8
 

circuit Figure
 

3.4.18 Example
 

3.8
 

diagram(1)

The
 

method
 

for
 

calculating
 

the
 

equivalent
 

resistance
 

Ro of
 

Thevenin
 

is
 

the
 

external
 

power
 

supply
 

method
 

(as
 

shown
 

in
 

Figure
 

3.4.19),
 

where
 

a
 

current
 

source
 

i
 

is
 

added
 

to
 

the
 

N0 (uS within
 

N
 

is
 

set
 

to
 

zero)
 

port
 

corresponding
 

to
 

N,
 

and
 

the
 

port
 

voltage
 

u
 

is
 

calculated.
For

 

this
 

example,
 

the
 

resistance
 

Ro in
 

the
 

Thevenin
 

equivalent
 

circuit
 

(as
 

shown
 

in
 

Figure
 

3.4.20)
 

is
Ro=(R1∥R2)+(R3∥R4)

Figure
 

3.4.19 Example
 

3.8
 

diagram
 

(2) Figure
 

3.4.20 Example
 

3.8
 

diagram
 

(3)

Find
 

the
 

i
 

of
 

the
 

resistor
 

voltage
 

divider
 

circuit:

i=
uoc

Ro+RL
=

R2
R1+R2

-
R4

R3+R4  uS
(R1∥R2)+(R3∥R4)+RL

  When
 

i=0,
 

there
 

is
R2

R1+R2
-

R4
R3+R4

=0

R2
R1+R2

=
R4

R3+R4
R2R3=R1R4

  Example
 

3.9 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.4.21,uS=0.05cost(V),
 

calculate
 

the
 

voltage
 

uO.

Figure
 

3.4.21 Example
 

3.9
 

circuit

Solution:
 

To
 

determine
 

the
 

Thevenins
 

equivalent
 

circuit
 

of
 

the
 

active
 

resistor
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single-port
 

N
 

external
 

to
 

the
 

series
 

combination
 

of
 

a
 

2kΩ
 

resistor
 

and
 

a
 

10V
 

voltage
 

source,
 

as
 

shown
 

in
 

Figure
 

3.4.22.
As

 

shown
 

in
 

Figure
 

3.4.22,
 

calculate
 

the
 

voltage
 

uO of
 

a
 

2kΩ
 

resistor
 

and
 

a
 

10V
 

voltage
 

source
 

in
 

series,
 

as
 

shown
 

in
 

Figure
 

3.4.23.

uO=
2
2+2× -14+0.16cost  +10=3+0.08cost(V)

Figure
 

3.4.22 Example
 

3.9
 

diagram
 

(1) Figure
 

3.4.23 Example
 

3.9
 

diagram
 

(2)

(3)
  

To
 

determine
 

the
 

voltage
 

or
 

current
 

in
 

the
 

dynamic
 

branch
 

of
 

a
 

single
 

dynamic
 

components
 

dynamic
 

circuit,
 

represent
 

the
 

resistive
 

circuit
 

outside
 

the
 

dynamic
 

branch
 

under
 

consideration
 

as
 

an
 

active
 

resistor
 

single-port
 

using
 

Thevenins
 

equivalent
 

circuit
 

and
 

Nortons
 

equivalent
 

circuit.
 

Then,
 

formulate
 

and
 

solve
 

the
 

differential
 

equations
 

for
 

a
 

single-loop
 

circuit
 

or
 

a
 

single
 

independent
 

node
 

circuit
 

to
 

find
 

the
 

dynamic
 

branch
 

voltage
 

or
 

current.
Example

 

3.10 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.4.24,
 

when
 

the
 

capacitor
 

is
 

inserted
 

in
 

the
 

circuit
 

at
 

t=0,
 

meanwhile
 

u(0)=0,
 

calculate
 

the
 

voltage
 

of
 

the
 

capacitor
 

when
 

t≥0.

Figure
 

3.4.24 Example
 

3.10
 

circuit

Solution:Determine
 

the
 

Norton
 

equivalent
 

circuit
 

for
 

a
 

single
 

port
 

N
 

with
 

an
 

active
 

resistance
 

external
 

to
 

a
 

25μF
 

capacitor,
 

as
 

shown
 

in
 

Figure
 

3.4.25.
 

Determine
 

the
 

voltage
 

u
 

for
 

the
 

circuit
 

with
 

a
 

single
 

independent
 

node,
 

as
 

shown
 

in
 

Figure
 

3.4.26.

Figure
 

3.4.25 Example
 

3.10
 

Norton
 

equivalent
 

circuit
Figure

 

3.4.26 Example
 

3.10
 

single
 

independent
 

node
 

circuit

According
 

to
 

the
 

nodal
 

analysis
 

KCL,
 

the
 

following
 

equations
 

are
 

derived:
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25×10-6du
dt+

1
4×103

u=1×10-3, t≥0

u(0)=0

u=Ke-10t+4(V), t≥0
u(0)=0

u=4(1-e-10t)(V), t≥0

3.5 Nodal
 

Analysis
 

Method

3.5.1 Node
 

Voltage

The
 

circuit
 

example
 

is
 

shown
 

in
 

Figure
 

3.5.1.
In

 

Figure
 

3.5.1,
 

the
 

number
 

of
 

branches
 

b=5,
 

and
 

the
 

branch
 

voltages
 

are
 

u1,u2,

u3,uiS1
,uiS2.

 

The
 

number
 

of
 

independent
 

nodes
 

is
 

n-1=2,
 

which
 

is
 

less
 

than
 

the
 

number
 

of
 

branches
 

b=5.
Choose

 

any
 

node
 

as
 

the
 

reference
 

node,
 

also
 

known
 

as
 

the
 

ground
 

node.
 

After
 

selecting
 

the
 

reference
 

node,
 

the
 

voltages
 

of
 

the
 

remaining
 

independent
 

nodes
 

with
 

respect
 

to
 

the
 

reference
 

node
 

are
 

the
 

node
 

voltages,
 

denoted
 

as
 

ua and
 

ub,
 

respectively.

Figure
 

3.5.1 Circuit
 

diagram
 

illustrating
 

node
 

voltages

The
 

KVL
 

equation
 

with
 

node
 

voltages
 

as
 

variables
 

is
 

as
 

follows:

-ua+(ua-ub)+ub=0
—KVL

 

does
 

not
 

impose
 

linear
 

constraints
 

on
 

node
 

voltages:

ua+uiS1 =0

-ub+uiS2 =0
  Combining

 

the
 

VCR
 

with
 

the
 

KCL
 

equation
 

where
 

node
 

voltages
 

are
 

the
 

variables,
 

the
 

equation
 

is
 

as
 

follows:

G1ua+G3ua-ub  -iS1= G1+G3  ua-G3ub-iS1=0

G2ub-G3ua-ub  +iS2=-G2ua+ G2+G3  ub+iS2=0
  The

 

relationship
 

between
 

branch
 

voltages
 

and
 

node
 

voltages
 

is
 

as
 

follows:

u1=ua
u2=ub
u3=ua-ub
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uiS1 =-ua

uiS2 =ub
  Node

 

voltages
 

possess
 

the
 

following
 

characteristics:
(1)

 

Independence—KVL
 

does
 

not
 

impose
 

linear
 

constraints
 

on
 

node
 

voltages.
 

(2)
 

Solvability—There
 

are
 

n-1
 

node
 

voltages
 

and
 

n-1
 

equations
 

combining
 

VCR
 

and
 

KCL
 

with
 

node
 

voltages
 

as
 

variables.
(3)

 

Completeness—All
 

branch
 

voltages
 

are
 

linear
 

combinations
 

of
 

node
 

voltages.
From

 

the
 

above
 

analysis,
 

it
 

can
 

be
 

seen
 

that
 

the
 

node
 

analysis
 

method
 

takes
 

the
 

node
 

voltages
 

as
 

variables,
 

formulates
 

n-1
 

KCL
 

equations
 

combined
 

with
 

VCR,
 

and
 

solves
 

for
 

n-1
 

node
 

voltages.
 

After
 

solving,
 

the
 

voltages
 

and
 

currents
 

of
 

the
 

b
 

branches
 

can
 

be
 

determined.
 

3.5.2 Writing
 

the
 

Node
 

Equation

Example
 

circuit
 

as
 

shown
 

in
 

Figure
 

3.5.2.

Figure
 

3.5.2 Circuit
 

diagram
 

illustrating
 

node
 

equations

Combining
 

the
 

VCR
 

with
 

node
 

voltages
 

as
 

variables,
 

the
 

KCL
 

equation
 

is
 

listed
 

as
 

follows:

G1ua+G3ua-ub  -iS1= G1+G3  ua-G3ub-iS1=0

G2ub-G3ua-ub  +iS2=-G2ua+ G2+G3  ub+iS2=0

G1+G3  ua-G3ub=iS1
-G2ua+ G2+G3  ub=-iS2

  The
 

self-conductances
 

Gaa and
 

Gbb of
 

nodes
 

a
 

and
 

b
 

are
 

the
 

sum
 

of
 

the
 

conductances
 

of
 

the
 

branches
 

connected
 

to
 

nodes
 

a
 

and
 

b,
 

respectively.
 

Therefore,
 

Gaa=G1+G3,

Gbb=G2+G3,and
G1+G3  ua-G3ub=iS1 

-G2ua+ G2+G3  ub=-iS2
  The

 

mutual
 

conductance
 

between
 

nodes,
 

Gab=Gba,
 

is
 

the
 

sum
 

of
 

the
 

conductances
 

of
 

all
 

branches
 

that
 

are
 

connected
 

to
 

both
 

nodes
 

a
 

and
 

b.
 

Thus,
 

Gab=Gba=G3.
 

The
 

sum
 

of
 

the
 

currents
 

flowing
 

into
 

nodes
 

a
 

and
 

b,
 

iSaa and
 

iSbb,
 

respectively,
 

iSaa=iS1,
 

iSbb=-iS2.
(1)

 

Node
 

equations
 

for
 

a
 

resistive
 

circuit
 

without
 

voltage
 

sources
 

and
 

controlled
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sources
 

are
 

formulated.
 

For
 

a
 

circuit
 

with
 

b
 

branches
 

and
 

n
 

nodes,
 

there
 

are
 

n-1
 

node
 

equations:
 

∑
n-1

j=1
±Gijuj =iSii, i=1,2,…,n-1 (3.5.1)

  When
 

j=i,
 

Gij
 represents

 

the
 

self-conductance
 

of
 

the
 

node
 

i.
 

When
 

j≠i,
 

Gij
 

represents
 

the
 

mutual
 

conductance
 

between
 

nodes
 

i
 

and
 

j.
 

iSii represents
 

the
 

sum
 

of
 

the
 

current
 

sources
 

flowing
 

into
 

node
 

i.
 

The
 

positive
 

or
 

negative
 

sign
 

in
 

front
 

of
 

the
 

conductance
 

depends
 

on
 

whether
 

it
 

is
 

a
 

self-conductance
 

or
 

a
 

mutual
 

conductance.
 

