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凸集与凸函数是最优化的核心概念, 凸函数是最优化领域中最重要的一类函
数, 在优化算法和理论中处于中心地位.

3.1 凸 集

凸集及其相关理论是凸优化的基础, 在算法理论的发展中起着重要作用.

定义 3.1 (凸集)

♣

集合 C称为凸集, 如果对任意x、y ∈ C及0 ⩽ λ ⩽ 1, 都有

λx+ (1− λ)y ∈ C

定义3.1表明, 凸集中任意两点的连线仍然包含在集合中, 这称为凸组合, 如
图3.1所示. 图3.1(a)中任何两点连线都仍然在集合中, 所以是凸集, 图3.1(b)中存
在两点的连线超出集合范围, 所以不是凸集.

(a) (b) 

图 3.1 凸集和非凸集

例题 3.1 使用凸集的定义, 验证以下集合是凸集.
（1）仿射空间: 设 A ∈ Rm×n, b ∈ Rm, 集合 P = {x|Ax = b} 为凸集.
（2）半空间: H = {x ∈ Rn | 〈a,x〉 ⩾ 0}.
（3）多面体: M = {x ∈ Rn | Ax ⩽ b, Cx = d}.
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（1）仿射空间: 对于点x、y ∈ P , 都有Ax = b,Ay = b, 因此

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay = λb+ (1− λ)b = b

即λx+ (1− λ)y ∈ P. 因此, P是凸集.
（2）半空间: 对于点x、y ∈ P , 都有 〈a,x〉 ⩾ 0, 〈a,y〉 ⩾ 0, 因此

〈a, λx+ (1− λ)y〉 = λ〈a,x〉+ (1− λ)〈a,y〉.

由于 〈a,x〉 ⩾ 0, 〈a,y〉 ⩾ 0, 所以 〈a, λx+ (1− λ)y〉 ⩾ 0, 即λx+ (1− λ)y ∈ P. 因此, P是
凸集.
（3）多面体: 对于点x、y ∈ P , 都有Ax ⩽ b,Cx = d并且Ay ⩽ b,Cy = d

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay ⩽ λb+ (1− λ)b = b

C(λx+ (1− λ)y) = λCx+ (1− λ)Cy = λd+ (1− λ)d = d

即λx+ (1− λ)y ∈ P. 因此, P是凸集.
例题 3.2 球体是凸集: 以xc为中心, r为半径的球体可以表示为

B(xc, r) = {x ∈ Rn| ‖x− xc‖2 ⩽ r} = {x ∈ Rn|(x− xc)
T(x− xc) ⩽ r2}

以原点为中心的球体为{x ∈ Rn| ‖x‖2 ⩽ r}.
假设x、y ∈ B(0, r), 则有 ‖x‖ ⩽ r, ‖y‖ ⩽ r. 对于λ ∈ (0, 1), 有

‖λx+ (1− λ)y‖ ⩽ λ‖x‖+ (1− λ)‖y‖ ⩽ λr + (1− λ)r ⩽ r.

因此, λx+ (1− λ)y ∈ B(0, r), 即球体是凸集.
对于一般的球体B(xc, r), 设x、y ∈ B(xc, r), 则有

‖λx+ (1− λ)y − xc‖ = ‖λ(x− xc) + (1− λ)(y − xc)‖

⩽ λ‖x− xc‖+ (1− λ)‖y − xc‖

⩽ λr + (1− λ)r ⩽ r

因此, λx+ (1− λ)y ∈ B(xc, r), 即B(xc, r)是凸集.
例题 3.3 椭球体是凸集: 设P 是正定矩阵, 以xc为中心的椭球体表示为

E = {x ∈ Rn|(x− xc)
TP−1(x− xc) ⩽ 1}.

下面针对以原点为中心xc = 0的椭球体E = {x ∈ Rn|xTP−1x ⩽ 1}, 验证E是凸集.
对于x、y ∈ E和λ ∈ (0, 1), 有

(λx+ (1− λ)y)TP−1(λx+ (1− λ)y)

=λ2xTP−1x+ (1− λ)2yTP−1y + 2λ(1− λ)xTP−1y

⩽λ2 + (1− λ)2 + 2λ(1− λ) = 1.

其中不等号是由于 xTP−1x ⩽ 1, yTP−1y ⩽ 1,以及P−1内积的Cauchy不等式 (xTP−1y)2 ⩽
xTP−1x · yTP−1y.
凸集满足一些重要运算性质.
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命题 3.1

♠设 C1、C2为凸集, 则交集 C1 ∩ C2 为凸集.

