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图神经网络进阶

􀳁 引  言

图神经网络作为利用深度学习处理图结构数据的前沿工具,在捕捉节点关

系、结构信息和非欧几里得特性方面展现了强大的能力。然而,由于图数据和应

用场景的复杂化,传统图神经网络模型在性能和适用性上暴露出了一些瓶颈,往
往受到数据质量、模型架构和训练策略的限制。随着图神经网络的发展,越来越

多的先进模型被提出以突破传统图神经网络的瓶颈。本章从数据、架构和训练三

个层面介绍了针对传统图神经网络的优化策略。在数据层面,介绍如何提升数据

质量,挖掘图数据潜在的高质量特征,减少噪声干扰;在架构层面,介绍如何改进

传统图神经网络主要部件,包括消息传递,采样和池化,以更好地捕捉图数据的复

杂关系,提升模型性能;在训练层面,介绍如何改进图神经网络的训练策略,包括

图自监督学习和图课程学习,从而缓解依赖大量标注进行训练的困境,并且实现

更稳健的模型收敛和更高的泛化能力。

􀳁 本章学习目标

(1)理解不同图数据优化技术的目的,掌握从结构、特征和标签三个方面对图

数据进行优化的主要方法;
(2)理解传统图神经网络在消息传递方面存在的主要问题,掌握针对过平滑、

长距离依赖,表达能力受限问题的主要解决方法;
(3)掌握图上的采样和池化的主要改进方法,并能根据实际任务灵活选择;
(4)掌握在缺乏标签情况下设计对比或生成式图自监督训练的方法;
(5)了解图课程学习的主要思想,学会利用图课程学习来稳定训练和提升模

型效果。

􀳁 5.1 数 据 优 化

在机器学习的发展历程中,丰富的实践经验表明,大量高质量数据是提升模

型性能、推动模型进步的关键因素。例如,大规模视觉数据集ImageNet的引入,
催生出了经典的卷积神经网络模型 AlexNet和 ResNet,奠定了卷积神经网络在
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图像处理领域的主导地位。同样,在图学习领域,大量研究工作聚焦于如何改进图数据质

量,以便图神经网络能够更好地捕捉图数据中的信息。这些研究主要从图结构优化、图特征

优化和图标签优化三个方面入手,在提升图神经网络模型的准确性、鲁棒性和效率方面发挥

了重要作用。

5.1.1 图结构优化

图结构是图数据中最核心的部分,它描述了节点之间的关联信息。本节将探讨如何从

图结构的角度优化图数据。首先介绍结构缩减,旨在减少图中的冗余节点和边,以降低计算

复杂度并提高模型的可扩展性;其次介绍结构增强,通过较低的开销丰富图结构信息,从而

缓解模型过拟合的问题;再次介绍结构生成,其目标是生成高质量且多样化的图样本;最后

介绍结构学习,专注于从图数据中挖掘出有价值的图结构,进一步提升图模型的表达能力。

1.结构缩减

近年来,图数据集的规模和复杂性呈现出指数级增长。对于大规模网络(如社交图和引

文网络),现有图神经网络在可扩展性和效率方面面临着严峻挑战。结构缩减技术在保留关

键信息的前提下,通过减少图数据集的规模,降低计算复杂度并提升模型可扩展性。结构缩

减方法可以分为三类。

1)图稀疏化

图稀疏化通过移除原始图G 中的部分边,生成一个简化图Gs={V,Es},其中Es⊆E。
通常Gs 需要保持原图G 的某些关键性质,如图切割值、最短路径等。割稀疏化(Cut
Sparsification)是图稀疏化的一个典型例子。它的目标是在尽可能保持图切割值的前提下,
通过减少图中的边来简化图结构。图的切割将图的节点分为两部分,可以表示为C=(V',