For
 

self-conductance,
 

it
 

is
 

taken
 

as
 

positive,
 

and
 

for
 

mutual
 

conductance,
 

it
 

is
 

taken
 

as
 

negative.
Example

 

3.11 Calculate
 

the
 

power
 

of
 

the
 

current
 

source
 

in
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.5.3.
Solution:

 

Assuming
 

a
 

reference
 

node
 

and
 

node
 

voltages
 

U1,
 

U2,
 

and
 

U3 as
 

shown
 

in
 

Figure
 

3.5.4.

Figure
 

3.5.3 Circuit
 

for
 

Example
 

3.11 Figure
 

3.5.4 Solution
 

diagram
 

for
 

Example
 

3.11

Based
 

on
 

the
 

node
 

voltages,
 

the
 

node
 

equations
 

are
 

acquired
 

using
 

(KCL).
 

This
 

results
 

in
 

the
 

following
 

system
 

of
 

equations:
(1+2)U1-2U2=3U1-2U2=0

-2U1+(2+1)U2-U3=-2U1+3U2-U3=-2

-U2+(1+1)U3=-U2+2U3=0










  By
 

solving
 

the
 

system
 

of
 

equations,
 

solutions
 

founded
 

are:

U1=-
8
7V

U2=-
12
7V

U3=-
6
7V

P=2U2=2(-12/7)=-
24
7
(mW)


















  (2)
 

Formulation
 

of
 

node
 

equations
 

for
 

a
 

resistive
 

circuit
 

containing
 

voltage
 

sources
 

but
 

without
 

controlled
 

sources.
If

 

a
 

voltage
 

source
 

is
 

only
 

connected
 

to
 

one
 

node,
 

the
 

voltage
 

source
 

determines
 

the
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voltage
 

at
 

that
 

node,
 

and
 

it’s
 

unnecessary
 

to
 

write
 

the
 

node
 

equation
 

for
 

that
 

node.
 

When
 

a
 

voltage
 

source
 

is
 

associated
 

with
 

two
 

nodes,
 

it
 

imposes
 

a
 

constraint
 

on
 

the
 

voltage
 

between
 

these
 

nodes
 

(supplementary
 

equation).
 

When
 

formulating
 

the
 

node
 

equation
 

for
 

such
 

a
 

node,
 

consider
 

the
 

current
 

through
 

the
 

voltage
 

source
 

as
 

an
 

unknown,
 

treating
 

the
 

voltage
 

source
 

as
 

a
 

current
 

source
 

for
 

this
 

unknown
 

current;
 

the
 

rest
 

is
 

formulated
 

similarly
 

to
 

the
 

node
 

equations
 

for
 

a
 

resistive
 

circuit
 

without
 

voltage
 

sources
 

and
 

controlled
 

sources.
Example

 

3.12 Calculate
 

the
 

current
 

I
 

in
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.5.5.
Solution:

 

Assuming
 

a
 

reference
 

node
 

and
 

node
 

voltages
 

U1,
 

U2,
 

and
 

U3 as
 

shown
 

in
 

Figure
 

3.5.6.

Figure
 

3.5.5 Circuit
 

for
 

Example
 

3.12 Figure
 

3.5.6 Solution
 

diagram
 

for
 

Example
 

3.12

Determine
 

the
 

voltage
 

at
 

node
 

1:
 

U1=10V
  The

 

node
 

equations
 

for
 

node
 

2
 

and
 

node
 

3
 

are
 

as
 

follows:
 

-
1
20U1+

1
20+

1
30+

1
10  U2-

1
10U3=-

1
20×10+

11
60U2-

1
10U3=0

-
1
10U2+

1
10U3=2

  Solution
 

obtained:

11U2-6U3=30

-U2+U3=20

U2=30V

U3=50V

I=U2/30=30/30=1(mA)

  Example
 

3.13 Calculate
 

the
 

voltage
 

U
 

in
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.5.7.
Solution:

 

Assuming
 

a
 

reference
 

node
 

and
 

node
 

voltages
 

U1,U2,
 

and
 

an
 

unknown
 

current
 

I
 

for
 

the
 

voltage
 

source,
  

as
 

shown
 

in
 

Figure
 

3.5.8.
The

 

constraint
 

relationship
 

between
 

the
 

voltage
 

at
 

node
 

1
 

and
 

the
 

voltage
 

at
 

node
 

2
 

(supplementary
 

equation):
 

U1-U2=3V
The

 

node
 

equations
 

for
 

node
 

1
 

and
 

node
 

2
 

are
 

as
 

follows:
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Figure
 

3.5.7 Circuit
 

for
 

Example
 

3.13 Figure
 

3.5.8 Solution
 

diagram
 

for
 

Example
 

3.13

U1=2-I

U2=I-1

U1+U2=1

U1-U2=3

U1=2V

U2=-1V

I=0
U=U2=-1V

An
 

alternative
 

solution
 

for
 

Example
 

3.13:

Assuming
 

a
 

reference
 

node
 

and
 

node
 

voltages
 

U1 and
 

U2 as
 

shown
 

in
 

Figure
 

3.5.9.

Figure
 

3.5.9 Solution
 

diagram
 

for
 

Example
 

3.13(2)

Determine
 

the
 

voltage
 

at
 

node
 

1:
 

U1=3V
  The

 

node
 

equation
 

for
 

node
 

2:

-U1+(1+1)U2=-U1+2U2=-3+2U2=1-2=-1

U2=1V

U=-U2=-1V
  (3)

 

Formulation
 

of
 

node
 

equations
 

for
 

circuits
 

with
 

controlled
 

sources
 

and
 

resistors.
 

Convert
 

the
 

control
 

variable
 

of
 

the
 

controlled
 

source
 

into
 

node
 

voltages,
 

treat
 

the
 

controlled
 

source
 

as
 

an
 

independent
 

source
 

in
 

the
 

equation
 

formulation,
 

and
 

then
 

rearrange
 

the
 

terms
 

by
 

moving
 

them
 

to
 

the
 

appropriate
 

side
 

of
 

the
 

equation.
 

This
 

process
 

is
 

otherwise
 

identical
 

to
 

the
 

formulation
 

of
 

node
 

equations
 

for
 

circuits
 

without
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controlled
 

sources.
Example

 

3.14 Calculate
 

the
 

current
 

I
 

in
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.5.10.
Solution:

 

Assuming
 

a
 

reference
 

node
 

and
 

node
 

voltages
 

U1,U2,U3 as
 

shown
 

in
 

Figure
 

3.5.11.

Figure
 

3.5.10 Circuit
 

for
 

Example
 

3.14 Figure
 

3.5.11 Solution
 

diagram
 

for
 

Example
 

3.14

Determine
 

the
 

voltage
 

at
 

node
 

1:
 

U1=2V
  The

 

controlling
 

quantity
 

of
 

the
 

controlled
 

source
 

can
 

be
 

converted
 

to
 

U3/4.
The

 

node
 

equations
 

for
 

node
 

2
 

and
 

node
 

3
 

are
 

as
 

follows:

-
1
4U1+

1
4+

1
4  U2-

1
4U3=-

1
4×2+

1
2U2-

1
4U3=-I=-

U3
4

-
1
2U1-

1
4U2+

1
2+

1
4+

1
4  U3=-

1
2×2-

1
4U2+U3=0

  Solution
 

obtained:

U2=1V

-U2+4U3=4V

U1=2V

U2=1V

U3=1.25V

I=U3/4=1.25/4=0.3125(mA)

*  3.5.3 Series
 

RC
 

Circuit
 

with
 

A
 

Step
 

Input

The
 

series
 

RC
 

circuit
 

with
 

a
 

step
 

input
 

is
 

shown
 

in
 

Figure
 

3.5.12.
Assume

 

that
 

the
 

waveform
 

uS is
 

a
 

step
 

voltage
 

with
 

an
 

amplitude
 

of
 

U,
 

which
 

is
 

applied
 

to
 

the
 

circuit
 

at
 

t=0.
 

However,
 

this
 

time,
 

assume
 

that
 

the
 

capacitor
 

has
 

a
 

voltage
 

of
 

U0 before
 

the
 

step,
 

meaning
 

that
 

the
 

initial
 

condition
 

of
 

the
 

circuit
 

is
 

as
 

follows:

uC =U0 (3.5.2)

Using
 

the
 

nodal
 

analysis
 

method,
 

we
 

can
 

obtain
 

the
 

differential
 

equation.
 

Applying
 

KCL
 

to
 

the
 

node
 

with
 

voltage
 

uC,
 

we
 

have:
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Figure
 

3.5.12 Series
 

RC
 

circuit
 

with
 

a
 

step
 

input

uC -u1
R +C

duC

dt =0 (3.5.3)

Dividing
 

both
 

sides
 

of
 

the
 

equation
 

by
 

C
 

and
 

rearranging,
 

we
 

get:

duC

dt +
uC

RC=
u1
RC

(3.5.4)

The
 

homogeneous
 

equation
 

is:

duCh

dt +
uCh

RC =0 (3.5.5)

As
 

expected,
 

this
 

equation
 

is
 

the
 

same
 

as
 

the
 

Equation
 

(3.2.7)
 

that
 

represents
 

the
 

Norton
 

equivalent
 

circuit,
 

because
 

the
 

Norton
 

equivalent
 

circuit
 

and
 

the
 

Thevenin
 

equivalent
 

circuit
 

are
 

equivalent.
 

By
 

borrowing
 

the
 

homogeneous
 

solution
 

from
 

Equation
 

(3.2.7),
 

we
 

have:

uCh=Ae-t/RC (3.5.6)

In
 

the
 

equation,
 

RC
 

represents
 

the
 

time
 

constant
 

of
 

the
 

circuit.
Then

 

find
 

the
 

particular
 

solution.
 

Since
 

the
 

input
 

is
 

a
 

step
 

signal
 

with
 

an
 

amplitude
 

of
 

U,
 

the
 

particular
 

solution
 

satisfies:

duCp

dt +
uCp

RC =
U
RC

(3.5.7)

Since
 

the
 

power
 

source
 

is
 

a
 

step
 

function
 

and
 

becomes
 

a
 

constant
 

at
 

large
 

t,
 

lets
 

assume
 

that
 

the
 

particular
 

solution
 

has
 

the
 

form:
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uCp=K (3.5.8)

Substituting
 

Equation
 

(3.5.8)
 

into
 

Equation
 

(3.5.7):

K
RC=

U
RC

(3.5.9)

This
 

indicates
 

that
 

K=U.
 

Therefore,
 

the
 

particular
 

solution
 

is:

uCp=U (3.5.10)

Adding
 

uCh
 and

 

uCp
 together,

 

we
 

obtain
 

the
 

complete
 

solution
 

as:

uC =U+Ae-t/RC (3.5.11)

Now
 

we
 

can
 

use
 

the
 

initial
 

condition
 

to
 

determine
 

A.
 