证明 令 x、y ∈ C1 ∩ C2, 则 x、y ∈ C1 并且 x、y ∈ C2. 由于 C1, C2 为凸集, 有
λ1x+ λ2y ∈ C1, 及 λ1x+ λ2y ∈ C2. 所以, λ1x+ λ2y ∈ C1 ∩ C2, 即C1 ∩ C2 为凸集.

类似地, 使用数学归纳法可证明得∩mi=1Ci为凸集.
在一些重要的映射下, 如仿射变换, 凸集的像集仍是凸集.
例题 3.4 设f : Rn → Rm 是仿射变换f(x) = Ax + b, 其中A ∈ Rm×n, b ∈ Rm, 则

凸集在仿射变换下的像是凸集: 如果S ⊆ Rn是凸集, 则f(S) = {f(x)|x ∈ S}是凸集.
由于S是凸集, 对于点x、y ∈ S和λ ∈ (0, 1), 有λx + (1 − λ)y ∈ S. 因此, f(x) ∈

f(S), f(y) ∈ f(S), 并且f(λx+ (1− λ)y)是像集中的一点, f(λx+ (1− λ)y) ∈ f(S). 结论
成立.
使用此结论, 容易验证前面椭球体E = {x ∈ Rn|xTP−1x ⩽ 1}是凸集. 实际上, 设

L ∈ Rn×n是下三角矩阵, 满足P−1 = LLT, 则xTP−1x = xTLLTx = ‖LTx‖2. 因此,
椭球体E = {x ∈ Rn|xTP−1x ⩽ 1}可以看作球体B = {x ∈ Rn|‖x‖ ⩽ 1}在线性映射
f(x) = LTx下的像. 由于球体B是凸集, 因此可得E是凸集.
同理可以验证, 凸集在仿射变换下的原像是凸集: 如果 C ⊆ Rm是凸集, 则f−1(C) =

{x|f(x) ∈ C}是凸集.
凸集具有很好的性质, 在理论和实际中起着重要作用. 凸集的一个重要性质是, 可以用

超平面分离不相交的凸集.

定理 3.1

♥

设C、D为两个无交集的凸集, 则存在a 6= 0, b, 使得

aTx ⩽ b,x ∈ C, 并且 aTx ⩾ b,x ∈ D,

超平面aTx = b 将两个凸集C、D 分离在平面两侧.

凸集分离定理表明, 如果要划分Rn中的2个凸集, 只求得一个适当的超平面即可. 凸
集分离定理在凸优化理论中有重要作用, 是证明KKT条件的基础.

定义 3.2

♣集合K称为锥, 如果对任意 x ∈ K,α > 0, 都有αx ∈ K.

例题 3.5 所有的半正定矩阵构成锥 S+ = {A ∈ Rn×n | A ⩾ 0}. 设A ∈ S+为半正定

矩阵, 则对于任意非零向量v ∈ Rn, 都有vTAv ⩾ 0. 对于α > 0, vT(αA)v ⩾ 0, 所以αA

是半正定矩阵, 集合S+构成锥.
同时, S+是凸集. 记所有对称矩阵集合为S = {A ∈ Rn×n | AT = A}, 容易验证S是

凸集. 半正定矩阵集合S+ 可以看作S与半空间的交集

Sn
+ =

⋂
x∈Rn\{0}

{A ∈ Sn | xTAx ⩾ 0}.
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因此, 根据结论, 凸集的交集是凸集, 可得S+为凸集.

3.2 凸 函 数

凸函数是最优化领域中最重要的一类函数, 在优化算法和理论中处于中心地位. 函数
的凸性质保证了所有的局部极小值点都是全局极小值点. 因此, 设计算法时搜索找到局部
极小值点即可, 这为优化算法设计带来便利.

定义 3.3 (凸函数)

♣

设集合Ω为凸集, 函数f : Ω ⊆ Rn → R称为凸函数, 如果满足: 对于任意x,y ∈ D

以及λ ∈ [0, 1], 都有

f(λx+ (1− λ)y) ⩽ λf(x) + (1− λ)f(y). (3.1)

如果对λ ∈ (0, 1), 上述不等式严格成立, 则称f为严格凸函数.

如果不等式(3.1)中的不等号反向, 则成为凹函数. 凸函数的几何意义如图3.2所示. 对
于凸函数f , 连接 (x, f(x)) 与 (y, f(y))的线段总是在函数 f的曲线之上.

x y

f (y)

f (x)
λf(x)+

(1−λ)f(y)

O

图 3.2 凸函数

例题 3.6 设‖ · ‖ : V → R是线性空间V 上的范数, 范数是凸函数. 实际上, 对于任意
x、y ∈ V , λ ∈ [0, 1], 都有

‖λx+ (1− λ)y‖ ⩽ ‖λx‖+ ‖(1− λ)y‖ = λ‖x‖+ (1− λ)‖y‖.