V-V')。在此过程中,图切割值(记作w(C))是指跨越该切割的所有边的权值和,这个值

反映了两部分节点之间的连接强度。通常,-割稀疏化(-cutSparsifier)是指一个简化图

Gs,其图切割值在所有切割的情况下与原始图G 的图切割值保持接近,表示如下:
(1- )wG(C)≤wGs

(C)≤(1+ )wG(C)
其中,的取值范围为(0,1),当 =0时,Gs 完全等同于原始图G,随着 增大,允许的偏差更

多,但简化图Gs 在图切割值上依然与原始图G 保持接近。割稀疏化也广泛应用于解决图

的连通性问题、最大流问题、最小二等分问题等。

2)图粗化

图粗化通过将一组紧密连接的节点合并成超级节点的方法来简化图结构。简化图Gs

可以记为Gs=(Vs,Es),其中节点数|Vs|<|V|。近年来,谱保持的图粗化方法(Spectrum-
preservingCoarsening)因为可以较好地保持原始图的重要结构信息受到了较多关注。受限

谱相似性(RestrictedSpectralSimilarity,RSS)[1]是一种用来确保简化图能够学习到原始

图谱特性的技术,具体可以定义为

(1-ζk)λk≤uT
kL
~
uk≤(1+ζk)λk

其中,λk 和uk 分别表示原始图G 的拉普拉斯矩阵L 的第k个特征值和特征向量,L
~
∈RN×N

是简化图Gs 拉普拉斯矩阵的近似,ζk 是误差容忍度,通常取值范围为(0,1)。受限谱相似

性方法通过确保简化图的拉普拉斯矩阵特征值和特征向量在一定误差范围内接近原始图,
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从而确保简化图能有效地学习和保留原始图的谱特性。

3)图压缩

不同于图稀疏化和图粗化在原始图上进行结构上的缩减,图压缩通过合成一个新的更

小的图来实现原始图的压缩。图压缩的目的是生成一个包含较少节点和边的简化图Gs=
{Vs,Es},其中|Vs|≪|V|,使在简化图上训练的模型能表现出与原始图上训练的模型相似

的性能。经典的图压缩框架是利用梯度匹配的方法对齐原始图和简化图的梯度[2]。具体来

说,它通过最小化梯度之间的距离,使在简化图上训练模型时,模型的参数更新与在原始图

上训练时相似,可以表示如下:

rs =

Δ

θL(fθ(As,Xs),Ys)

r=

Δ

θL(fθ(A,X),Y)

minDis(rs,r)
其中,fθ 表示图模型,θ是模型参数,模型的输入是图的邻接矩阵A 和节点特征矩阵X,L
是损失函数,rs 是在简化图Gs 上计算得到的梯度,r是在原始图G 上计算得到的梯度,Dis
(rs,r)是衡量两个梯度距离的函数,如余弦相似度。通过最小化此距离,简化图保留了原始

图的结构和特征信息。

2.结构增强

模型通常需要大量数据才能有效地理解数据的特征和规律。然而,由于图数据的稀缺

性和稀疏性,图神经网络在训练过程中往往无法充分拟合图数据的底层分布,容易陷入局部

最优解,导致模型过拟合,严重削弱了模型在实际应用中的有效性和可靠性。为了缓解这一

问题,结构增强方法在不改变图关键信息的前提下对图的拓扑结构进行适当的扰动,以一种

低开销的方式增强了拓扑结构信息,有效提高了模型的泛化能力。结构增强可分为启发式

增强和自适应增强方法。
启发式增强方法是一类通过预定义规则或经验策略对图结构进行修改或扩展的技术,

其核心思想是利用简单、高效的操作提升模型的鲁棒性和泛化能力。这些方法通常与具体

任务无关,具有较强的普适性,同时对模型结构无显著依赖,因此容易集成到现有的图神经

网络中。

1)启发式增强

(1)丢弃。
丢弃是结构增强中一种基本而广泛应用的技术,旨在通过随机丢弃图中的边、节点和特

征等来改善模型的训练效果。这种方法通常不需要对模型结构进行修改,而是在训练过程

中动态地对图进行随机裁剪,因此非常易于集成到现有的图神经网络训练流程中。以随机

丢弃边的方法为例,DropEdge[3]在每个训练轮次,在图的边集合中随机选择p|E|条边进行

丢弃,其中p 表示去边率,经过丢弃后的邻接矩阵可以表示如下:

Adrop=A-A'
其中,A'是随机选取的p|E|条边组成的稀疏邻接矩阵。DropEdge没有改变邻居聚合的期

望,是一种无偏的图结构增强技术,类似于典型的图像增强操作(如旋转和裁剪),所以可以

缓解过拟合问题,增强模型的泛化能力。
(2)子图替换。
子图替换是为了弥补基于丢弃的方法仅关注到节点或边等最基本层次的信息,而忽视
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了更高层次的信息的不足而提出的,它通过替换图中的特定子结构来实现图结构的增强。

MoCL[4]是在生物医学领域运用子图替换的方法进行图增强的一个重要的工作,它指出大

多数丢弃的方法在增强过程中可能会改变分子图的语义,因此通过注入领域知识来辅助增

强过程。MoCL引入了生物电子等排体(Bioisosteres)的概念,来对分子中的特定有效子结

构进行替换。生物电子等排体是一类具有相似物理或化学性质的分子片段,替换后不会显

著改变分子的整体性质。这种替换能够保持分子的生物活性和物理化学性质,同时引入变

化以增强数据多样性。

2)自适应增强

启发式增强方法还包括图扩散等,这里不做详细介绍。对于在特定任务上需要增强模

型鲁棒性和性能时,启发式增强方法可能存在不足。自适应增强方法在训练阶段基于具体

任务自适应地进行结构增强,分为基于边的方法、基于子图的方法,以及自动化增强方法。
(1)基于边的方法。
为了使可微损失函数指导边增强过程,一些研究将图上边的权值视为可被优化的连续

变量,而不是具有固定的边连接。这些工作通过引入特定的约束(如平滑性和稀疏性)来构

建损失函数,从而生成用于优化边权重的梯度。例如,Pro-GNN[5]提出了如下的损失函数:

L=‖A
~
-A‖2F+η‖A

~
‖1+β‖A

~
‖*+ρ(XTL̂X)+γLGNN

其中,A
~

是增强后的邻接矩阵,L̂ 是归一化的拉普拉斯矩阵。具体来说,‖A
~
-A‖2F(‖·‖F

代表Frobenius范数)旨在让A
~
接近原始邻接矩阵A。η‖A

~
‖1(‖·‖1 表示L1 范数)和

‖A
~
‖*(‖·‖*表示核范数)分别确保图的稀疏性和低秩特性。此外,ρ(XTL̂X)控制特

征的平滑性。γ 控制针对具体任务的图神经网络损失函数LGNN的比重。
(2)基于子图的方法。
基于子图的自适应增强方法旨在找到最具代表性和信息量的子图,类似于分子中的官