Since
 

the
 

voltage
 

across
 

the
 

capacitor
 

must
 

be
 

continuous
 

at
 

t=0,
 

we
 

have:

uC(t=0)=U0 (3.5.12)

Therefore,
 

at
 

t=0,
 

we
 

can
 

deduce
 

from
 

Equation
 

(3.5.11)
 

that:

A=U0-U (3.5.13)

The
 

complete
 

solution
 

for
 

the
 

voltage
 

across
 

the
 

capacitor
 

for
 

t>0
 

is:

uC =U+(U0-U)e-t/RC (3.5.14)

In
 

the
 

equation,
 

U
 

represents
 

the
 

input
 

driving
 

voltage
 

for
 

t>0,
 

and
 

U0 represents
 

the
 

initial
 

voltage
 

across
 

the
 

capacitor.
 

Lets
 

do
 

a
 

quick
 

verification:
 

Substitute
 

t=0,obtain
 

solution
 

uC (0)=U0;
 

Substitute
 

t= ∞,obtain
 

solution
 

uC (∞)=U.
 

Both
 

boundary
 

conditions
 

are
 

as
 

expected,
 

with
 

the
 

initial
 

value
 

of
 

the
 

capacitor
 

voltage
 

being
 

U0,
 

and
 

after
 

a
 

long
 

period
 

of
 

time,
 

the
 

voltage
 

from
 

the
 

source
 

will
 

be
 

fully
 

applied
 

across
 

the
 

capacitor.
 

By
 

rearranging
 

the
 

terms
 

in
 

Equation
 

(3.5.14),
 

the
 

following
 

equivalent
 

form
 

is
 

obtained:

uC =U0e-t/RC +U(1-e-t/RC) (3.5.15)

The
 

current
 

flowing
 

through
 

the
 

capacitor
 

is
 

given
 

by:

iC =C
duC

dt =
U-U0

R e-t/RC (3.5.16)

The
 

expression
 

for
 

iC
 also

 

matches
 

the
 

expectation,
 

as
 

when
 

t
 

is
 

very
 

large,
 

iC
 will

 

be
 

zero.
 

At
 

t=0,
 

the
 

capacitor
 

acts
 

like
 

a
 

voltage
 

source
 

with
 

a
 

voltage
 

of
 

U0,
 

so
 

the
 

current
 

at
 

t=0
 

will
 

be
 

(U-U0)/R.
 

These
 

waveforms
 

are
 

shown
 

in
 

Figure
 

3.5.12(b).
 

If
 

we
 

want
 

to
 

find
 

the
 

voltage
 

across
 

the
 

resistor,
 

uR,
 

we
 

can
 

easily
 

apply
 

KVL
 

to
 

obtain:

uR =u1-uC (3.5.17)

Where
 

the
 

input
 

terminal
 

of
 

the
 

resistor
 

is
 

taken
 

as
 

the
 

positive
 

reference
 

direction
 

for
 

uR.
Alternatively,

 

taking
 

the
 

product
 

of
 

the
 

current
 

and
 

the
 

resistance
 

will
 

also
 

give
 

the
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voltage
 

across
 

the
 

resistor
 

uR
 as:

uR =iCR (3.5.18)

Equation
 

(3.5.14)
 

was
 

derived
 

under
 

the
 

assumption
 

that
 

the
 

initial
 

condition
 

(U0)
 

and
 

the
 

input
 

(step
 

signal
 

U)
 

are
 

both
 

non-zero.
Substituting

 

U=0
 

into
 

Equation
 

(3.5.14),
 

obtain
 

the
 

equation:

uC =U0e-t/RC (3.5.19)

Substituting
 

U0=0
 

into
 

Equation
 

(3.5.14),
 

obtain
 

the
 

equation:

uC =U-Ue-t/RC (3.5.20)

The
 

total
 

response
 

is
 

the
 

sum
 

of
 

the
 

two
 

equations,
 

by
 

adding
 

the
 

right
 

sides
 

of
 

Equation
 

(3.5.19)
 

and
 

Equation
 

(3.5.20),
 

and
 

comparing
 

it
 

with
 

the
 

right
 

side
 

of
 

Equation
 

(3.5.14),
 

then
 

are
 

able
 

to
 

prove
 

this
 

theory.

*  3.5.4 Series
 

RC
 

Circuit
 

with
 

Square
 

Wave
 

Input

The
 

study
 

of
 

the
 

waveforms
 

in
 

Figures
 

3.2.3(a)
 

and
 

3.2.3(b)
 

shows
 

that
 

the
 

presence
 

of
 

the
 

capacitor
 

changes
 

the
 

shape
 

of
 

the
 

input
 

square
 

wave.
 

When
 

a
 

square
 

wave
 

pulse
 

is
 

applied
 

to
 

an
 

RC
 

circuit,
 

the
 

resulting
 

pulse
 

is
 

not
 

a
 

square
 

wave;
 

it
 

rises
 

and
 

falls
 

slowly.
 

The
 

capacitor
 

allows
 

the
 

circuit
 

to
 

perform
 

certain
 

waveform
 

shaping.
 

This
 

concept
 

can
 

be
 

further
 

established
 

through
 

experiments
 

with
 

square
 

wave
 

driving.
In

 

this
 

experiment,
 

the
 

Thevenin
 

equivalent
 

circuit
 

shown
 

in
 

Figure
 

3.5.13
 

is
 

used.
 

The
 

power
 

supply
 

can
 

be
 

a
 

standard
 

laboratory
 

square
 

wave
 

generator.
 

The
 

input
 

square
 

wave
 

is
 

labeled
 

as
 

1
 

in
 

Figure
 

3.5.13.
 

Depending
 

on
 

the
 

relationship
 

between
 

the
 

period
 

of
 

the
 

driving
 

square
 

wave
 

and
 

the
 

time
 

constant
 

RC
 

of
 

the
 

network,
 

various
 

distinct
 

waveforms
 

of
 

uC(t)
 

can
 

be
 

obtained.
 

These
 

waveforms
 

are
 

variations
 

of
 

the
 

solutions
 

obtained
 

earlier.
When

 

the
 

time
 

constant
 

of
 

the
 

circuit
 

is
 

much
 

shorter
 

compared
 

to
 

the
 

period
 

of
 

the
 

square
 

wave,
 

the
 

exponential
 

decay
 

occurs
 

relatively
 

faster,
 

as
 

shown
 

in
 

waveform
 

2
 

in
 

Figure
 

3.5.13.
 

The
 

capacitor
 

waveform
 

closely
 

resembles
 

the
 

input
 

waveform,
 

except
 

for
 

some
 

small
 

rounding
 

at
 

the
 

corners.
If

 

the
 

time
 

constant
 

occupies
 

a
 

significant
 

portion
 

of
 

the
 

pulse
 

duration,
 

the
 

waveform
 

of
 

the
 

solution
 

will
 

be
 

as
 

shown
 

in
 

waveform
 

3
 

in
 

Figure
 

3.5.13.
 

Note
 

that
 

the
 

graph
 

indicates
 

that
 

the
 

transient
 

process
 

is
 

still
 

almost
 

nearing
 

its
 

end.
 

Therefore,
 

to
 

apply
 

this
 

solution,
 

the
 

product
 

of
 

RC
 

must
 

have
 

an
 

upper
 

limit.
 

As
 

mentioned
 

above,
 

assuming
 

that
 

the
 

simple
 

transient
 

process
 

ends
 

after
 

a
 

time
 

greater
 

than
 

5
 

times
 

the
 

time
 

constant,
 

the
 

product
 

of
 

RC
 

must
 

be
 

less
 

than
 

1/5
 

of
 

the
 

pulse
 

length
 

or
 

1/10
 

of
 

the
 

square
 

wave
 

period
 

to
 

apply
 

this
 

solution.
When

 

the
 

time
 

constant
 

of
 

the
 

circuit
 

is
 

much
 

larger
 

than
 

the
 

period
 

of
 

the
 

square
 

wave,
 

the
 

resulting
 

waveform
 

is
 

as
 

shown
 

in
 

waveform
 

4
 

in
 

Figure
 

3.5.13.
 

In
 

this
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Figure
 

3.5.13 Response
 

of
 

series
 

RC
 

circuit
 

to
 

square
 

wave
 

input
 

case,
 

the
 

transient
 

process
 

clearly
 

has
 

not
 

ended.
 

In
 

fact,
 

only
 

the
 

first
 

part
 

of
 

the
 

exponential
 

function
 

is
 

observed.
 

The
 

waveform
 

appears
 

like
 

a
 

triangular
 

wave,
 

which
 

is
 

the
 

integral
 

of
 

the
 

input
 

waveform.
 

This
 

can
 

be
 

seen
 

from
 

the
 

differential
 

equation
 

describing
 

the
 

circuit.
 

Applying
 

KVL
 

yields:

u1=iCR+uC (3.5.21)

Utilize
 

the
 

voltage-current
 

relationship
 

of
 

the
 

capacitor
 

to
 

derive
 

the
 

differential
 

equation:

u1=RC
duC

dt +uC (3.5.22)

It
 

is
 

evident
 

that,
 

based
 

on
 

Equation
 

(3.5.22)
 

or
 

Figure
 

3.5.13,
 

as
 

the
 

time
 

constant
 

of
 

the
 

circuit
 

increases,
 

the
 

voltage
 

across
 

the
 

capacitor,
 

uC,
 

will
 

decrease.
 

In
 

the
 

case
 

of
 

waveform
 

4,
 

where
 

the
 

time
 

constant
 

RC
 

is
 

significantly
 

large,uC≪u1 .
 

Hence,
 

in
 

this
 

scenario,
 

Equation
 

(3.5.21)
 

can
 

be
 

approximately
 

expressed
 

as:

u1≈iCR (3.5.23)

From
 

a
 

physical
 

standpoint,
 

the
 

current
 

now
 

only
 

depends
 

on
 

the
 

driving
 

voltage
 

and
 

the
 

resistance,
 

as
 

the
 

capacitor
 

voltage
 

is
 

nearly
 

zero.
 

Assuming
 

uC
 can

 

be
 

neglected,
 

integrating
 

both
 

sides
 

of
 

Equation
 

(3.5.22):

uC ≈
1
RC∫u1dt+K (3.5.24)
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In
 

the
 

equation,
 

the
 

integration
 

constant
 

K
 

is
 

equal
 

to
 

zero.
 

Therefore,
 

when
 

RC
 

is
 

large,
 

the
 

voltage
 

across
 

the
 

capacitor
 

is
 

approximately
 

the
 

integral
 

of
 

the
 

input
 

voltage.
 