其中不等号是由于三角不等式, 最后等号是由于范数对向量数乘的线性特性.

例题 3.7 如果fi : Rn → R是凸函数, i = 1, 2, · · · ,m, 则f(x) =
m∑
i=1

fi(x)是凸函数.

对于任意x、y ∈ V , λ ∈ [0, 1], 都有

f(λx+ (1− λ)y) =
m∑
i=1

fi(λx+ (1− λ)y)

⩽
m∑
i=1

(λfi(x) + (1− λ)fi(y))
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= λ
m∑
i=1

fi(x) + (1− λ)
m∑
i=1

fi(y)

= λf(x) + (1− λ)f(y).

因此f(x)是凸函数.
例题 3.8 设 S ⊆ Rn 为凸集, x ∈ Rn. 定义点到集合的最远距离为

dS(x) = sup
y∈S
‖x− y‖.

证明: dS(x)是凸函数.
证明 对于u、v ∈ Rn, λ ∈ [0, 1], 都有

dS(λu+ (1− λ)v) = sup
y∈C
‖λu+ (1− λ)v − y‖

= sup
y∈C
‖λ(u− y) + (1− λ)(v − y)‖

⩽ sup
y∈C

(λ‖u− y‖+ (1− λ)‖v − y‖)

⩽ λ sup
y∈C
‖u− y‖+ (1− λ) sup

y∈C
‖v − y‖

= λdS(u) + (1− λ)dS(v).

因此, dS(x) 对x是凸函数.
例题 3.9 设X ∈ Sn为对称矩阵, f(X) = max

∥u∥=1
uTXu,u ∈ Rn, 证明f是X的凸

函数.
证明 对于X、Y ∈ Sn, λ ∈ [0, 1], 都有

f(λX + (1− λ)Y ) = max
∥u∥=1

uT(λX + (1− λ)Y )u

= max
∥u∥=1

(λuTXu+ (1− λ)uTY u)

⩽ λ max
∥u∥=1

uTXu+ (1− λ) max
∥u∥=1

uTY u

= λf(X) + (1− λ)f(Y ).

其中第三行的不等号是由于max函数的性质.
注意, 上述证明中不涉及向量范数的具体形式和性质. 因此, 对于任意给定的向量范

数, 函数f(X)都是凸函数.
例题 3.10 若f 是凸函数, 则f(Ax+ b)是凸函数.
证明 由于f 是凸函数, 因此

f(λx+ (1− λ)y) ⩽ λf(x) + (1− λ)f(y).

所以,

f(A(λx+ (1− λ)y) + b) = f(λAx+ (1− λ)Ay + b)

⩽ λf(Ax+ b) + (1− λ)f(Ay + b)

所以f(Ax+ b)是凸函数.
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此结论说明, 线性映射与凸函数的复合是凸函数.
例题 3.11 (凸函数的复合) 设 f : I1 ⊆ Rn → R, g : I2 → R, 并有 f(I1) ⊆ I2. 如果

f、g是凸函数, 并且 g是增函数, 则复合函数 g ◦ f是 I1上的凸函数.
证明 由于f是凸函数, 因此有f(λx+ (1 − λ)y) ⩽ λf(x) + (1 − λ)f(y). 由于 g是增

函数, 因此
g(f(λx+ (1− λ)y)) ⩽ g(λf(x) + (1− λ)f(y)).

再由 g的凸性质, 有

g(f(λx+ (1− λ)y)) ⩽ g(λf(x) + (1− λ)f(y)) (g是增函数)

⩽ λg(f(x)) + (1− λ)g(f(y)) ( g是凸函数)

凸函数与单调增凸函数的复合是凸函数. 例如, 如果 g是凸函数, 则 exp g(x) 是凸函数.

3.2.1 凸集与凸函数的关联

上方图的概念建立起集合的凸性与凸函数之间的密切联系.

定义 3.4

♣函数f : Rn → R, 集合 epi(f) = {(x, t) ∈ Rn+1 | f(x) ⩽ t}称为上方图 (epigraph).

函数的上方图的重要性在于, 它将函数的凸性和集合的凸性联系起来, 指出集合 epi(f)
是凸集与函数f(x)是凸函数之间具有密切关联. 非凸函数与凸函数的上方图如图3.3所示.
从图3.3(b)可以看出, 如果函数f(x)是凸集, 则对应的上方图为凸集.

epi( f ) epi( f )

f (x)
f (x)

(a) (b)

图 3.3 非凸函数与凸函数的上方图

命题 3.2 (凸集与凸函数的关联)

♠函数f : Rn → R是凸函数, 当且仅当集合 epi(f)是凸集.