能团。然后基于这些子图来进行数据增强,以提高模型的性能、可解释性和鲁棒性等。

GREA[6]是一个典型的基于子图的增强过程,它定义了核心子图(RationaleSubgraph)和环

境子图(EnvironmentSubgraph)的概念,利用核心子图与不同的环境子图的组合生成新的

数据样本,以让模型感知到核心子图的重要性,帮助模型学习更丰富的特征和拓扑结构。具

体而言,如图5-1所示,核心子图(RationaleSubgraph)是指图结构中最能解释或支持模型

预测的子结构。环境子图(EnvironmentSubgraph)是指在核心子图被识别并分离后,图中

剩余的部分。GREA首先利用图神经网络生成潜在节点表示,然后通过多层感知机计算掩

码向量,通过优化属性预测损失来指示哪些节点属于核心子图。接着,它将核心子图与其他

样本的环境子图的表示结合,以产生新的增强数据。通过这种方式,图的全局结构得到了丰

富,同时保留了与任务相关的关键信息。在模型训练过程中,GREA的增强数据可以被视

为新的输入,并参与优化模型参数。
(3)自动化增强。
不同的数据集可能需要不同的增强策略,同一数据集的不同训练阶段也可能需要不同

的增强策略。与上面两种固定的增强策略不同,自动化增强是一种在模型训练过程中动态

学习最佳增强策略的方法,可以根据数据的特性和任务的需求调整其策略,以提高模型自适

应数据分布和任务的能力。这种方法的主要思路是通过双层优化算法或强化学习来选择最
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图5-1 GREA整体框架图[6]

合适的增强方式。JOAO[7]方法通过双层优化的框架来同时学习模型的编码器和增强策

略,以实现更有效的数据增强。在内层优化过程中,首先使用当前的增强策略对训练数据进

行增强,生成新的训练样本。这些增强的数据被用于训练模型的编码器,以提高其性能。在

外层优化中,评估编码器性能并根据评估结果调整增强策略。JOAO从具有可学习参数的

分布中采样增强策略(如基于边和基于子图的方法),通过优化过程自动更新这些参数,以充

分发挥每个增强策略的性能。

3.结构生成

尽管图增强可以初步丰富拓扑信息,但不可避免地会引入噪声,从而影响模型性能。作

为一种更高级的方法,图生成旨在生成高质量和多样化的图样本。在这一部分,将针对不同

的生成的图数据形式介绍相应的代表性生成方法,包括节点序列的生成、邻接矩阵的生成和

节点嵌入的生成。

1)节点序列生成

将图简化为序列是图生成的一个初步思路,催生了自回归图生成方法。通常,自回归方

法旨在基于预先采样的节点顺序逐个生成图的节点。然而,由于图的非唯一性和高维特性,
使用节点顺序作为输入时需要考虑置换不变性的问题。为了解决这一挑战,GraphRNN[8]

提出使用广度优先搜索(Breadth-firstSearch,BFS)或深度优先搜索(Deep-firstSearch,

DFS)来保证节点顺序的一致性,它的核心思想是将图的生成过程分为节点生成和边生成两

个步骤。具体来说,GraphRNN首先通过BFS或DFS遍历图,得到节点的序列。这一步使

模型可以根据节点的访问顺序逐步生成图结构,确保生成过程具有唯一性。GraphRNN在

节点生成阶段逐个生成图中的节点。生成的节点数量可以根据图的规模动态调整。每个节

点通过一个循环神经网络生成,该RNN根据当前生成的节点序列预测下一个节点。在生

成了一个新节点之后,边生成器会预测该节点与已经生成的节点之间的连接情况。

GraphRNN使用另一个RNN模型对边的存在性进行逐一预测,判断是否存在边连接到当

前已生成的节点。通过这种方式,GraphRNN将图的生成转化为一个序列化的任务,避免
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了直接处理图中所有节点和边带来的高计算成本。

2)邻接矩阵生成

除了序列生成,另一种自然的思路是直接生成图的邻接矩阵。与序列生成的方法不同,
这种方法一次性生成整个图的结构信息,尤其适用于小型图的生成。属于这一类别的方法,
如EDGE[9],它的核心思想是基于离散扩散模型(DiscreteDiffusionModel)。扩散模型最

早用于连续空间数据的生成(如图像生成),而EDGE方法将其扩展到离散空间,应用于图

的生成。它的工作原理主要分为两个阶段:第一阶段是正向扩散过程,逐步向图结构中加

入噪声,直到数据接近于均匀噪声;第二阶段是反向去噪过程,从噪声数据开始,通过逐步去

噪恢复出图结构信息。另外,EDGE还为每个节点设计一个目标度向量,通过优化度匹配损

失函数来确保生成的图符合预定的节点度分布。

3)节点嵌入生成

生成图的邻接矩阵通常耗时较长,且无法扩展到大型图。一个可能的解决方案是间接

生成图。例如,可以通过节点嵌入来表示邻接矩阵:A=H·HT。通过这种方式,只需生成

一个较小的张量H∈RN×d,而不是大型邻接矩阵A∈RN×N,其中d≪N。基于这一思想,变
分图自编码器(VariationalGraphAutoencoder,VGAE)[10]首先利用编码器(通常是图神经