This
 

is
 

a
 

very
 

useful
 

signal
 

processing
 

property.
It

 

is
 

straightforward
 

to
 

calculate
 

the
 

voltage
 

across
 

the
 

resistor
 

in
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.5.13(a)
 

(as
 

the
 

current
 

can
 

be
 

obtained
 

from
 

the
 

voltage
 

across
 

the
 

capacitor):

uR =iCR=RC
duC

dt
(3.5.25)

  Considering
 

the
 

charging
 

time
 

period
 

as
 

an
 

example
 

and
 

assuming
 

that
 

the
 

transient
 

process
 

has
 

already
 

concluded,
 

we
 

can
 

derive
 

from
 

Equation
 

(3.2.22):

uC =U 1-e-t/RC  (3.5.26)

Therefore
uR =Ue-t/RC (3.5.27)

If
 

the
 

average
 

value
 

of
 

the
 

input
 

signal
 

u1 is
 

zero,
 

meaning
 

that
 

u1 varies
 

between
 

-U/2
 

and
 

+U/2,
 

the
 

waveforms
 

in
 

Figure
 

3.5.8
 

will
 

undergo
 

minimal
 

changes.
 

Specifically,
 

the
 

average
 

value
 

of
 

uC
 will

 

also
 

be
 

zero.
 

When
 

the
 

transient
 

process
 

has
 

concluded,
 

as
 

depicted
 

in
 

waveforms
 

2
 

and
 

3
 

in
 

Figure
 

3.5.14,
 

the
 

offset
 

will
 

be-U/2
 

and
 

+U/2,
 

respectively.

3.6 Phasor
 

Model
 

for
 

Sinusoidal
 

Steady-State
 

Circuits

3.6.1 Dynamic
 

Circuits
 

Driven
 

by
 

Sinusoidal
 

Signals

Example
 

3.15 Consider
 

the
 

circuit
 

depicted
 

in
 

Figure
 

3.6.1,
 

where
 

the
 

current
 

source
 

iS=5cos(10t+45°)(mA).
 

The
 

switch
 

is
 

closed
 

at
 

t
 

=
 

0,
 

and
 

it
 

is
 

known
 

that
 

uC(0)=0.
 

Determine
 

the
 

values
 

of
 

uC,uR,uS,iC
 and

 

iR
 for

 

sufficiently
 

large
 

values
 

of
 

t.

Figure
 

3.6.1 Sinusoidal
 

excitation
 

dynamic
 

circuits

Solution:
 

Based
 

on
 

the
 

application
 

of
 

KCL
 

at
 

the
 

node,
 

we
 

can
 

deduce:

0.3
duC

dt +4uC =5cos(10t+45°), t≥0

uC(0)=0
Solving

 

the
 

differential
 

equation
 

yields
 

the
 

solution:

uC =uCh+uCp=Ke-
40t
3 +uCp(V), t≥0

uC(0)=0
Assume

 

uCp=UCmcos(10t+φu)→
-10×0.3UCmsin(10t+φu)+4UCmcos(10t+φu)=5cos(10t+45°)

-
3

32+42
UCmsin(10t+φu)+

4

32+42
UCmcos(10t+φu)=

5

32+42
cos(10t+45°)
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Since
 

φ=arctan
3
4=36.9°

,
 

the
 

solution:

 -UCmsin(10t+φu)sin36.9°+UCmcos(10t+φu)cos36.9°

=UCmcos(10t+φu +36.9°)=cos(10t+45°)

UCm=1, φu =45°-36.9°=8.1°
And

uCp=cos(10t+8.1°)

uC =Ke-
40t
3 +cos(10t+8.1°)(V), t≥0, uC(0)=0

uC =cos(10t+8.1°)-0.99e-
40t
3(V), t≥0

For
 

sufficiently
 

large
 

values
 

of
 

t
uC =cos(10t+8.1°)(V)

uR =uS=cos(10t+8.1°)(V)

iC =0.3
d
dtcos

(10t+8.1°)=-3sin(10t+8.1°)=3cos(10t+98.1°)(mA)

iR =
cos(10t+8.1°)

0.25 =4cos(10t+8.1°)(mA)

3.6.2 Sinusoidal
 

Steady-State
 

Circuits
 

Sinusoidal
 

steady-state
 

circuits
 

refer
 

to
 

dynamic
 

circuits
 

that
 

exhibit
 

a
 

steady
 

response
 

(response
 

at
 

sufficiently
 

large
 

values
 

of
 

t)
 

under
 

sinusoidal
 

excitation.
 

In
 

sinusoidal
 

steady-state
 

circuits,
 

all
 

branch
 

voltages
 

and
 

currents
 

are
 

sinusoidal
 

quantities
 

with
 

the
 

same
 

frequency
 

as
 

the
 

excitation
 

signal.

3.6.3 Phasor
 

Representation
 

of
 

Sinusoidal
 

Quantities

1.
 

Phasor
 

representation
 

of
 

the
 

amplitude
 

of
 

a
 

sinusoidal
 

quantity
 

using
 

Eulers
 

formula
ej(ωt+φ)=cos(ωt+φ)+jsin(ωt+φ) (3.6.1)

cos(ωt+φ)=Re[ej
(ωt+φ)]sin(ωt+φ)=Im[ej

(ωt+φ)] (3.6.2)

u=Umcos(ωt+φu)=Re[Ume
j(ωt+φu)]=Re[U

·
mej

ωt]

i=Imcos(ωt+φi)=Re[Ime
j(ωt+φi)]=Re[I

·
mej

ωt] (3.6.3)

Figure
 

3.6.2 Vector
 

graph

  The
 

phasor
 

diagram
 

is
 

shown
 

in
 

Figure
 

3.6.2.
The

 

voltage
 

phasor
 

is:

U
·
m=Ume

jφu =Um∠φu

  The
 

current
 

phasor
 

is:

I
·
m=Ime

jφi =Im∠φi
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2.
  

The
 

effective
 

value
 

and
 

phasor
 

of
 

sinusoidal
 

quantities
Compare

 

the
 

energy
 

consumed
 

by
 

a
 

sinusoidal
 

current
 

passing
 

through
 

the
 

same
 

resistor
 

in
 

one
 

period
 

with
 

the
 

energy
 

consumed
 

by
 

a
 

direct
 

current
 

in
 

the
 

same
 

duration.
 

The
 

effective
 

value
 

of
 

the
 

sinusoidal
 

quantity
 

is
 

the
 

root
 

mean
 

square
 

(RMS)
 

value,
 

and
 

from
 

the
 

perspective
 

of
 

energy
 

consumption,
 

the
 

two
 

currents
 

are
 

equivalent,
 

that
 

is,
 

Wi=WI。

I=
1
T∫

T

0
i2(t)dt=

1
T∫

T

0
I2mcos(ωt+φi)

2dt

=
1
T∫

T

0
I2m
1
2
[1+cos(2ωt+2φi)]dt

=
1
2
Im=0.707Im

(3.6.4)

  The
 

RMS
 

phasor
 

of
 

a
 

sinusoidal
 

quantity:

u=Umcos(ωt+φu)= 2Ucos(ωt+φu)=Re[2Ue
j(ωt+φu)]= 2Re[U

·
ejωt]

i=Imcos(ωt+φi)= 2Icos(ωt+φi)=Re[2Ie
j(ωt+φi)]= 2Re[I

·
ejωt] 

(3.6.5)

  The
 

RMS
 

phasor
 

of
 

the
 

voltage
 

is
 

U
·
=Uejφu=U∠φu

The
 

RMS
 

phasor
 

of
 

the
 

current
 

is
 

I
·
=Iejφi=I∠φi

U
·
=
1
2
U
·
m, I

·
=
1
2
I
·
m

  The
 

conversion
 

of
 

a
 

sinusoidal
 

quantity
 

to
 

a
 

phasor,
 

and
 

from
 

a
 

phasor
 

and
 

angular
 

frequency
 

to
 

a
 

sinusoidal
 

quantity
 

are
 

as
 

follows:
 

i=5cos(314t+60°)(mA)→I
·
m=5∠60°(mA) (3.6.6)

U
·
=-5∠-30°=5∠150°(V) and ω=2π(rad/s)

u=52cos(2πt+150°)(V)

3.6.4 Phasor
 

Calculation
 

of
 

Sinusoidal
 

Quantities

Sinusoidal
 

quantities
 

and
 

phasors
 

exhibit
 

the
 

following
 

three
 

properties:

(1)
 

Uniqueness.
 

Let
 

the
 

corresponding
 

phasors
 

be:
 

i1↔I
·
1,i2↔I

·
2.If

 

i1=i2,
 

then
 

I
·
1=I

·
2;

(2)
 

Linearity.
 

Let
 

i1↔I
·
1,…,in↔I

·
n,there

 

are
 

α1i1+…+αnin↔α1I
·
1+…+

αnI
·
n;

(3)
 

Differentiation.
 

Let
 

i↔I
·
,there

 

are
 di
dt↔jωI

·
,…,d

ni
dtn↔(jω)

nI
·
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di
dt=

d
dtRe

[I
·
ejωt]=Re[

d
dtI
·
ejωt]=Re[jωI

·
ejωt]↔jωI

·
(3.6.7)

  Example
 

3.16 Given
 

i1=sin(2t-30°)(mA),i2=cos(2t+45°)(mA)
 

find
 

di1
dt+2i2.

Solution:
 

First,
 

the
 

current
 

i1,i2 are
 

expressed
 

as
 

the
 

phasor,
 

as
 

shown
 

in
 

Figure
 

3.6.3.

i1=sin(2t-30°)=cos(2t-120°)↔I
·
1m=1∠-120°

i2=cos(2t+45°)↔I
·
2m=1∠45°

j2I
·
1m+2I

·
2m=2∠90°×1∠-120°+2×1∠45°=2∠-30°+2∠45°

     =(1.732-j1)+(1.414+j1.414)=3.146+j0.414
     =3.17∠7.5°
di1
dt +2i2=3.17cos(2t+7.5°)(mA)

Figure
 

3.6.3 Example
 

3.16
 

diagram

3.6.5 Phasor
 

Model
 

of
 

Sinusoidal
 

Steady-State
 

Circuit

1.
  

Phasor
 

model
 

of
 

resistor

  For
 

any
 

resistor
 

in
 

a
 

sinusoidal
 

steady-state
 

circuit,
 

the
 

VCR
 

equation
 

U
·
=RI

·
 

or
  

U
·
m =RI

·
m

 is
 

satisfied
 

between
 

the
 

voltage
 

phasor
 

and
 

the
 

current
 

phasor
 

in
 

the
 

associated
 

reference
 

direction:

u= 2Ucos(ωt+φu)= 2Re[U
·
ejωt]=Ri=R 2Icos(ωt+φi)

=R 2Re[I
·
ejωt]= 2Re[RI

·
ejωt]

U
·
=RI

·
(3.6.8)

U
·
=U∠φu =RI

·
=RI∠φi (3.6.9)

  The
 

effective
 

value
 

or
 

amplitude
 

meets
 

U=RI
 

or
 

Um=RIm,
 

and
 

the
 

voltage
 

phase
 

is
 

in
 

phase
 

with
 

the
 

current
 

phase,
 

φu=φi.
 

As
 

shown
 

in
 

Figure
 

3.6.4.

Figure
 

3.6.4 Vector
 

diagram

2.
  