证明 命题必要性和充分性可以通过定义直接证明.
必要性: 若f为凸函数, 对任意 (x1, t1), (x2, t2) ∈ epi(f), λ ∈ (0, 1), 则f(x1) ⩽

t1, f(x2) ⩽ t2, 因此

f(λx1 + (1− λ)x2) ⩽ λf(x1) + (1− λ)f(x2) ⩽ λt1 + (1− λ)t2,

故 (λx1 + (1− λ)x2, λt1 + (1− λ)t2) ∈ epi(f).
充分性: 若 epi(f) 是凸集, 则对任意x1、x2 ∈ Rn, λ ∈ [0, 1],
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(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epi(f).

因此,
f(λx1 + (1− λ)x2) ⩽ λf(x1) + (1− λ)f(x2).

所以f是凸函数.
例题 3.12 设f是凸函数, 则f的下水平集Cα = {x ∈ R|f(x) ⩽ α}为凸集.
证明 对任意x、y ∈ Cα, 都有f(x) ⩽ α, f(y) ⩽ α. 对任意 λ ∈ (0, 1), 要证明Cα是凸

集, 只需要证明λx+ (1− λ)y ∈ Cα, 即f(λx+ (1− λ)y) ⩽ α.
根据f的凸性, 可得

f(λx+ (1− λ)y) ⩽ λf(x) + (1− λ)f(y)

⩽ λα+ (1− λ)α

= α.

因此, Cα为凸集.

3.2.2 凸函数的性质

定理 3.2

♥

f : Rn → R为凸函数, x∗为其局部极小点, 则 x∗为全局极小点: 对于任意x ∈ Rn,
都有 f(x) ⩾ f(x∗).

定理3.2表明, 凸函数的局部极小点即全局极小点. 这是极为重要的性质, 这确保了, 对
于凸函数, 只寻找到局部极小点, 即可确认为全局极小点. 这就是为什么凸函数处于极为重
要的位置. 对于非凸函数, 在局部范围内也可以用凸函数近似, 并使用相应方法进行求解,
获得一个局部极小值点.

证明 使用反证法证明. 假设存在 y ∈ Rn, 使得 f(y) < f(x∗). 对于λ ∈ (0, 1), 令

y0 = λx∗ + (1− λ)y

由于f是凸函数, 因此

f(y0) = f(λx∗ + (1− λ)y) ⩽ λf(x∗) + (1− λ)f(y) < f(x∗).

选 λ接近 1, 使得 ‖y0 − x∗‖ < ϵ, 这与x∗ 是局部极小点矛盾.
使用相同的方法可以证明, 对于严格凸函数, 任何两点的连线都不会与函数有两点之

外的交点, 因此最多只有一个极小值点.
例题 3.13 (Jensen不等式) 对于凸函数, Jensen不等式成立. 反之亦然, 即Jensen

不等式是凸函数的等价条件. 设f为凸函数, xi ∈ X, λi > 0,
m∑
i=1

λi = 1, 则有

f

(
m∑
i=1

λixi

)
⩽

m∑
i=1

λif(xi). (3.2)

对于 m = 2, 这就是凸函数的定义. 对于一般的m ⩾ 3, 可以使用归纳法证明.
首先, 考虑 n = 2 的情况, 即凸函数的定义. 对于n > 2, 使用数学归纳法证明. 假设
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Jensen 不等式对 m = k 成立, 即

f

(
k∑

i=1

λixi

)
⩽

k∑
i=1

λif(xi)

下面证明不等式对 m = k + 1 也成立.

设 λ1, λ2, · · · , λk+1 是一组正权重, 满足
k+1∑
i=1

λi = 1. 令 µ =
k∑

i=1

λi, 则有 λk+1 = 1−µ.

因此

f

(
k+1∑
i=1

λixi

)
= f

(
µ

(
1

µ

k∑
i=1

λixi

)
+ (1− µ)xk+1

)
.

根据凸函数的定义, 有

f

(
µ

(
1

µ

k∑
i=1

λixi

)
+ (1− µ)xk+1

)
⩽ µf

(
1

µ

k∑
i=1

λixi

)
+ (1− µ)f(xk+1).

再利用归纳假设

f

(
1

µ

k∑
i=1

λixi

)
⩽ 1

µ

k∑
i=1

λif(xi),

因此, 有

f

(
k+1∑
i=1

λixi

)
⩽ µ

(
1

µ

k∑
i=1

λif(xi)

)
+ (1− µ)f(xk+1)

=
k∑

i=1

λif(xi) + λk+1f(xk+1) =
k+1∑
i=1

λif(xi).