网络)学习节点表示,之后与标准的变分自编码器(VariationalAutoencoder,VGA)类似,

VGAE假设节点的潜在表示为服从高斯分布的随机变量,并通过参数矩阵的变换输出其均

值和方差,然后利用重参数技巧重新采样潜在表示。解码器从潜在表示中重构图的邻接矩

阵,这一步通常通过计算节点潜在表示的内积来预测边的存在概率。在训练过程中,通过优

化链接预测损失函数重建图结构。

4.结构学习

现实世界中的图结构往往噪声较多或不完整,导致模型的学习效果下降,甚至产生错误

的结果。这种图结构在社交网络、交通系统、生物网络等多个领域中普遍存在。图结构学习

旨在从图数据中发现和优化有价值的结构,以增强图表示学习。根据是否考虑边的权重信

息,现有的图结构学习方法大致可以分为两类:离散图结构学习和加权图结构学习。

1)离散图结构学习

离散图结构学习将图结构视为随机变量,进而可以从概率邻接矩阵中进行采样。这种

方法的核心在于利用概率模型捕捉图中节点之间的关系,并通过采样得到多样化的图结构,
以建模节点连接关系的潜在不确定性和多样性。在这一框架下,研究人员使用多种技术来

联合优化概率邻接矩阵和图神经网络的参数。通过同时优化这两个部分,模型不仅能够更

好地学习图中的复杂关系,还能提升其泛化能力。接下来,将介绍一种经典的基于蒙特卡洛

方法的离散图结构学习方法。蒙特卡洛方法是一类基于随机抽样的计算方法,常用于数值

积分、概率分布的近似、优化等问题。它的核心思想是通过大量随机样本来估计一个期望值

或者积分结果,这种方法特别适合高维复杂问题,尤其是当解析解难以获得时。
在离散图结构学习中,VGCN[11]通过参数化的随机图模型纳入不确定的图信息,并利

用蒙特卡洛方法进行近似。具体而言,VGCN的目标是通过已知的信息(包括部分已知标

签、特征和观察到的图结构)推断节点或图的标签的后验概率,公式如下:

p(Z|YL,X,Gobs)=∫p(Z|W,G,X)p(W|YL,X,G)p(G|λ)p(λ|Gobs)dWdGdλ



第5章 图神经网络进阶 109  

其中,p(Z|W,G,X)表示在给定神经网络权重W、图G 和特征X 的情况下,模型输出Z 的

条件概率。这个概率可以通过图卷积神经网络来建模;p(W|YL,X,G)表示在已知部分标

签YL、特征X 和图结构G 的情况下,图神经网络权重W 的后验概率,这描述了在图神经网

络上进行训练时,权重的更新过程;p(G|λ)表示在给定参数λ 的情况下,随机图G 的生成

概率;p(λ|Gobs)表示在给定观察到的图Gobs的情况下,参数λ的后验概率,它表示从观察到

的图中推断出随机图生成模型的参数。上述积分通常是不可解析的,因此通常需要采用近

似方法来进行计算。VGCN使用蒙特卡洛方法近似上述积分:

p(Z|YL,X,Gobs)≈
1
V∑v

V
NGS∑

NG

i=1
∑
S

s=1
p(Z|Ws,i,v,Gi,v,X)