Phasor
 

model
 

of
 

inductor
For

 

any
 

inductor
 

in
 

a
 

sinusoidal
 

steady-state
 

circuit,
 

the
 

VCR
 

equation
 

U
·
=jωLI

·
 

or
 

U
·
m=jωLI

·
m

 is
 

satisfied
 

between
 

the
 

voltage
 

phasor
 

and
 

the
 

current
 

phasor
 

in
 

the
 

associated
 

reference
 

direction:
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u= 2Ucos(ωt+φu)= 2Re[U
·
ejωt]

=Ldidt=L ddt 2Icos
(ωt+φi)=L ddt 2Re

[I
·
ejωt]= 2Re[jωLI

·
ejωt]→U

·
=jωLI

·

(3.6.10)

U
·
=U∠φu =jωLI

·
=ωL∠90°I∠φi=ωLI∠(φi+90°) (3.6.11)

Figure
 

3.6.5 Vector
 

diagram

  The
 

effective
 

value
 

or
 

amplitude
 

meets
 

U=ωLI
 

or
 

Um=ωLIm,
 

and
 

the
 

voltage
 

phase
 

is
 

90°
 

ahead
 

of
 

the
 

current
 

phase,φu=φi+90°.
 

As
 

shown
 

in
 

Figure
 

3.6.5.

3.
  

Phasor
 

model
 

of
 

capacitor
For

 

any
 

capacitor
 

in
 

a
 

sinusoidal
 

steady-state
 

circuit,
 

the
 

VCR
 

equation
 

U
·
=
1
jωCI

·
 

or
 

U
·
m=

1
jωCI

·
m

 is
 

satisfied
 

between
 

the
 

voltage
 

phasor
 

and
 

the
 

current
 

phasor
 

in
 

the
 

associated
 

reference
 

direction:

i= 2Icos(ωt+φi)= 2Re[I
·
ejωt]

=Cdudt=C ddt 2Ucos
(ωt+φi)=C ddt 2Re

[U
·
ejωt]= 2Re[jωCU

·
ejωt]→I

·
=jωCU

·

(3.6.12)

U
·
=U∠φu =

1
jωC

I
·
=
1
ωC∠-90°I∠φi=

1
ωCI∠

(φi-90°) (3.6.13)

Figure
 

3.6.6 Vector
 

diagram 

  The
 

effective
 

value
 

or
 

amplitude
 

meets
 

U=
1
ωC

 

or
 

Um=

1
ωCIm

,
 

and
 

the
 

voltage
 

phase
 

lags
 

behind
 

the
 

current
 

phase
 

by
 

90°,φu=φi-90°.
 

As
 

shown
 

in
 

Figure
 

3.6.6.

4.
  

Impedance/admittance—phasor
 

form
 

of
 

Ohms
 

law
The

 

phasor
 

form
 

of
 

impedance:

Z=
U
·

I
· =

U
I∠

(φu -φi)= Z ∠φz =R+jX (3.6.14)

  The
 

phasor
 

form
 

of
 

admittance:

Y=
I
·

U
· =

I
U∠

(φi-φu)= Y ∠φy =G+jB (3.6.15)

  The
 

Phasor
 

Form
 

of
 

Ohms
 

Law

U
·
=ZI

·
 or U

·
m=ZI

·
m (3.6.16)

I
·
=YU

·
 or I

·
m=YU

·
m (3.6.17)
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  (1)
  

Impedance/admittance
 

of
 

resistor

Z=
U
·

I
· =R

Y=
I
·

U
· =G













(3.6.18)

  The
 

impedance/admittance
 

of
 

a
 

resistor
 

has
 

only
 

the
 

real
 

part,
 

that
 

is,
 

the
 

resistance/conductance.
(2)

  

Impedance/admittance
 

of
 

inductor

Z=
U
·

I
· =jωL=jX →X =ωL

Y=
I
·

U
· =

1
jωL=-j

1
ωL=jB













(3.6.19)

then

B=-
1
ωL

  The
 

impedance/admittance
 

of
 

the
 

inductor
 

has
 

only
 

the
 

imaginary
 

part,
 

i.e.,
 

the
 

reactance/susceptance,
 

generally
 

known
 

as
 

the
 

inductive
 

reactance/inductance.
The

 

inductance/inductance
 

is
 

not
 

only
 

related
 

to
 

the
 

inductance
 

L,
 

but
 

also
 

to
 

the
 

angular
 

frequency
 

ω.
(3)

  

Impedance/admittance
 

of
 

capacitor

Z=
U
·

I
· =

1
jωC=-j

1
ωC=jX

then

X =-
1
ωC

Y=
I
·

U
· =jωC=jB

B=ωC














(3.6.20)

  The
 

impedance/admittance
 

of
 

a
 

capacitor
 

consists
 

only
 

of
 

the
 

imaginary
 

part,
 

i.e.,
 

the
 

reactance/susceptance,
 

generally
 

referred
 

to
 

as
 

the
 

capacitive
 

reactance/

conductance.
The

 

capacitive
 

reactance/susceptance
 

is
 

not
 

only
 

related
 

to
 

the
 

capacitor
 

C,
 

but
 

also
 

to
 

the
 

angular
 

frequency
 

ω.
Example

 

3.17 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

3.6.7,
 

the
 

reading
 

of
 

AC
 

ammeter
 

A1 and
 

A2 are
 

both
 

known
 

to
 

be
 

10mA,
 

so
 

find
 

the
 

reading
 

of
 

AC
 

ammeter
 

A.
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Solution:
  

Assume
 

parallel
 

branch
 

voltage
 

U
·
=U∠0°;

I
·
1=

U
·

R =
U
R∠0°=10∠0°

I
·
2=jωCU

·
=ωCU∠90°=10∠90°

I
·
=I
·
1+I

·
2=10∠0°+10∠90°=10+j10=14.14∠45°

  The
 

AC
 

ammeter
 

A
 

reads
 

14.14mA,
 

as
 

illustrated
 

in
 

Figure
 

3.6.8.

Figure
 

3.6.7 Example
 

3.17 Figure
 

3.6.8 Illustration
 

for
 

Example
 

3.17
 

5.
  

Phasor
 

model
 

of
 

independent
 

power
 

supply
For

 

an
 

independent
 

power
 

source
 

with
 

the
 

same
 

angular
 

frequency
 

in
 

a
 

sinusoidal
 

steady-state
 

circuit,
 

the
 

VCR
 

equation
 

is
 

expressed
 

in
 

terms
 

of
 

voltage
 

or
 

current
 

phasor
(1)

  

Independent
 

voltage
 

source.

VCR
 

equation
 

U
·
=U
·
S

 or
 

U
·
m=U

·
Sm,thus:

 

u= 2Ucos(ωt+φu)= 2Re[U
·
ejωt]

=uS= 2UScos(ωt+φus)= 2Re[U
·
Sej

ωt]

  Therefore:
 

U
·
=U
·
S (3.6.21)

  (2)
  

Independent
 

Current
 

Source.
 

VCR
 

Equation:
  

I
·
=I
·
S

 or
 

I
·
m=I

·
Sm,

 

thus:

i= 2Icos(ωt+φi)= 2Re[I
·
ejωt]

=iS= 2IScos(ωt+φis)= 2Re[I
·
Sej

ωt]
(3.6.22)

  Therefore:

I
·
=I
·
S

6.
  

Phasor
 

model
 

of
 

controlled
 

power
 

supply
In

 

a
 

sinusoidal
 

steady-state
 

circuit
 

with
 

any
 

controlled
 

power
 

supply,
 

the
 

voltage
 

phasor
 

and
 

current
 

phasor
 

in
 

the
 

associated
 

reference
 

direction
 

satisfy
 

the
 

following
 

condition:
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  (1)
  

VCVS.

VCR
 

equation:
 

I
·
1=0,U

·
2=μU

·
1

 or
 

I
·
m1=0,U

·
m2=μU

·
m1

 it
 

follows
 

that

i1= 2I1cos(ωt+φi1)= 2Re[I
·
1ej

ωt]=0 (3.6.23a)

  Then:
 

I
·
1=0

u2= 2U2cos(ωt+φu2)= 2Re[U
·
2ej

ωt]

=μu1=μ 2U1cos(ωt+φu1)= 2Re[μU
·
1ej

ωt] (3.6.23b)

  Then:
 

U
·
2=μU

·
1

  (2)
  

CCVS.

VCR
 

equation:
 

U
·
1=0,U

·
2=rI

·
1

 or
 

U
·
m1=0,U

·
m2=rI

·
m1,

 

it
 

follows
 

that

u1= 2U1cos(ωt+φu1)= 2Re[U
·
1ej

ωt]=0 (3.6.24a)

  Then:
 

U
·
1=0

u2= 2U2cos(ωt+φu2)= 2Re[U
·
2ej

ωt]

=ri1=r 2I1cos(ωt+φi1)= 2Re[rI
·
1ej

ωt]

(3.6.24b)

  Then:
 

U
·
2=rI

·
1

  (3)
  

VCCS.

VCR
 

equation:
 

I
·
1=0,I

·
2=gU

·
1

 or
 

U
·
m1=0,U

·
m2=rI

·
m1,

 

it
 

follows
 

that

i1= 2I1cos(ωt+φi1)= 2Re[I
·
1ej

ωt]=0 (3.6.25a)

  Then:

I
·
1=0

i2= 2I2cos(ωt+φi2)= 2Re[I
·
2ej

ωt]

=gu1=g 2U1cos(ωt+φu1)= 2Re[gU
·
1ej

ωt] (3.6.25b)

  Then:
 

I
·
2=gU

·
1

  (4)
  

CCCS.

VCR
 

equation:
 

U
·
1=0,I

·
2=βI

·
1

 or
 

U
·
m1=0,I

·
m2=βI

·
m1,

 

it
 

follows
 

that

u1= 2U1cos(ωt+φu1)= 2Re[U
·
1ej

ωt]=0 (3.6.26a)

  Then:
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U
·
1=0

i2= 2I2cos(ωt+φi2)= 2Re[I
·
2ej

ωt]

=βi1=β 2I1cos(ωt+φi1)= 2Re[βI
·
1ej

ωt] (3.6.26b)

  Then:
 

I
·
2=βI

·
1

7.
  

The
 

phasor
 

form
 

of
 

Kirchhoffs
 

law
1)

  

Phasor
 

form
 

of
 

KCL
The

 

algebraic
 

sum
 

of
 

all
 

branch
 

current
 

phasors
 

flowing
 

into
 

any
 

node
 

in
 

a
 

sinusoidal
 

steady-state
 

circuit
 

is
 

equal
 

to
 

zero.

KCL
 

equation:
 

∑
n

k=1
±I
·
k =0

 

or
 

∑
n

k=1
±I
·
mk =0,

 

then

∑
n

k=1
±ik =∑

n

k=1
± 2Ikcos(ωt+φik)=∑

n

k=1
± 2Re[I

·
kej

ωt]

= 2Re∑
n

k=1
±I
·
kej

ωt  =0→∑
n

k=1
±I
·
k =0

  2)
  

Phasor
 

form
 

of
 

KVL
The

 

algebraic
 

sum
 

of
 

voltage
 

phasors
 

around
 

any
 

closed
 

loop
 

in
 

a
 

sinusoidal
 

steady-
state

 

circuit
 

is
 

equal
 

to
 

zero.