这就证明了 Jensen 不等式对 n = k + 1 也成立. 因此, Jensen 不等式对任意 m 均成立.

3.2.3 凸函数的判定条件

对于很多复杂的问题, 尤其是机器学习中以向量和矩阵为变量的问题, 直接使用凸函
数的定义难以判定是否为凸函数. 将函数限制在某个特定方向, 分析其凸性, 可以获得函
数整体的凸性, 这就是凸函数判定定理, 它给出了分析复杂变量函数的凸性的一种可行性
方案.

定理 3.3 (凸函数判定定理)

♥

f : Rn → R为凸函数, 当且仅当对任意x ∈ Rn,v ∈ Rn, 函数 g : R→ R

g(t) = f(x+ tv), dom(g) = {t ∈ R|x+ tv ∈ Rn} (3.3)

对于变量 t是凸函数.

证明 必要性: 设f(x)是凸函数, 证明 g(t) = f(x+ tv)是凸函数．

先证明函数 g的定义域dom(g)是凸集．对任意的 t1、t2 ∈ dom(g)以及 θ ∈ (0, 1), 有
x+ t1v ∈ Rn和x+ t2v ∈ Rn. 由f的定义域Rn是凸集, 对以上两式分别乘以λ, (1−λ), 其
线性组合x+(λt1 + (1− λ))t2v ∈ Rn. 这说明λt1 +(1− λ)t2 ∈ dom(g), 即dom(g)是凸集.
对于λt1 + (1− λ)t2 ∈ dom(g), 根据函数g与函数f的关系, 有
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g(λt1 + (1− λ)t2) = f(x+ (λt1 + (1− λ))t2v)

= f((λ(x+ t1v) + (1− λ))(x+ t2v))

⩽ λf(x+ t1v) + (1− λ)f(x+ t2v)

= λg(t1) + (1− λ)g(t2).

结合以上两点, 得到函数 g(t)是凸函数．

充分性:首先f的定义域Rn是凸集. 设 g(t) = f(x+ tv)是凸函数, 有

g(1− λ) = g(λt1 + (1− λ)t2)

⩽ λg(t1) + (1− λ)g(t2)

= λg(0) + (1− λ)g(1)

= λf(x) + (1− λ)f(y).

在函数 g(t) = f(x+ tv)中, 令v = y − x, 则不等式左边为

g(1− λ) = f(x+ (1− λ)(y − x)) = f(λx+ (1− λ)y).

代入上述不等式, 得函数f(x)是凸函数．

上述定理给出了对于复杂函数是凸函数的判定条件, 即使用函数 g(t) = f(x+ tv)将问

题转换为单变量函数, 通过判断函数 g(t)的性质判断函数f(x)是否为凸函数. 这为我们判
断一般多变量乃至矩阵变量函数的凸性提供了有力工具.

例题 3.14 设X为对称正定矩阵X ∈ Sn++, 函数f(X) = − log detX是凸函数.
证明 对于任意X � 0以及方向V ∈ Sn++,将f限制在直线X+ tV（t满足X+ tV >

0）上, 那么

g(t) = − log det(X + tV )

= − log det
(
X1/2(I + tX−1/2V X−1/2)X1/2

)
= − log detX − log det(I + tX−1/2V X−1/2)

= − log detX −
n∑

i=1

log(1 + tλi)

其中λi是X−1/2V X−1/2的第 i个特征值, 因此λi > 0. 对于a > 0, 函数h(t) = − log(1 +
at)是凸函数. 因此, 对于不同的λi > 0, 上式最右边是凸函数.

因此, 对任意X � 0以及方向V , 函数 g关于 t是凸的, 因此f是凸函数.
对于一般函数, 直接使用凸函数的定义或判定定理通常较为复杂, 因此需要更简单、快

捷的判定方法. 一阶条件通过建立凸函数与梯度之间的关系, 为判定凸性提供了更方便的
工具.

定理 3.4 (凸函数的一阶条件)

♥

设函数f : Rn → R是可微函数, f(x) 是凸函数, 当且仅当对任意y ∈ Rn, 都有

f(y) ⩾ f(x) +∇f(x)T(y − x). (3.4)
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定理的几何意义是函数f(x)在点x处的切线始终在函数图像下方, 如图3.4所示.

yx

f (y)

f (x)+   f(x)   (y−x)∇
T

图 3.4 凸函数总是在图像上任意点的切线上方

证明 必要性: 设f是凸函数, 则对于任意的x、y ∈ Rn以及λ ∈ (0, 1), 都有

λf(y) + (1− λ)f(x) ⩾ f(x+ λ(y − x)).

将上式移项, 两边同时除以λ, 注意λ > 0, 则

f(y)− f(x) ⩾ f(x+ λ(y − x))− f(x)

λ
.