  蒙特卡洛近似通过采样的方法来估计标签Z 的后验分布p(Z|YL,X,Gobs)。首先,从
图生成模型的参数分布p(λ|Gobs)中生成V 个样本λv,这些样本代表不同的模型参数;其
次,对于每个λv,从条件分布p(G|λv)中生成NG 个图样本Gi,v,反映出在这些参数下可能

的图结构;再次,对于每个图样本Gi,v,从贝叶斯图卷积神经网络中采样权重矩阵Ws,i,v;最
后,通过对所有样本的加权平均,近似计算出p(Z|YL,X,Gobs),实现了综合考虑多种可能

的图结构和神经网络权重来估计标签的后验概率。

2)加权图结构学习

离散图结构学习过于依赖已知的图结构和节点连接模式,缺乏对新节点的适应能力,因
此在处理未知或未见节点时表现不佳,在推理阶段面对未见节点时,往往无法有效进行归纳

学习。另外,与二元邻接矩阵相比,加权邻接矩阵能够编码更丰富的边的信息,有利于后续

图表示学习。加权图结构学习往往假设节点属性或多或少包含推断图的隐性拓扑结构的有

用信息,因此将图结构学习作为定义在节点嵌入空间上的相似性度量学习,使学到的相似性

度量函数以后可以应用于未见过的节点嵌入集来推断图结构,从而实现归纳图结构学习。
加权图结构学习的核心思想是基于节点嵌入学习节点对的相似性度量函数,得到边的权

值,从而实现加权的图结构学习。最简单的度量函数是计算任意一对节点嵌入之间的点积,可
以表示为:Si,j=v→Tiv→j 其中,S∈Rn×n是一个节点相似性矩阵,v→i 和v→j 是节点的向量表示。为

了提高点积的学习能力,引入具有可学习参数的点积:Si,j=(v→i☉u→)Tv→j,其中☉表示逐元素

相乘,u→ 是一个非负的可训练权重向量,用于强调节点嵌入的不同维度。需要注意的是,输出

的相似性矩阵S 是不对称的。为了进一步提高表达能力,出现了引入权重矩阵的度量方法,

Si,j=ReLU(Wv→i)TReLU(Wv→j),其中W 是一个d×d 的权重矩阵,ReLU(x)=max(0,x)是一

种激活函数,在这里用于保证相似性矩阵的稀疏性。之后的方法进一步对两个节点嵌入应用

了不同的线性变换,并引入了归一化操作:Si,j=softmax((W1v→i)TW2v→j),其中W1 和W2 是

d×d 的权重矩阵,softmax函数定义为softmax(z
→)i=

ezi

∑
j
ezj
,用于获得行归一化的相似性

矩阵。

5.1.2 图特征优化

图特征是用于描述图中节点、边或整个图的属性和信息的特征表示。在本节中,将探讨

如何从图特征的角度优化图数据。首先,介绍特征增强,通过扩展或修改原始特征,避免模
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型训练时的过拟合;其次,讨论特征选择,旨在识别和提取与标签高度相关的特征,避免维度

灾难;最后,介绍特征补全,解决图数据中特征不完整的问题。

1.特征增强

特征增强通过对节点、边或图的原始特征进行扩展或修改,为图数据引入额外的、相关

的信息,不仅能够缓解模型的过拟合,还可以提高模型的泛化性能,特别是在处理复杂图结

构或稀疏图数据时表现尤为显著。本节首先介绍一些通用的特征增强方法,然后介绍一种

提高图神经网络表达能力的重要特征增强方法,即位置编码。

1)通用特征增强

通用特征增强一般用于特征预处理,用于提高特征的效用和多样性,使特征更好地捕捉

图信息。对于节点本身具有特征的情况,特征损坏(FeatureCorruption)通过向原始节点特

征中加入可控噪声来产生增广数据,可以表示为X
~
=X+R,其中X 表示原始节点特征矩

阵,R 表示添加的噪声矩阵;特征重排(FeatureShuffling)通过随机切换特征矩阵中的行和

列来改变原始节点特征的上下文信息,产生增广数据,形式化表示为X
~
=PrXPc,其中,Pr

和Pc 分别是行排列矩阵和列排列矩阵,它们在每一行和每一列中恰好有一个元素为1,其
他位置均为0;特征掩码(FeatureMasking)的核心操作是将节点特征矩阵中的一部分置零,