KVL
 

equation:
 

∑
n

k=1
±U
·
k =0

 

or
 

∑
n

k=1
±U
·
mk =0,

 

then

∑
n

k=1
±uk =∑

n

k=1
± 2Ukcos(ωt+φuk)=∑

n

k=1
± 2Re[U

·
kej

ωt]

 
 

 
 

 = 2Re∑
n

k=1
±U
·
kej

ωt  =0

∑
n

k=1
±U
·
k =0

∑
n

k=1
±I
·
k =∑

n

k=1
±Ik∠φik =0

∑
n

k=1
±U
·
k =∑

n

k=1
±Uk∠φuk =0















(3.6.27)

  this
 

shows:
(1)

  

The
 

current/voltage
 

phasor
 

satisfies
 

KCL/KVL;
(2)

  

The
 

current/voltage
 

RMS
 

value
 

or
 

amplitude
 

does
 

not
 

meet
 

KCL/KVL.

Example
 

3.18 In
 

sinusoidal
 

steady-state
 

RLC
 

series
 

circuits,uS=10 2cos(ωt)

(V),uL=32sin(ωt)(V),uC=152cos(ωt+180°)(V),find
 

uR.



96   

  Solution:
 

uS=102cos(ωt)↔U
·
S=10∠0°

uL =32sin(ωt)=32cos(ωt-90°)↔U
·
L =3∠-90°

uC =152sin(ωt+180°)=152cos(ωt+90°)↔U
·
C =15∠90°

U
·
R =U

·
S-U

·
L -U

·
C =10∠0°-3∠-90°-15∠90°

 =10+j3-j15=10-j12=15.6∠-50°(V)

uR =15.62cos(ωt-50°)(V)

  As
 

illustrated
 

in
 

Figure
 

3.6.9.

Figure
 

3.6.9 Illustration
 

for
 

Example
 

3.18
 

3.7 Phasor
 

Analysis
 

of
 

Sinusoidal
 

Steady-State
 

Circuits

3.7.1 The
 

Fundamental
 

Method
 

for
 

Phasor
 

Analysis
 

of
 

Sinusoidal
 

Steady-
State

 

Circuits

  (1)
  

Phasor
 

model
 

of
 

sinusoidal
 

steady-state
 

circuits
 

involves
 

the
 

following:

①
 

Unchanged
 

circuit
 

structure;

②
 

Voltage
 

and
 

current
 

are
 

represented
 

as
 

voltage
 

phasors
 

and
 

current
 

phasors,
 

with
 

the
 

reference
 

direction
 

remaining
 

unchanged;

③
 

Component
 

parameters
 

change
 

as
 

follows:
 

RLC
 

parameters
 

become
 

impedance
 

parameters,
 

and
 

voltage
 

sources
 

and
 

current
 

sources
 

become
 

voltage
 

source
 

phasors
 

and
 

current
 

source
 

phasors,
 

with
 

the
 

reference
 

direction
 

remaining
 

unchanged.
(2)

  

According
 

to
 

the
 

phasor
 

model
 

of
 

the
 

component
 

and
 

the
 

phasor
 

form
 

of
 

Kirchhoffs
 

law,
 

we
 

can
 

write
 

the
 

phasor
 

equation
 

and
 

calculate
 

the
 

voltage
 

phasor
 

and
 

current
 

phasor.
(3)

  

From
 

the
 

obtained
 

voltage
 

phasor
 

and
 

current
 

phasor,
 

the
 

corresponding
 

sinusoidal
 

voltage
 

and
 

current
 

can
 

be
 

determined.
Example

 

3.19 In
 

the
 

sinusoidal
 

steady-state
 

circuit
 

shown
 

in
 

Figure
 

3.7.1,
 

given
 

uS= 2cos(ωt)(V),
 

find
 

i
 

when
 

ω=200rad/s
 

and
 

ω=1000rad/s,
 

respectively.
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Illustration
 

for
 

Example
 

3.19
 

is
 

shown
 

as
 

Figure
 

3.7.2.

Figure
 

3.7.1 Example
 

3.19
 

circuit Figure
 

3.7.2 Illustration
 

for
 

Example
 

3.19

Solution:
 

Based
 

on
 

the
 

phasor
 

model
 

of
 

sinusoidal
 

steady-state
 

circuits,
 

formulate
 

and
 

solve
 

the
 

phasor
 

equations:

2I
·
+j5ω×10-3(I

·
-I
·
C)=1∠0°

-j1ω×103I
·
C +2I

·
+j5ω×10-3(I

·
C -I

·
)=0

  When
 

ω=200rad/s,

2I
·
+j1(I

·
-I
·
C)=1∠0°

-j5I
·
C +2I

·
+j1(I

·
C -I

·
)=0

(2+j1)I
·
-j1I

·
C =1

(2-j1)I
·
-j4I

·
C =0

I
·
=
4

6+j5=
4∠0°

7.81∠39.8°=0.51∠-39.8°(mA)

  When
 

ω=1000rad/s,

2I
·
+j5(I

·
-I
·
C)=1∠0°

-j1I
·
C +2I

·
+j5(I

·
C -I

·
)=0

(2+j5)I
·
-j5I

·
C =1

(2-j5)I
·
+j4I

·
C =0

I
·
=

4
18-j5=

4∠0°
18.68∠-15.5°=0.21∠15.5°(mA)

  Corresponding
 

sinusoidal
 

quantities:
When

 

ω=200rad/s,

i=0.512cos(200t-39.8°)(mA)
  When

 

ω=1000rad/s,

i=0.212cos(1000t+15.5°)(mA)

3.7.2 Application
 

of
 

Superposition
 

Theorem
 

in
 

Sinusoidal
 

Steady-State
 

Circuit
 

Phasor
 

Analysis

  When
 

the
 

superposition
 

theorem
 

is
 

applied
 

to
 

the
 

analysis
 

of
 

sinusoidal
 

steady-state
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circuits
 

using
 

phasors,
 

only
 

corresponding
 

changes
 

need
 

to
 

be
 

made.
 

The
 

action
 

of
 

independent
 

sources
 

alone
 

becomes
 

the
 

action
 

of
 

independent
 

source
 

phasors
 

alone,
 

the
 

circuit
 

transforms
 

into
 

a
 

phasor
 

model
 

of
 

the
 

circuit
 

(with
 

impedance
 

parameters
 

varying
 

with
 

different
 

angular
 

frequencies),
 

and
 

the
 

components
 

of
 

voltage/current
 

transform
 

into
 

the
 

phasor
 

components
 

of
 

voltage/current.
 

Example
 

3.20 In
 

the
 

steady-state
 

circuit
 

as
 

shown
 

in
 

Figure
 

3.7.3,
 

given
 

uS1=

3V,
 

uS2=42sin(2000t)(V),find
 

i.

Figure
 

3.7.3 Circuit
 

for
 

Example
 

3.20 

Solution:
 

When
 

only
 

uS1=3V
 

acts
 

independently,
 

the
 

phasor
 

model
 

(circuit)
 

of
 

the
 

steady-state
 

circuit
 

is
 

as
 

shown
 

in
 

Figure
 

3.7.4.
 

Formulate
 

the
 

phasor
 

equations
 

(time-
domain

 

equations)
 

and
 

solve:

i1=3/1=3(mA)

  When
 

only
 

uS2=42sin(2000t)(V)
 

acts
 

independently,
 

the
 

phasor
 

model
 

(circuit)
 

of
 

the
 

steady-state
 

circuit
 

is
 

as
 

shown
 

in
 

Figure
 

3.7.5.

Figure
 

3.7.4 Illustration
 

for
 

Example
 

3.20(1) Figure
 

3.7.5 Illustration
 

for
 

Example
 

3.20(2)

Write
 

the
 

phasor
 

equation
 

and
 

solve
 

it:

I
·
2= -1
1+j1×

4∠-90°

-j1+ j1
1+j1

=
4∠90°

-j1(1+j1)+j1=4∠90°

  Corresponding
 

sinusoidal
 

quantities:

i2=42cos(2000t+90°)(mA)

  Superposition:

i=i1+i2=3+42cos(2000t+90°)(mA)

3.7.3 Application
 

of
 

Thevenin/Norton
 

Theorem
 

in
 

Phasor
 

Analysis
 

of
 

Sinusoidal
 

Steady-State
 

Circuits

  Similarly,
 

in
 

the
 

phasor
 

analysis
 

of
 

sinusoidal
 

steady-state
 

circuits,
 

Thevenins
 

and
 

Nortons
 

theorems
 

can
 

be
 

applied
 

with
 

corresponding
 

transformations.
 

The
 

circuit
 

is
 

transformed
 

into
 

a
 

phasor
 

model
 

of
 

the
 

circuit,
 

the
 

single-port
 

network
 

into
 

a
 

single-
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port
 

phasor
 

model,
 

the
 

open-circuit
 

voltage/short-circuit
 

current
 

into
 

the
 

open-circuit
 

voltage
 

phasor/short-circuit
 

current
 

phasor,
 

the
 

equivalent
 

resistance
 

into
 

the
 

equivalent
 

impedance,
 

and
 

Thevenin/Norton
 

equivalent
 

circuits
 

into
 

Thevenin/Norton
 

equivalent
 

phasor
 

models.
Example

 

3.21 In
 

the
 

sinusoidal
 

steady-state
 

circuit
 

shown
 

in
 

Figure
 

3.7.6,
 

given
 

uS= 2cos(ωt)(V),
 

find
 

i
 

when
 

ω=200rad/s
 

and
 

ω=1000rad/s,
 

respectively.
Solution:

The
 

phasor
 

model
 

of
 

the
 

active
 

single-port
 

network,
 

excluding
 

the
 

2kΩ
 

resistor
 

branch,
 

is
 

shown
 

in
 

Figure
 

3.7.7.
 

Figure
 

3.7.6 Circuit
 

for
 

Example
 

3.21 Figure
 

3.7.7 Illustration
 

for
 

Example
 

3.21
 

(1)

When
 

finding
 

the
 

open
 

circuit
 

voltage
 

phasor
 

U
·
occ

 

of
 

N,
 

I
·
=0,

 

is
 

shown
 

in
 

Figure
 

3.7.8.

U
·
oc=1∠0°(V)

  Use
 

the
 

external
 

power
 

supply
 

method
 

to
 

find
 

the
 

equivalent
 

impedance
 

Z0 of
 

N→

N0,
 

and
 

add
 

U
·

 

to
 

find
 

I
·
,

 

As
 

shown
 

in
 

Figure
 

3.7.9.