令λ→ 0, 由极限保号性可得

f(y)− f(x) ⩾ lim
t→0

f(x+ λ(y − x))− f(x)

λ
= ∇f(x)T(y − x).

这里, 最后一个等式成立是由于方向导数的性质．
充分性: 对任意的x、y ∈ Rn以及任意的λ ∈ (0, 1), 定义z = λx+ (1− λ)y, 对x和y

分别在z处应用一阶条件, 有

f(x) ⩾ f(z) +∇f(z)T(x− z),

f(y) ⩾ f(z) +∇f(z)T(y − z).

将第一个不等式两边同时乘以λ, 第二个不等式两边同时乘以1− λ, 然后两者相加得

λf(x) + (1− λ)f(y) ⩾ f(λx+ (1− λ)y).

这正是凸函数的定义, 因此充分性成立．
单变量凸函数的一个基本性质是随着自变量的增大, 函数的导数逐渐增大, 即导数具

有单调性. 此结论可以推广到多变量的情形.
例题 3.15 设 f(x) =

1

2
xTQx, 其中x ∈ Rn, Q ∈ Rn×n为正定矩阵. 使用一阶条件

证明f(x)是凸函数.
证明 首先, f(x)的梯度为∇f(x) = Qx. 要证明f(x)是凸函数, 只需证明

f(y)− f(x)−∇f(x)T(y − x) ⩾ 0.

将函数表达式和梯度代入, 直接计算可得

f(y)− f(x)−∇f(x)T(y − x)

=
1

2
yTQy − 1

2
xTQx− xTQ(y − x)

=
1

2

(
yTQy − xTQx− 2xTQy + xTQx

)
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=
1

2

(
yTQy + xTQx− 2xTQy

)
⩾1

2
(x− y)TQ(x− y) ⩾ 0.

最后的不等号是由于Cauchy不等式和矩阵Q的正定性. 结论得证.

命题 3.3 (梯度单调性)

♠

设f : X ⊂ Rn → R为可微函数, 则f为凸函数, 当且仅当X为凸集, 且对于任意x、

y ∈ X

(∇f(x)−∇f(y))T(x− y) ⩾ 0, ∀x、y ∈ X. (3.5)

证明 必要性: 若f可微且为凸函数, 根据一阶条件, 有

f(y) ⩾ f(x) +∇f(x)T(y − x)

f(x) ⩾ f(y) +∇f(y)T(x− y).

将两式不等号左右两边相加, 整理可得到结论式(3.5)．
充分性: 若∇f为单调映射, 构造 g(t) = f(x + t(y − x)), t ∈ (0, 1), 则有 g(0) =

f(x), g(1) = f(y), 并且 g(t)的导数为

g′(t) = ∇f(x+ t(y − x))T(y − x)

由梯度∇f(x)的单调性可知

〈∇f(x+ t(y − x))−∇f(x), t(y − x)〉 ⩾ 0

两边除以 t, 并展开, 可得

〈∇f(x+ t(y − x)),y − x〉 ⩾ 〈∇f(x),y − x〉.

根据 g(t)的导数,梯度为单调映射,等价于 g′(1) ⩾ g′(0). 根据微积分基本定理,并由f(y) =

g(1), f(x) = g(0), 有

f(y) = g(1) = g(0) +

∫ 1

0

g′(t)dt

⩾ g(0) + g′(0) = f(x) +∇f(x)T(y − x).

此即凸函数的一阶条件.
定理3.5给出了凸函数判定的二阶条件. 与一阶条件相比, 二阶条件要求目标函数具备

二阶连续可微性, 并通过利用其 Hessian 矩阵的二阶信息来判定凸性.

定理 3.5 (凸函数的二阶条件)

♥

设f : Rn → R是二阶连续可微函数,
（1）f 是凸函数, 当且仅当∇2f(x)是半正定矩阵

∇2f(x) � 0, ∀x ∈ Rn. (3.6)

（2）如果 ∇2f(x) � 0, ∀x ∈ Rn, 则f是严格凸函数.
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证明 必要性: 已知f是凸函数, 证明 Hessian矩阵∇2f(x)是半正定矩阵. 令 g(t) =

f(x+ t(y − x)), 其导数和二阶导数为

g′(t) = ∇f(x+ t(y − x))T(y − x), g′′(t) = (y − x)T∇2f(x+ t(y − x))(y − x)

首先证明, 如果f 是凸函数, 总有 g′′(0) ⩾ 0. 注意到, 对于所有足够小的 δ, 都有
1

δ
(g′(δ)− g′(0)) =

1

δ
(∇f(x+ δv)−∇f(x))Tv

=
1

δ2
(
(∇f(x+ δv)−∇f(x))Tδv

)
⩾ 0.