通过与一个0-1掩码矩阵M 逐元素相乘来实现:X
~
=X☉M;特征添加(FeatureAddition)

通过将节点特征中缺少的节点属性编码成特征向量并与原始节点特征拼接实现,一般来说,
可以表示为x~i=[xi‖xj],其中‖表示拼接操作,xj 可以是一个空向量;特征传播(Feature

Propagation)通过在图中扩散特征,结合来自不同节点的特征信息,表达式为X
~
=A
~
X,其中

A
~

是不同图传播方法对应的邻接矩阵。对于节点本身没有特征的情况,往往通过将图自身

的结构信息编码成节点特征,例如直接使用节点的度作为节点特征。更加复杂的方法包括

利用随机游走算法来捕获结构信息,并仿照word2vec技术来生成节点特征等。

2)位置编码

众所周知,图神经网络的表达能力受到1-WL测试的限制,其在区分图同构性方面存在

一定局限性,仅能够区分部分同构图。为了打破这一限制,一种常见的策略是通过引入位置

信息来增强节点特征,即位置编码。这里将介绍两类位置编码方法:绝对位置编码和相对

位置编码。
绝对位置编码(AbsolutePositionEncoding,APE)的目标是为每个节点分配一个位置

表示,以指示其在整个图中的唯一位置。一种流行的APE方法是利用图拉普拉斯矩阵的特

征向量,具体来说,通过对拉普拉斯矩阵Δ 进行特征分解,可以得到

Δ=I-D-1/2AD-1/2=UTΛU
其中,U 是特征向量矩阵,Λ 是特征值矩阵,一般来说,选择前k个最小的非零特征值对应的

特征向量,形成一个N×k的矩阵,每一行可看作一个节点的位置编码。通过将节点的位置

编码与节点的原始特征组合,实现对原始特征的增强。
另外一种位置编码方式是相对位置编码(RelativePositionEncoding,RPE),它通过将

节点之间的距离作为位置编码来捕捉它们之间的关系信息。首先随机选择一个节点作为锚

点节点,然后通过目标节点与锚点节点之间的相对距离来定位目标节点。如图5-2(a)所
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示,使用图神经网络往往无法区分节点v1 和v2,因为两个节点虽然位置不同,但是所处位

置图结构相同。而通过选择s1 作为锚点节点,便可以通过计算和s1 的相对距离(跳数)来
区分v1 和v2。为了更精确捕捉节点的位置信息,可以选择多个锚点节点,如图5-2(b)所
示。PGNN[12]进一步引入锚点集的概念,如图5-2(c)所示,通过锚点s1 和s2 无法区分节点

v1 和v3,而通过将s1 和v3 组合为锚点集,把目标节点到锚点集中所有节点的最近距离作

为相对距离,就可以正确区分v1 和v3。

图5-2 相对位置编码

2.特征选择

当机器学习算法中使用的数据特征维度过高,就会在高维特征空间中呈现出稀疏性,导
致需要指数级增长的数据量去维持泛化性,使模型训练的成本显著增加,这种现象被称为维

度灾难。因此,特征选择旨在识别与标签高度相关的特征,并在模型训练过程中优先考虑这

些特征,从而缓解维度灾难。特征选择不仅有助于降低与高维数据相关的计算成本,还通过

拟合有意义的特征来提高模型泛化性能。在图学习中,常用的特征选择方法可以根据其与

下游任务的关系分为两类:任务无关的特征选择和任务特定的特征选择。

1)任务无关的特征选择

这类方法专注于选择能够适用于任何图神经网络模型或下游任务的特征,主要围绕引

入正则化目标函数进行特征选择。例如,AsGNNs[13]将正则化方法引入GCN和GAT中,
将特征选择与 GNN 结合在一起,以提取有意义的特征并消除噪声特征。具体来说,以