Figure
 

3.7.8 Illustration
 

for
 

Example
 

3.21(2) Figure
 

3.7.9 Illustration
 

for
 

Example
 

3.21(3)

I
·
=

U
·

j5ω×10-3+
U
·
-2I

·

-j1ω×103

  When
 

ω=200rad/s,
 

there
 

are

I
·
=
U
·

j1+
U
·
-2I

·

-j5

Z0=
U
·

I
· = -2+j5

4 =-0.5+j1.25(kΩ)
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Figure
 

3.7.10 Illustration
 

for
 

Example
 

3.21(4)

  When
 

ω=1000rad/s,
 

there
 

are
 

I
·
=
U
·

j5+
U
·
-2I

·

-j1

Z0=
U
·

I
· =
10-j5
4 =2.5-j1.25(kΩ)

  The
 

phasor
 

model
 

of
 

the
 

single-loop
 

circuit
 

is
 

shown
 

in
 

Figure
 

3.7.10.
 

When
 

ω=200rad/s,
 

there
 

is

I
·
=

U
·
oc

2+Z0
=

1∠0°
2-0.5+j1.25=

1∠0°
1.5+j1.25=

1∠0°
1.95∠39.8°=0.51∠-39.8°(mA)

  When
 

ω=1000rad/s,
 

there
 

is
 

I
·
=

U
·
oc

2+Z0
=

1∠0°
2+2.5-j1.25=

1∠0°
4.5-j1.25=

1∠0°
4.67∠-15.5°=0.21∠15.5°(mA)

  The
 

corresponding
 

sine
 

quantity:

When
 

ω=200rad/s,
 

there
 

is
 

i=0.512cos(200t-39.8°)mA
  When

 

ω=1000rad/s,
 

there
 

is
 

i=0.212cos(1000t+15.5°)mA

3.7.4 Node
 

Analysis
 

in
 

Sinusoidal
 

Steady-State
 

Circuit
 

Phasor
 

Analysis

In
 

the
 

phasor
 

analysis
 

of
 

sinusoidal
 

steady-state
 

circuits
 

using
 

the
 

node
 

analysis
 

method,
 

only
 

the
 

corresponding
 

variable
 

transformations
 

are
 

required.
 

The
 

circuit
 

is
 

converted
 

into
 

a
 

circuit
 

phasor
 

model,
 

node
 

voltages
 

into
 

node
 

voltage
 

phasors,
 

self-
conductance

 

into
 

self-admittance,
 

mutual
 

conductance
 

into
 

mutual
 

admittance,
 

sources
 

into
 

source
 

phasors,
 

and
 

node
 

equations
 

into
 

node
 

phasor
 

equations.

 Figure
 

3.7.11 Circuit
 

for
 

Example
 

3.22

Example
 

3.22 In
 

the
 

sinusoidal
 

steady-state
 

circuit
 

shown
 

in
 

Figure
 

3.7.11,
 

given
 

uS =

2cos(ωt)(V),
 

find
 

i
 

when
 

ω=200rad/s
 

and
 

ω=
1000rad/s,

 

respectively.
Solution:

 

Based
 

on
 

the
 

phasor
 

model
 

of
 

the
 

sinusoidal
 

steady-state
 

circuit,
 

with
 

the
 

reference
 

node
 

and
 

node
 

voltage
 

phasors
 

as
 

shown
 

in
 

Figure
 

3.7.12,
 

the
 

control
 

quantity
 

for
 

the
 

controlled
 

source
 

phasor
 

is
 

transformed
 

to
 

I
·
=(U

·
1-U

·
2)/2.

 

U
·
1=1∠0°(V), U

·
3=2I

·
=U
·
1-U

·
2
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Figure
 

3.7.12 Illustration
 

for
 

Example
 

3.22

  Node
 

phasor
 

equation
 

for
 

node
 

2:

-
1
2U
·
1+

1
2+j(ω×10-3-

1
5ω×103)  U·2-jω×10-3U

·
3=0

U
·
2=

1
2+jω×10-3

1
2+j2ω×10-3-

1
5ω×103  

  When
 

ω=200rad/s,
 

there
 

are

U
·
2=

0.5+j0.2
0.5+j(0.4-1)=

0.5+j0.2
0.5-j0.6=

0.539∠21.8°
0.781∠-50.2°=

0.69∠72°(V)

I
·
=
U
·
1-U

·
2

2 =
1∠0°-0.69∠72°

2 =
1-0.213-j0.656

2
=0.394-j0.328=0.51∠-39.8°(mA)

  When
 

ω=1000rad/s,
 

there
 

are

U
·
2=

0.5+j1
0.5+j(2-0.2)=

0.5+j1
0.5+j1.8=

1.118∠63.4°
1.868∠74.5°=0.599∠-11.1°(V)

I
·
=
U
·
1-U

·
2

2 =
1∠0°-0.599∠-11.1°

2 =
1-0.588-j0.115

2
=0.206-j0.058=0.21∠-15.7°(mA)

  The
 

corresponding
 

sinusoidal
 

quantities:

When
 

ω=200rad/s,
 

there
 

is

i=0.512cos(200t-39.8°)(mA)

  When
 

ω=1000rad/s,
 

there
 

is

i=0.212cos(1000t+15.7°)(mA)

3.8 Frequency
 

Characteristics
 

of
 

Sinusoidal
 

Steady-State
 

Circuits

3.8.1 Transfer
 

Function
 

and
 

Frequency
 

Characteristics
 

of
 

Sinusoidal
 

Steady-
State

 

Circuits

  The
 

transfer
 

function
 

is
 

the
 

ratio
 

of
 

the
 

output
 

phase
 

to
 

the
 

input
 

phase
 

of
 

a
 

sinusoidal
 

steady-state
 

circuit
 

as
 

a
 

function
 

of
 

frequency.
 

The
 

frequency
 

response
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characterizes
 

the
 

relationship
 

between
 

the
 

amplitude
 

and
 

phase
 

of
 

a
 

transfer
 

function
 

and
 

frequency.
 

The
 

amplitude
 

response
 

represents
 

the
 

relationship
 

between
 

the
 

amplitude
 

of
 

the
 

transfer
 

function
 

and
 

frequency,
 

while
 

the
 

phase
 

response
 

denotes
 

the
 

relationship
 

between
 

the
 

phase
 

of
 

the
 

transfer
 

function
 

and
 

frequency.

3.8.2 First-Order
 

Low-Pass
 

Characteristic

Example
 

3.23 Find
 

the
 

frequency
 

characteristic
 

of
 

the
 

first-order
 

RC
 

sinusoidal
 

steady-state
 

circuit
 

shown
 

in
 

Figure
 

3.8.1.

Figure
 

3.8.1 First-order
 

low-pass
 

circuit

Solution:
 

A
·
u =

U
·
o

U
·
i

=

1
jωC

R+
1
jωC

=
1

1+jωRC=
1

1+j2πfRC

(3.8.1)

  
Assume

 

that
 

Au=1,f0=
1

2πRC
,

 

there
 

is

A
·
u =

Au

1+jf
f0

(3.8.2)

  Amplitude-frequency
 

characteristic:

|A
·
u|=

Au

1+ f
f0  2

(3.8.3)

  Phase-frequency
 

characteristic:

φ=0°-arctan f
f0  (3.8.4)

1.
  

Qualitative
 

analysis
When

 

f≪f0,
 

there
 

is

|A
·
u|→|Au|=1, φ→0°

  When
 

f=f0,
 

there
 

is

|A
·
u|=

|Au|

2
=
1
2
, φ=0°-arctan1=-45°

  When
 

f≫f0,
 

there
 

is

|A
·
u|→0, φ→-90°

  First-order
 

low-pass
 

characteristics
 

(first-order
 

hysteresis
 

characteristics).

2.
  

Bode
 

plot
 

analysis
In

 

a
 

coordinate
 

system
 

where
 

the
 

horizontal
 

axis
  

employs
 

a
 

logarithmic
 

scale
 

and
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the
 

vertical
 

axis
 

uses
 

a
 

linear
 

scale,
 

the
 

curves
 

representing
 

the
 

amplitude-frequency
 

response
 

and
 

phase-frequency
 

response
 

are
 

known
 

as
 

the
 

Bode
 

plots.

20lg|A
·
u|=20lg|Au|-10lg1+ f

f0  2


 




=

20lg1-10lg1=0,f≪f0
20lg1-10lg2=-3,f=f0

20lg1-20lg f
f0  =-20lg f

f0  , f≫f0












(3.8.5)

  The
 

first-order
 

low-pass
 

amplitude-frequency
 

Bode
 

plot
 

is
 

shown
 

in
 

Figure
 

3.8.2.

φ=0°-arctan f
f0  =

0°, f≪f0
0°-arctan1=-45°, f=f0
-90°, f≫f0









 (3.8.6)

  The
 

first-order
 

low-pass
 

phase-frequency
 

Bode
 

plot
 

is
 

shown
 

in
 

Figure
 

3.8.3.

Figure
 

3.8.2 First-order
 

low-pass
 

gain
 

Bode
 

plot
Figure

 

3.8.3 First-order
 

low-pass
 

phase-frequency
 

Bode
 

plot

3.8.3 First-Order
 

High-Pass
 

Characteristic

Example
 

3.24 Find
 

the
 

frequency
 

characteristic
 

of
 

the
 

first-order
 

RC
 

sinusoidal
 

steady-state
 

circuit
 

shown
 

in
 

Figure
 

3.8.4.

 Figure
 

3.8.4 First-order
 

high-pass
 

circuit

Solution:
 

A
·
u =

U
·
o

U
·
i

=
R

R+
1
jωC

=
1

1+
1

jωRC

=
1

1-j
1

2πfRC

(3.8.7)

  
Assume

 

that
 

Au=1,f0=
1

2πRC
,

 

there
 

is

A
·
u =

Au

1-j
f0
f

(3.8.8)
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  Amplitude-frequency
 

characteristic:

|A
·
u|=

|Au|

1+
f0
f  2

(3.8.9)

  Phase-frequency
 

characteristic:

φ=0°-arctan-
f0
f  (3.8.10)

1.
  

Qualitative
 

analysis
When

 

f≪f0,
 

there
 

is

|A
·
u|→0, φ→0°

  When
 

f=f0,
 

there
 

is

|A
·
u|=

|Au|

2
=
1
2
, φ=0°-arctan(-1)=45°

  When
 

f≫f0,
 

there
 

is

|A
·
u|→|Au|=1, φ→90°

  First-order
 

high-pass
 

characteristics
 

(First-Order
 

lead
 

characteristics).
2.

  

Bode
 

plot
 

analysis

20lg|A
·
u|=20lg|Au|-10lg1+

f0
f  2




 




 =

20lg1-20lg
f0
f  =20lg f

f0  , f≪f0

20lg1-10lg2=-3, f=f0
20lg1-10lg1=0, f≫f0













(3.8.11)
  The

 

first-order
 

high-pass
 

amplitude-frequency
 

Bode
 

plot
 

is
 

shown
 

in
 

Figure
 

3.8.5.