第二行实际是凸函数 f的梯度单调性表达式. 根据命题3.3, 对于凸函数 f , 最后的不等号
成立. 因此, 根据极限的保号性, g′′(0) = lim

δ→0

1

δ
(g′(δ)− g′(0)) ⩾ 0.

为证明∇2f(x) � 0, 对于任意v ∈ Rn, 都存在 y ∈ R, 使得 v = y − x, 于是
vT∇2f(x)v = g′′(0) ⩾ 0. 由此即可得, 矩阵∇2f(x) � 0.

充分性: 已知∇2f(x) � 0是半正定矩阵, 证明f是凸函数. 对于函数 g(t), 对 g′(t)在

[0, 1]上使用微分中值定理, 存在 ξ ∈ (0, 1), 使得

g′(1)− g′(0) = g′′(ξ).

代入 g(t)与函数f(x)的关系, 可得

(∇f(y)T −∇f(x)T)v = ∇f(y)Tv −∇f(x)Tv

= vT∇2f(x+ ξv)v

⩾ 0.

最后的不等号是由于∇2f(z) ⩾ 0 对于所有 z ∈ Rn 都成立. 由此证明了梯度的单调性, 进
而根据命题3.3得 f 是凸函数.

直观地,二阶可微函数f在局部范围可以用二次函数近似,此时函数的凸性就对应了该
二次函数的凸性. 对于二次函数 f(x) =

1

2
xTQx, 其Hessian矩阵∇2f(x) = Q, 因此f为

凸函数, 当且仅当Q � 0.

例题 3.16 (Log-Sum-Exp函数) 考虑函数f(x) = log
n∑

i=1

exp(xi), 计算其Hessian

矩阵, 并判断其凸性.

首先计算函数的梯度. 由于 ∂f

∂xi
= exp(xi)/K, 其中K =

n∑
i=1

exi . 因此梯度可以写成

∇f(x) = z, z =
1

K
(ex1 , ex2 , · · · , exn)T.

在此基础上, 对梯度的每个分量计算偏导数, 可得

∂2f

∂xi∂xj
=


exi

K2
− (exi)2

K2
, i = j.

−exiexj

K2
, i 6= j.

使用上述向量z的记号, Hessian矩阵可以写成

54



第3章 凸集与凸函数

∇2f(x) = diag(z)− zzT.

记H = ∇2f(x), 则H的分量可以写成hij = ziδij − zizj , 其中 δij是 Kronecker 符号. 容易
验证, hii > 0, hij < 0, i 6= j, 并且矩阵每一行所有元素的和为零

n∑
j=1

hij =
n∑

j=1

(ziδij − zizj) = 0.

最后一个等号是由于
n∑

i=1

zi = 1.

下面证明矩阵H是正定矩阵. 对于∀u ∈ Rn,u 6= 0, 有

uTHu = uT(diag(z)− zzT)u =
n∑

i=1

ziu
2
i −

n∑
j=1

(ziui)
2 ⩾ 0.

最后的不等号是由于Cauchy不等式. 由此可见, Hessian矩阵是正定矩阵. 所以函数f(x)

是凸函数.

3.2.4 强凸函数及其性质

定义 3.5 (强凸函数)

♣

设f : Rn → R为可微函数, 如果存在m > 0, 使得

f(y) ⩾ f(x) +∇f(x)T(y − x) +
m

2
‖x− y‖2,y ∈ Rn, (3.7)

则称f(x)为强凸函数, 其中m为强凸参数.

不等式右边可以看作变量y的二次函数强凸函数的定义说明, 函数f(x)具有二次函数

下界, 如图3.5所示. 强凸的几何意义为: 对任意 x 函数, f的图形总是在 (x, f(x))处相切

的二次函数之上.

yx

f (y)

f (x)+   f(x)   (y−x)∇ +
m

2
||(x−y)||

2T

图 3.5 强凸函数具有二次函数下界

例题 3.17 考虑函数f(x) = ‖x‖2 = xTx, 其梯度为∇f(x) = 2x, 则有

f(y)− f(x)−∇f(x)T(y − x) = ‖y‖2 − ‖x‖2 − 2xT(y − x)

= ‖x‖2 + ‖y‖2 − 2xTy = ‖y − x‖2.

这说明, 函数f(x)是一个强凸函数.
使用定义判定强凸函数较为困难, 对于二阶连续可微函数, 可以通过其二阶信息判定.

定理 3.6 (强凸函数的条件)

♥设f : Rn → R为二阶连续可微函数, f(x) 是m-强凸函数, 当且仅当∇2f(x) � mI.
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证明 如果∇2f(x) � mI, 则有

(y − x)T∇2f(x)(y − x) ⩾ (y − x)T(mI)(y − x) = m‖y − x‖2 > 0.