GCN为例,引入ℓ2,1范数来对每一个图卷积层的参数进行约束,优化目标可以表示为

minLgcn(A,X;Θ)+∑
K

k=1
λk‖Θ(k)‖2,1

其中,‖Θ(k)‖2,1=∑
N

i=1
∑
M

j=1
|Θ(k)

ij |2 表示参数矩阵每一行的2-范数总和,λk>0是权重

参数,为了简化计算,AsGNNs将所有的λk 设为λ。这种约束确保了学习的参数矩阵Θ(k)

具备行稀疏性,从而可以自然地进行特征选择。

2)任务特定的特征选择

与之相对,任务特定的特征选择在进行特征选择时考虑了下游的具体任务。以Dual-
NetGNN[14]为例,注意到在节点分类任务中,选择性聚合的效果优于全部聚合,因此它提出

利用输入节点特征的子集训练一个分类器,以预测节点标签,并且设计了一个选择器模型,
学习最佳输入特征子集以实现性能提升。具体来说,分类器是一个两层的 MLP,它可以表
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示为fc(θ;X,m),其中,θ是网络的参数,X 是节点特征矩阵,m 是指示节点特征矩阵子集

的一个掩码向量;选择器也是一个两层的 MLP,可以表示为fs(ϕ,m),其中ϕ 是选择器的

参数,m 同样是一个掩码向量,选择器的输出是一个标量值,表示输入掩码向量在分类器上

的预测性能。
在训练时,分类器采用交叉熵损失,通过最小化选择器输出的预测性能与分类器真实的

分类性能之间的均方误差来优化选择器。具体的训练流程分为三个阶段,第一阶段在节点

特征矩阵的不同组合上训练分类器和选择器。对于每次前向传播,会随机采样一个节点特

征子集作为分类器的输入。同样,对应的掩码向量也被设定为选择器的输入。分类器和选

择器使用其对应的损失函数进行优化。训练直到分类器对每种掩码组合产生稳定的损失,
且选择器能够学会根据掩码得到分类器的性能。如图5-3所示,第二阶段目标是利用训练

好的选择器为分类器生成可能的最优掩码。Dual-NetGNN认为输入中具有较大梯度的成

分对模型输出的贡献更大,因此,首先使用一个所有索引权重相等的掩码向量(如1/2)作为

输入给选择器,然后计算相对于输入向量的梯度并挑选前p 大梯度对应的索引。但最优子

集可能是一个更小的子集,于是从中固定采样若干组合,并计算分类器的验证损失,选择损

失最小的掩码对分类器和选择器进行一次训练。第二阶段重复若干次后进入第三阶段,选
择验证损失最小的输入掩码,仅对分类器继续训练,直到收敛。

图5-3 Dual-NetGNN阶段二训练流程[14]

3.特征补全

大多数图神经网络假设图中的节点特征是完整的,但这一假设在实际应用中往往并不

能成立,主要原因包括以下几个方面:①数据收集过程中出现的机器或人为错误;②收集

完整数据集在实际应用中成本很高;③许多用户由于隐私保护不愿提供完整个人信息。因

此,为了解决图中特征不完整的问题,特征补全作为一种重要解决方案,旨在填补图中缺失

的节点特征。根据不同类型的图数据,现有方法可分为基于同质图的特征补全和基于异质

图的特征补全。

1)基于同质图的特征补全

大多数的同质图图神经网络往往假设图具有完整的特征信息,没有针对特征缺失图进

行设计,因此无法提供令人满意的学习效果。结构-属性转换器(SAT[15])对图提出了共享

潜在空间的假设,并开发了一种基于分布匹配的图神经网络,用于处理特征缺失的图。