φ=0°-arctan-
f0
f  =

90°, f≪f0
0°-arctan(-1)=45°, f=f0
0°, f≫f0








 (3.8.12)

  The
 

first-order
 

low-pass
 

phase
 

Bode
 

plot
 

is
 

illustrated
 

in
 

Figure
 

3.8.6.

Figure
 

3.8.5 First-order
 

high-pass
 

amplitude-
frequency

 

Bode
 

plot
Figure

 

3.8.6 First-order
 

low-pass
 

phase
 

Bode
 

plot
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3.9 Simulation:
 

Thevenin
 

Equivalent
 

Circuits
 

and
 

Norton
Equivalent

 

Circuits

1.
  

Experimental
 

requirements
 

and
 

objectives
(1)

  

Find
 

the
 

Thevenin
 

equivalent
 

circuit
 

or
 

Norton
 

equivalent
 

circuit
 

of
 

a
 

linear
 

active
 

two-terminal
 

network.
(2)

  

Mastery
 

of
 

Thevenins
 

theorem
 

and
 

Nortons
 

theorem.

2.
  

Experimental
 

principle
According

 

to
 

Thevenins
 

theorem
 

and
 

Nortons
 

theorem,
 

any
 

linear
 

two-terminal
 

network
 

with
 

sources
 

can
 

be
 

equivalently
 

represented
 

either
 

as
 

an
 

actual
 

voltage
 

source
 

in
 

series
 

with
 

a
 

resistor,
 

consisting
 

of
 

an
 

ideal
 

voltage
 

source,
 

or
 

as
 

an
 

actual
 

current
 

source
 

in
 

parallel
 

with
 

a
 

resistor,
 

comprising
 

an
 

ideal
 

current
 

source.
 

The
 

value
 

of
 

this
 

ideal
 

voltage
 

source
 

is
 

equal
 

to
 

the
 

open-circuit
 

voltage
 

at
 

the
 

ports
 

of
 

the
 

two-terminal
 

network,
 

and
 

the
 

value
 

of
 

this
 

ideal
 

current
 

source
 

is
 

equal
 

to
 

the
 

short-circuit
 

current
 

at
 

the
 

ports
 

of
 

the
 

two-terminal
 

network.
 

The
 

value
 

of
 

this
 

resistance
 

is
 

the
 

equivalent
 

resistance
 

between
 

the
 

two
 

ports
 

after
 

setting
 

all
 

the
 

independent
 

sources
 

in
 

the
 

active
 

network
 

to
 

zero.
 

According
 

to
 

the
 

law
 

of
 

interchangeability
 

between
 

two
 

real
 

power
 

sources,
 

this
 

resistance
 

is
 

actually
 

equal
 

to
 

the
 

ratio
 

of
 

open-circuit
 

voltage
 

to
 

short-
circuit

 

current.

3.
  

Experimental
 

circuit
The

 

active
 

two-terminal
 

linear
 

network
 

is
 

shown
 

in
 

Figure
 

3.9.1.

Figure
 

3.9.1 Active
 

two-terminal
 

linear
 

network

4.
  

Experimental
 

step
(1)

  

Edit
 

Figure
 

3.9.2
 

in
 

the
 

Circuit
 

Window,
 

where
 

the
 

nodes
 

at
 

points
 

a
 

and
 

b
 

are
 

obtained
 

through
 

the
 

initiation
 

of
 

the
 

“Place
 

Junction”
 

command
 

found
 

in
 

the
 

“Place”
 

menu;
 

to
 

get
 

a,
 

b
 

text
 

logo,
 

start
 

“Place
 

Text”
 

in
 

the
 

“Place”
 

menu,
 

and
 

then
 

enter
 

the
 

desired
 

text
 

in
 

the
 

determined
 

position.



106  

(2)
  

Take
 

out
 

the
 

multimeter
 

from
 

the
 

instrument
 

column
 

and
 

set
 

it
 

to
 

the
 

DC
 

voltage
 

block,
 

connect
 

it
 

to
 

the
 

points
 

a
 

and
 

b
 

points
 

and
 

measure
 

the
 

open-circuit
 

voltage.
 

Measure
 

the
 

open-circuit
 

voltage
 

Uab=7.820V,
 

as
 

shown
 

in
 

Figure
 

3.9.2(a).
(3)

  

Set
 

the
 

multimeter
 

to
 

the
 

DC
 

current
 

block,
 

measure
 

the
 

short-circuit
 

current
 

Is,
 

measured
 

short-circuit
 

current
 

Is=78.909mA,
 

as
 

shown
 

in
 

Figure
 

3.9.2(b).

Figure
 

3.9.2 Circuit
 

window
 

editorial
 

graph(1)

(4)
  

Find
 

the
 

equivalent
 

resistance
 

of
 

a
 

two-terminal
 

network.
Method

 

1:
 

Through
 

the
 

measured
 

open-circuit
 

voltage
 

and
 

short-circuit
 

current,
 

the
 

equivalent
 

resistance
 

of
 

the
 

two-terminal
 

network
 

can
 

be
 

obtained.

R0=
Uab
Is

=
7.820
78.909=0.0991kΩ=99.1Ω

  Method
 

2:
 

Replace
 

all
 

independent
 

sources
 

in
 

the
 

two-terminal
 

network
 

with
 

zero,
 

which
 

means
 

substituting
 

voltage
 

sources
 

with
 

a
 

short
 

circuit
 

and
 

current
 

sources
 

with
 

an
 

open
 

circuit.
 

Directly
 

measure
 

the
 

resistance
 

between
 

points
 

a
 

and
 

b
 

using
 

the
 

ohmmeter
 

function
 

of
 

the
 

multimeter.
 

The
 

measured
 

resistance
 

Ro=99.099≈99.1Ω,
 

as
 

shown
 

in
 

Figure
 

3.9.3.
(5)

  

Draw
 

the
 

equivalent
 

circuit.
 

The
 

Thevenin
 

equivalent
 

circuit
 

is
 

shown
 

in
 

Figure
 

3.9.4(a)
 

and
 

the
 

Norton
 

equivalent
 

circuit
 

is
 

shown
 

in
 

Figure
 

3.9.4(b).
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Figure
 

3.9.3 Circuit
 

window
 

editorial
 

graph(2)

Figure
 

3.9.4 Thevenin
 

equivalent
 

circuit
 

and
 

Norton
 

equivalent
 

circuit

Problems

3.1 The
 

circuit
 

is
 

shown
 

in
 

Figure
 

P3.1,
 

find:
(a)

 

How
 

many
 

linearly
 

independent
 

KVL
 

equations
 

can
 

be
 

written
 

for
 

the
 

network
 

in
 

the
 

figure?
 

(b)
 

How
 

many
 

linearly
 

independent
 

KCL
 

equations
 

can
 

be
 

written
 

for
 

the
 

network
 

in
 

the
 

figure?
 

(c)
 

Write
 

a
 

set
 

of
 

KVL
 

and
 

KCL
 

equations
 

for
 

the
 

network.
3.2 Using

 

the
 

Superposition
 

Theorem,
 

find
 

the
 

UO
 of

 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.2.

Figure
 

P3.1 Figure
 

P3.2
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3.3 Using
 

the
 

Superposition
 

Theorem,
 

find
 

the
 

UO
 of

 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.3.
3.4 The

 

two
 

circuits
 

in
 

Figure
 

P3.4
 

are
 

equivalent,
 

i.e.,
 

they
 

have
 

the
 

same
 

U
 

and
 

I
 

relationship
 

at
 

the
 

ports.
 

Find
 

the
 

UT,
 

RT.

Figure
 

P3.3 Figure
 

P3.4

3.5 Find
 

the
 

Thevenin
 

equivalent
 

circuit
 

of
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.5.
3.6 Determine

 

the
 

Thevenin
 

equivalent
 

circuit
 

of
 

the
 

left-side
 

network
 

relative
 

to
 

the
 

terminal
 

pair
 

aa'as
 

shown
 

in
 

the
 

circuit
 

of
 

Figure
 

P3.6.

Figure
 

P3.5 Figure
 

P3.6

3.7 Find
 

the
 

Norton
 

equivalent
 

of
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.7.
3.8 Find

 

the
 

Norton
 

equivalent
 

of
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.8.

Figure
 

P3.7 Figure
 

P3.8

3.9 Determine
 

the
 

Norton
 

equivalent
 

circuit
 

of
 

the
 

left-side
 

network
 

relative
 

to
 

the
 

terminal
 

pair
 

aa'as
 

illustrated
 

in
 

the
 

circuit
 

of
 

Figure
 

P3.9.

Figure
 

P3.9



109  

3.10 Find
 

the
 

time
 

constant
 

and
 

cutoff
 

frequency
 

of
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.10.
 

Where
 

RS=1kΩ,
 

RP=10kΩ,
 

and
 

CS=1μF.
3.11 Find

 

the
 

time
 

constant
 

and
 

cutoff
 

frequency
 

of
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.11.
 

Where
 

RS=1kΩ,
 

RP=10kΩ,
 

and
 

CP=3μF.

Figure
 

P3.10 Figure
 

P3.11

3.12 In
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.12,
 

where
 

RS=4.7kΩ,
 

RP=25kΩ,
 

and
 

CP=
 

120pF,
 

find
 

the
 

cutoff
 

frequency
 

fH.
3.13 Find

 

the
 

cutoff
 

frequency
 

and
 

bandwidth
 

of
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.13.
 

Where
 

RS=1kΩ,
 

RP=10kΩ,
 

CS=1μF,
 

CP=3pF.

Figure
 

P3.12 Figure
 

P3.13

3.14 As
 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.14,
 

it
 

is
 

known
 

that
 

U1=40V,
 

U2=
75V,

 

R1=20kΩ,
 

R2=60kΩ,
 

R3=8kΩ,
 

R4=40kΩ,
 

R5=160kΩ,
 

C=0.25μF.
 

The
 

switch
 

has
 

been
 

closed
 

at
 

position
 

1
 

for
 

a
 

long
 

time,
 

at
 

t=0
 

the
 

switch
 

is
 

turned
 

to
 

end
 

2,
 

try
 

to
 

find
 

the
 

capacitor
 

voltage
 

uC(t)
 

at
 

t≥0.
3.15 The

 

sinusoidal
 

current
 

i1(t)=20cos(ωt-30°)A,
 

i2(t)=40cos(ωt+60°)A
 

and
 

i3(t)=i1(t)+i2(t)
 

is
 

known,
 

try
 

to
 

find
 

the
 

phase
 

of
 

i3(t).
3.16 In

 

the
 

circuit
 

shown
 

in
 

Figure
 

P3.16,
 

it
 

is
 

known
 

that
 

uS=750cos(5000t+
30°)V,

 

R=90Ω,
 

L=32mH,
 

C=5μF,
 

try
 

to
 

find
 

the
 

steady
 

state
 

current
 

i
 

by
 

using
 

the
 

phase
 

method.

Figure
 

P3.14 Figure
 

P3.16