代入f(x)的Taylor公式中, 得

f(y) = f(x) +∇f(x)T(y − x) +
1

2
(y − x)T∇2f(x+ t(y − x))(y − x)

⩾ f(x) +∇f(x)T(y − x) +
m

2
‖y − x‖2.

因此, f(x)是m-强凸函数. 上述证明可逆, 因此为等价条件.
例题 3.18 二次函数f(x) =

1

2
xTQx − bTx, 其中Q是正定矩阵. 根据定理3.6,

∇2f(x) = Q � λminI, 其中λmin是Q的最小特征值. 由于Q是正定矩阵, λmin > 0, 所
以∇2f(x) � 0, 因此f(x)是强凸函数, 并且m = λmin.

可以证明, 对于强凸函数, 极小点是唯一的. 设f(x)为二阶连续可微函数, 对于二阶
连续可微函数, 有 ∇2f(x) � αI � 0, 因此强凸函数必然是严格凸函数, 具有唯一全局极
小值点.
强凸函数与凸函数有密切联系. 可以证明如下结论.
例题 3.19 函数f : Rn → R是m-强凸函数, 则h(x) = f(x)− m

2
‖x‖2是凸函数.

实际上, 直接对h(x)计算Hessian矩阵, 有∇2h(x) = ∇2f(x) −mI. 根据定理3.6, 由
于f(x)是m-强凸函数, ∇2f(x) � mI, 所以∇2h(x) = ∇2f(x) −mI � 0. 根据定理3.5,
h(x)是凸函数.

第3章练习

1. 设f(x) =
1

2
‖Ax− y‖2, 证明: S = {x|f(x) ⩽ 1}是凸集.

2. 证明以下结论:
（a）设f(x) = xTQx + bTx, 其中Q为正定矩阵. 给定d ∈ Rn,d 6= 0, 定义h(t) =

f(x+ td). 证明: h(t)是严格凸函数.
（b）对于矩阵A ∈ Rm×n,矩阵范数定义为‖A‖ = max∥x∥=1 ‖Ax‖. 证明: ‖·‖是Rm×n

上的凸函数.
（c）设f(x) =

1

2
‖Ax− y‖2 + ‖x‖1. 证明: f(x)是凸函数.

3. 设函数 f(x) = − log(xTAx), 其中 x ∈ Rn,A ∈ Rn×n 是一个对称正定矩阵. 判断
f(x) 是否为凸函数.

4. 使用凸函数的一阶条件证明如下结论:
（a）f(x) = (uTx)2 + (vTx)2是凸函数.
（b）设f(x) = xTQx+ bTx是凸函数, 其中Q为正定矩阵.

5. 使用凸函数的二阶条件证明f(x) = −
n∑

k=1

xk logxk是凸函数, xk > 0.

6. 设f : Rn → R是可微函数, 证明以下结论:
（a）f是m-强凸的充分必要条件是: h(x) = f(x)− m

2
‖x‖2是凸函数.
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（b）f(x)为强凸函数的充分必要条件是: 存在常数m > 0, 使得对于任意x、y ∈ X以

及 θ ∈ (0, 1), 都有

f(θx+ (1− θ)y) ⩽ θf(x) + (1− θ)f(y)− m

2
θ(1− θ)‖x− y‖2.

（c）f为强凸函数, 当且仅当∇f(x)满足

(∇f(x)−∇f(y))T(x− y) ⩾ m‖x− y‖2, ∀x、y ∈ Rn.

7. 判断线性回归的损失函数 L(w) =
1

2

m∑
i=1

(yi −wTxi)
2 是否为凸函数, 并给出理由.

8. 判断逻辑回归的损失函数 L(w) = −
m∑
i=1

[yi log(f(xi;w)) + (1− yi) log(1− f(xi;w))]

是否为凸函数, 并给出理由.

9. 判断带有正则化的线性回归损失函数 L(w) =
1

2

m∑
i=1

(yi −wTxi)
2 +

λ

2
‖w‖2 是否为

凸函数, 并给出理由.
10. 判断Softmax函数 σ(z) =

exp(z)
k∑

j=1

exp(zj)
是否为凸函数, 并给出理由.

11. 给定一个凸集 C = {x ∈ Rn | Ax ⩽ b}, 其中 A ∈ Rm×n, b ∈ Rm. 定义函数

ϕ(x) = −
m∑
i=1

log(bi − aT
i x),

其中 ai 是 A 的第 i 行. 判断 ϕ(x) 是否为凸函数, 并计算其梯度 ∇ϕ(x).
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